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Abstract—Multi-agent pathfinding (MAPF) represents a core
problem in robotics. In its abstract form, the task is to navigate
agents in an undirected graph to individual goal vertices so
that conflicts between agents do not occur. Many algorithms for
finding feasible or optimal solutions have been devised. We focus
on the execution of MAPF solutions with a swarm of simple
physical robots. Such execution is important for understanding
how abstract plans can be transferred into reality and vital
for educational demonstrations. We show how to use a swarm
of reflex-based Ozobot Evo robots for MAPF execution. We
emulate centralized control of the robots using their reflex-based
behavior by putting them on a screen’s surface, where control
curves are drawn in real-time during the execution. We identify
critical challenges and ways to address them to execute plans
successfully with the swarm. The MAPF execution was evaluated
experimentally on various benchmarks.

Index Terms—multi-agent pathfinding (MAPF), centralized
control, swarm of robots, reflex-based control

I. INTRODUCTION

Multi-agent pathfinding problem (MAPF) is a task of find-
ing paths for multiple agents from their initial positions to
their goal positions while ensuring that they do not collide
at any point in their path execution [1]-[7]. The abstract
form of the MAPF problem assumes an undirected graph
G = (V, E) that models the environment. We assume multiple
distinguishable agents placed in vertices of GG such that at most
one agent is placed in each vertex. Agents can be moved
between vertices across edges, while problem-specific rules
must not be violated. MAPF usually assumes that agents are
moved to unoccupied neighbors only. The task of MAPF is
to reach a given goal configuration of agents from a given
starting configuration using valid movements.

Due to its real-world applications, MAPF has been a deeply
researched topic over recent years. New variations of this prob-
lem and approaches to solving them, emerged, and new solving
algorithms have been designed. Many practical problems from
robotics can be interpreted as MAPF. Applications can be
found in discrete multi-robot navigation and coordination,
automated warehousing [8], transport [9], or coordination and
maneuvering of aerial vehicles [10].

However, most of the solutions are tested in the virtual
environment. Although this type of simulation is suitable for

theoretical research and agile solver benchmarking, it is not
sufficient to understand how abstract plans can be transferred
into reality. It might also not be the most exciting for students
or someone interested in understanding this topic. Moreover,
using physical robots usually requires a fundamentally differ-
ent approach to solving MAPF problems.

The major challenge faced during the execution of abstract
plans on real robotic hardware is that most of the contemporary
MAPF solvers produce discrete plans, while physical robots
act continuously in a continuous environment. The viability
of discrete MAPF solvers is that existing solvers for the
continuous multi-robot motion planning do not scale for a
large number of robots [11], and finding the optimal robot
trajectories is often unattainable.

This paper describes a novel approach to simulating the
existing MAPF algorithms using a swarm of small mobile
robots—Ozobot Evo. This robot is equipped with simple reflex-
based control and relatively limited programming capabilities.
Precisely, Ozobot can follow a curve drawn on a surface and
has its reflex-based behavior modified using a small set of
instructions. We used these capabilities to emulate centralized
control by placing the swarm on a screen’s surface, where
control curves are displayed to navigate the robots in real-
time. The novel approach aims to:

o Verify if discrete plans can be successfully executed on
a swarm of physical robots that move continuously.

o Create a scalable solution for a large number of robotic
agents that can utilize contemporary MAPF solvers.

e Provide researchers and educators with an affordable
solution for testing and demonstrating their findings in
the physical world.

The paper is organized as follows. In Sections II and III, we
introduce MAPF formally and recall major solving algorithms.
Then Ozobot Evo, a robot we use for execution, is described
in Section IV. In Sections V and VI, we introduce the
execution of MAPF solution on a swarm of Ozobot Evo
robots through reflex-based control. Experimental evaluation
of swarm executions on various MAPF benchmarks is pre-
sented in Section VII. We conclude with Section VIII.



II. OVERVIEW OF MAPF

Almost all of the previous MAPF research and proposed
solvers were built on top of several assumptions about time
and agents:

o Time is not continuous, but rather discretized into time

steps.

o Agents can move to any direction and their actions take
the same amount of time to execute, precisely one time
step.

« Agents are of the same size and shape and occupy a single
point in the environment representation.

A. Classical Discrete MAPF

The classical MAPF problem [2], [5] is modeled on an
undirected graph G = (V,E) with a set of agents A =
{a1, a2, ...,ax} such that |A| < |V|. Each agent is placed
in a vertex so that at most one agent occupies each vertex.
The configuration of agents is denoted o« : A — V. Next,
we are given a starting configuration of agents o and a goal
configuration o .

An agent can either move to an adjacent vertex or wait in its
current vertex at each time step. The task is to find a sequence
of move/wait actions for each agent a, that moves the agent
from ag(a;) to ay (a;) such that agents do not collide'. So
an agent can move into a vertex only if it is unoccupied, and
no other agent enters it at the same time. Different constraints
might be applied in various MAPF problems as well.

Below, we define a classical move-to-unoccupied variant of
MAPFE.

Definition 1: (move-to-unoccupied MAPF). Configuration

o results from « if and only if the following conditions hold:

(i) a(a) =d/(a) or {a(a),d/(a)} € E for all a € A (agents
move along the edges or wait in the current vertex);

(i) for all @ € A it holds that if a(a)# a'(a) =
o(a) # a(a’) for all @’ € A (target vertex must be
unoccupied);

(iii) and for all a,a’ € A it holds that if a #d =
a/(a) # o'(a’) (no two agents enter the same vertex).

Solving the MAPF instance is to find a sequence of con-
figurations [ag, a1, ..., @] such that oy results from «; for
1=1,2,..., 1t — 1 using only valid actions, and o), = ;. A
feasible solution of a solvable MAPF instance can be found
in polynomial time [1], [12]. Precisely the worst-case time
complexity of most practical algorithms for finding feasible
solutions is O(|V|*) (asymptotic size of the solution is also
O([V) [131.

B. Cumulative Objectives in MAPF

Various objectives are used to evaluate the quality of a
solution. The most common objectives are makespan and sum-
of-costs. With the makespan [14], we need to minimize g in
the solution sequence mentioned after Definition 1. Below, we
define the sum-of-costs objective [3], [4], [15]:

'We understand a collision when at least two agents occupy the same vertex
simultaneously.

Definition 2: (sum-of-costs objective). The sum-of-costs
objective is the summation, over all agents, of the number of
time stelzs required to reach the goal vertex. Denoted &, where
& = > .1 &(path(a;)), where &(path(a;)) is an individual
path cost of agent a; connecting «g(a;) calculated as the
number of edge traversals and wait actions. >

Finding an optimal solution with respect to the sum-of-costs
objective is NP-hard [16].

C. Real-world Complications

Besides the already mentioned assumptions, the environ-
ment is usually modeled as an undirected graph or a tiled grid.
Even though this can often be sufficient even for a real-world
scenario, the reality is not generally that easy to model. Also,
physical agents have their specific form, and they can collide
in many different ways—they are geometrical. Different agent
representation and collision detection are therefore needed if
pursuing a more realistic model. Geometry-aware collision
detection for agents of different shapes, speeds, and continuous
movements is studied in [17]. Also, a study [18] solely around
this concept of geometrical agents was done. In that work,
authors refer to such agents as large agents, and they formalize
and study a MAPF for large agents, then propose a new
algorithm for this problem.

Actions of physical agents do not usually take the same
time, and they do not merely snap between positions in the
environment instantaneously, as in the discrete approach. The
agents require continuous movement to reposition. Continuous
MAPF can adequately accommodate this problem, but also
other approaches might sufficiently simulate the fluid transfer
of agents.

In the classical MAPEF, the agents can move in any direction
for every time step of the plan. Even though this might be true
for some agents like drones, this is not true for most mobile
agents moving on the ground. When an agent wants to change
the direction of movement, it must rotate what takes some
time and adds to the plan desynchronization. These rotation
movements can also be incorporated in the MAPF abstraction,
as proposed in [19]. The authors suggest splitting position
vertices into directional vertices, which represent the direction
the agent is facing. Edges between these new vertices represent
rotation actions and original edges movements between the
original vertices. This change also requires a modification in
the solver, namely in conflict detection. The study’s primary
purpose was to test the behavior of several defined MAPF
models when executed on physical robots. The experiments
concluded that classical MAPF plans are not suitable for such
use, and some of the other proposed models yielded better
results than the classical one.

ITII. OPTIMAL MAPF SOLVERS
We use optimal solutions with respect to the sum-of-costs

objective in our prototype of the novel approach. There are

2The notation path(a;) refers to a path in the form of a sequence of
vertices and edges connecting g (a;) and a4 (a;), while € assigns the cost
to a given path.



several solvers used for fining od optimal MAPF solutions
based on different paradigms. There are currently two major
streams of optimal solvers for MAPF: (i) search-based solvers
and (ii) compilation-based solvers.

Search-based solvers are often variants of A* search [20],
but also other than common search spaces derived from actions
are used. The notable examples are ICTS [4] or textsc [3].
These algorithms implement a two-level search. In the ICTS,
distributions of the cost to individual agents are searched at the
high-level search. The low-level search of the algorithm tries
to find non-conflicting paths for individual agents that follow
the cost distributions. On the other hand, the ICTS algorithm
performs a search across all possible conflicts between agents
at the high-level, and at the low-level paths that avoid the
conflicts are assigned to individual agents.

Compilation-based solvers reduce the MAPF problem in-
stance to an instance in a different paradigm for which an
efficient solver exists. Such target paradigms include Boolean
satisfiability (SAT) [21], constraint satisfaction problem (CSP)
[22], [23], or answer set programming (ASP) [24]. The major
challenge in using compilation-based methods is designing the
encoding of MAPF in the target formalism.

A. SAT Based Solver

The SAT-based solver [25] transforms an instance of a
MAPF problem into a propositional formula that is satisfiable
only if the MAPF problem is solvable. This formula can be
consulted with an already existing state-of-the-art SAT solver.
When the satisfying assignment is found, the solution of the
MAPF problem can be reconstructed from this assignment.
Therefore, the main challenge is the encoding of the MAPF
problem into a propositional formula.

The primary concept, allowing the encoding of a MAPF
problem into a propositional formula, is a time expansion
graph (TEG) of the original graph from the problem instance.
The TEG is created by duplicating all vertices from the
original graph for all time steps from O to a given bound .
This can be imagined as a layered graph where each layer of
vertices represents an individual time step. Then all possible
actions are represented by directed edges between consecutive
layers. An edge between corresponding vertices in two layers
represent a wait action, while an edge between neighboring
vertices in the layers represent a move action. This TEG
is created for each agent. In the encoding, a propositional
variable is introduced for each of the vertices of these new
graphs. The variable is true if the agent occupies the vertex
at the time step that the variable represents. Similarly, each
directed edge is encoded, and other constraints are added so
that the found satisfying assignments correspond to a valid
MAPF solution. However, because of the bound u of the TEG,
the encoded formula can only be satisfied if a solution that
takes up to p time steps exists. Note that this corresponds to
the makespan of the solution.

The optimal solver repeatedly asks the SAT solver, if a
solution of a certain makespan, which is incremented in a
loop, exists. When it finally finds a solution, this solution has

Fig. 1. Ozobot Evo (photo from [27])
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Fig. 2. Sensor layout of Ozobot Evo (photo from [28])

the lowest possible makespan and therefore is optimal. First,
a lower bound makespan of the MAPF solution is determined
by finding the optimal single-agent pathfinding solutions for
each agent, which can be done very efficiently. The makespan
of the MAPF solution cannot be lower than the longest path of
these agents. For each increment of y, the problem is encoded
into a propositional formula F(u), and consulted with the SAT
solver. If the formula could not be satisfied, p incremented, and
a new formula is created. If a satisfying assignment has been
found, the MAPF solution is extracted from this assignment
and returned.

The framework, how it is described, is not complete because
if a solution to a given MAPF instance does not exist, the
solver would never stop. The existence of a solution is usually
checked with another algorithm, for example, Push-and-
Rotate [26].

IV. PHYSICAL ROBOT: OzOBOT EVO

Ozobot Evo [27] is a small, reflex-based robot without an
internal state. Compared to other robots used in research like
e-puck or Khepera, Ozobot is simple and limited, but also
affordable. An image of the Ozobot Evo can be found in
Figure 1, and its sensor layout is visualized in Figure 2.

The primary capability of Ozobot is to follow lines. Its
reflex-based behavior can also be altered, and it can be done in
two different ways—Color Codes and OzoBlockly. Color Codes
are instruction markers on lines that can be read by the robot,
and OzoBlockly is a visual coding editor providing a set of
movement and sensory instructions.



Two main factors were considered when choosing this
particular robot for the task:

« We want to test the limits of our proposed approach, and
if it is possible to deploy discrete MAPF solutions on
such primitive hardware.

o Building large swarms of Ozobot Evo robots is more
affordable.

A. Important Hardware

The motor and wheels provide the robot with mobility.
Ozobot turns by moving the wheels separately at different
speeds.

Under the base of the robot are several line sensors and an
optical color sensor. The purpose of these sensors is to detect
lines, intersections, and surface color. The color sensor can
distinguish eight different colors. Ozobot is highly dependant
on this sensor because it allows the robot to read Color Codes,
and it is also used to load OzoBlockly programs into the robot.
Four infrared proximity sensors can be used to detect an object
as far as 10 centimeters from the robot.

B. Movement and Line Following

The essential reflex functionality of Ozobot we used in
our approach is following lines drawn on the surface of the
physical environment. By default, Ozobot follows lines at a
default speed of 30 mm/s. When the line is lost, it stops its
movement. At each line intersection, Ozobot chooses one of
the possible directions at random, with all the possibilities
having the same probability of being chosen. It is important
to know that Ozobot does not register a 90-degree turn as an
intersection. While following lines, Ozobot will also read and
execute Color Codes if found.

The accuracy of the optical sensors is limited, and sensors
need to be calibrated to ensure better functionality. This is
especially true when there is a change in the display brightness
or the surrounding light conditions. Line parameters, like line
thickness or angle of turns, also need to be set correctly to
ensure correct behavior.

V. NOVEL APPROACH

Previous solution deploying discrete MAPF solutions on
physical robots from [19] is simple and works fine for the
comparison of MAPF models. However, because of how that
approach utilizes Ozobots, there is not much that can be done
to enhance the deployment or expand the usability to other
MAPF variations. Moreover, it has several drawbacks that
could be solved by using a different strategy. In this section,
a novel approach is proposed, compared with the previous
solution, and previous drawbacks are explained as well as how
the new approach solves them.

A. ESO-NAV: Reflex-Based Navigation

The main idea of this novel MAPF deployment approach is
to have robots with fixed reflex behavior and an environment
that can output information for the robots, affecting their
behavior and controlling them in effect. The environment is

a physical representation of a given MAPF problem instance
that can navigate the agents in itself by showing them the
planned paths and additional information. The plans are ob-
tained from a centralized MAPF solver and then processed for
the execution in the environment. Since the less constrained
MAPF solvers are more efficient than the sophisticated multi-
robot motion planning solvers, we hope to make the planning
part of the deployment more efficient and scalable for large
number of robots. The computational complexity of the sys-
tem is, therefore, shifted towards solution postprocessing and
execution. We call our approach Navigation by Environment
Surface Outputs (ESO-NAV).

In our prototype, the environment is represented by the
surface of a screen capable of providing outputs for Ozobots.
A grid map of a MAPF problem instance is displayed on the
screen, and the planned paths are animated for the robots.
The behavior of the agents can be determined with a simple
OzoBlockly program loaded into each robot. This approach
provides freedom of creating a more sophisticated and highly
customizable MAPF simulation.

B. Improvements from Previous Work

There are two significant improvements compared to the
previous approach [19].

(i) Synchronization of simulation start. In the previous
solution, the map of the problem instance was constructed
from the following lines, which leads Ozobots into movement.
The execution had to be initiated manually, so scalability
for multiple robots is limited. Since robots in ESO-NAV are
regarded as entirely reflex, the previous issues with synchro-
nization of the execution start can be easily solved. Before
the start, the environment does not output any paths, and
robots can initiate waiting in that situation. Additionally, ESO-
NAvV provides more flexibility in environment representation
and map design since the planned paths are only a piece
of extra information. The novel approach could be used for
environments that are not grid-based, and the paths could be
continuous curves instead of straight lines between positions.

(ii) No need to memorize the plan in advance. Another
factor we consider to be an improvement from the previous
approach is that robots entirely modular for all problem in-
stances. In the ESO-NAvV approach, the robots can be quickly
used on different maps without changing their programming.
The paths can even be replanned during the execution without
the agents noticing. This allows simulation of sub-optimal
MAPF solutions optimized during the agent execution, or
replanning can be performed if agents fail to follow their
paths. Moreover, different behaviors of agents can be tested
and compared with this approach.

C. Expected Problems

Some of the real-world complications are still concerning
this novel approach, but the complications can be mitigated by
correct path processing and outputting. The robot collisions
can still be an issue, even if a MAPF solver finds a valid
solution. The environment needs to be designed so that agents



can move around each other without any contact. Incorrect
path processing and outputting can also introduce conflicts
that are unanticipated and would interrupt the execution. The
biggest challenge remains the fact that different robot move-
ments take different time durations, creating desynchronization
in the plan execution. However, the ESO-NAV approach with
the use of Ozobots provides various ways of solving this
desynchronization issue without modifying the MAPF solver
nor the problem abstraction.

VI. REALIZATION

In this section, a working prototype of the ESO-NAV ap-
proach to MAPF simulation that utilizes Ozobots is presented.
The prototype can take a MAPF problem instance in the form
of a map and execute the solution on the robots.

A. Overview

The prototype application could be divided into several
modules that interact with each other during the execution.
Most of these modules should be easy to modify or extend to
simulate different MAPF models or situations. The program
takes a map file that contains the MAPF problem instance
to be executed. The problem is passed to the MAPF solver,
which yields a solution. This solution contains paths for all
agents that should be outputted to the environment. The main
simulator module then takes the obtained solution and ensures
correct processing and environment output for the agents. The
outputs should make the robots execute their planned paths
without any manual interference.

B. Environment

During the simulation, the abstract environment represen-
tation needs to be transformed into the physical environment.
This is done by displaying the map on the screen on which
the Ozobots can move. For this prototype, grid-based maps
were chosen to be used and can be displayed as tiles. If
there is not an edge between two neighboring vertices in the
original graph, a wall is displayed on the map between the
corresponding tiles. If a particular tile is a start or goal position
of any agent, the tile is colored green or red. If there is a start
and also a goal position on a single tile, the tile is filled with
both colors using a checker pattern. Note that the colors need
to have very low opacity, so as the Ozobots do not register
them as following lines.

Before the simulation, Ozobots are placed on all green tiles,
and at the end of the simulation, they should stand on the
red tiles. When all bots are in place, the following lines are
displayed on the map as well by the simulation module.

C. MAPF Solver

The prototype uses an already existing program that im-
plements the SMT-CBS algorithm [29], which combines the
SAT-based solving principle and the CBS algorithm. All
algorithms in this program are implemented under the sum-
of-costs objective function.
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Fig. 3. Colored path segments displayed in the map after ¢ seconds from the
start of the execution

D. Simulation via Path Animation

The main and most sophisticated module of the application
is the simulator. It takes the loaded map of the problem and an
obtained solution from the solver module and is responsible
for animating the paths for Ozobots. It is responsible for
transforming the discrete solution obtained from the solver
module into continuous following lines for Ozobots, and
displaying them for the bots into their physical environment.

The simplest solution for the path outputting would be to
display the whole plan at once. With this outputting method,
the robots cannot perform some of their essential actions like
wait or turn around at a specific position. They even choose a
random direction at each intersection.

These problems have been addressed through animating
paths, as shown in Figure 3. The screen outputs animated
path segments around the map, on which the Ozobots are
moving. The segments are divided into three colored parts,
so the robot can reflexively change its movement speed based
on the line color. This dynamic speed adaptation provides an
active correction of execution desynchronization. However, to
make an Ozobot read the line color and change its movement
speed, artificial intersections had to be displayed on the paths.

If the agent has to stop at a specific position, the path
segment stops its animation at the position. When the robot has
to stop on a curved turn, a guiding line is displayed to bring
the Ozobot into a correct orientation. This ensures that the
bot can continue on its path when the path segment reappears
under it. In some scenarios, the robot is required to make a
U-turn. For this functionality, a special color code supported
by the Ozobot is displayed on the screen. The robot can read
the code and perform the turn.

An illustration of Ozobots navigating on the path segments
is shown in Figure 4.
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Fig. 4. Illustration of Ozobots following colored path segments on a map

E. Modifying Ozobot Behavior

Ozobots need to follow the lines outputted by the envi-
ronment and change their movement speed according to the
color of the lines. This modified behavior can be written as
an OzoBlockly editor and loaded to all robots.

The OzoBlockly program can be found in Algorithm 1. The
main loop runs until the program is manually terminated. As
can be seen on line 7 of the code, the robot moves on the
path segments between the artificial intersections or until it
loses the following line. When an intersection or a line end
is encountered, the line-following speed is updated on line
2. Because the Ozobot naturally wants to choose a random
direction at any intersection, line 4 makes it always go straight.
However, if the movement was interrupted and there is no line
under the robot, line 6 stops it from moving.

Algorithm 1: Ozobot behavior program

1 while rrue do
2 set line-following speed: getSpeed F'romLineColor()

mm/s;
3 if there is way straight then
4 | pick direction: straight;
5 else

a

| stop motors;

7 follow line to next intersection or line end;

The function get SpeedFromLineColor from line 2 is
shown in Algorithm 2. First, the function reads the surface
color from the optical color sensor on line 2. On lines 3-10,
the speed is chosen according to the color, and on line 11, it
is returned. The speeds on each of the segments were chosen
based on the path segment animation speed.

VII. EXPERIMENTAL EVALUATION

We tested the prototype with various scenarios where the
focus was on success of execution and problematic maneuvers.
Each of the problem instances, represented by a map, was
solved with both the move-to-unoccupied variant (denoted

Algorithm 2: Function reading line color and returning
speed
1 Function getSpeedFromLineColor()

2 color <— get surface color;
3 if color = surface color red then
4 | speed < 37;
5 else if color = surface color black then
6 | speed < 30;
7 else if color = surface color blue then
8 | speed < 23;
9 else
10 | speed < 21;
11| return speed
S:1/F:3 S:4/F:2
S:2/F:4 S:3/F:1

Fig. 5. Experiment map: The rotation

m2u) and the standard MAPF solver’. For some maps, both
variants yield the same plan®.

A. Maps

For the experiments, six maps were used. Some of the maps
aim to test a specific feature or a critical maneuver of the
system, others provide a balanced scenario for the execution.
All of the maps are listed in Table I. For each map, its width,
height, and number of agents are provided in the table.

In Table II, all plans for these maps are listed. For each plan,
some maneuvers that could be problematic for the robots are
counted. Namely, the number of turns without waiting, the
number of Color Codes displayed (CC), and the number of
wait on a turn positions (WoT).

B. Results

Every plan was executed 32 times with the implemented
prototype. The execution is marked as successful if all Ozobots
reach their goal positions. If at least one loses the following
line and does not reach the goal, the execution is marked
as a failure. The results of the experiments are summarized
in Table IIl. During the testing, five different reasons for

3Which allows an agent to moved to an occupied position if the occupant
will leave the position at the same time step.
4For example, the map rotation from our experiments.



S:1/F:4 S:4/F:1
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Fig. 6. Experiment map: The swap

F:3 F:2 S:3/F:1

Fig. 7. Experiment map: The ordering

execution failure were recorded. The occurrence of these
failures was counted and is presented in the table of results.

Sometimes during the execution, a severe collision (SC) can
occur, where the robots push against each other or lift their
wheels from the surface. This collision results in an execution
failure because the robots lose their following lines and are
unable to continue. This problem does not occur very often
and is non-existent in the move-to-unoccupied plans, , which
are generally safer for physical execution.

On the other hand, more frequent was the failure due to
missed intersection (MI). Sometimes, an Ozobot failed to

TABLE I
MAPS CREATED FOR EXPERIMENTS

Map name || Width | Height | Agents

Image of the map

snake 10 2 6 -

rotation 5 5 4 In Figure 5

swap 8 3 6 In Figure 6

ordering 5 3 3 In Figure 7

evacuation 10 5 6 In Figure 8

roundabout 9 5 6 In Figure 9
F:3 F:4 s:3 s:5
F:1 F:2 |

S:1 | S:4

F:5 F:6 s:2 s:6

Fig. 8. Experiment map: The evacuation

F:3 S:1 S:2/F:5

S:5 S:6
F:6

F:4 |S:3/F:2 S:4 F:1

Fig. 9. Experiment map: The roundabout

TABLE II
PLANS EXECUTED WITH THE PROTOTYPE
Plan name || Map | Turns | CC | WoT
snake snake 12 0 0
snake_m2u snake 12 0 0
rotation rotation 20 0 0
swap swap 10 0 1
swap_m2u swap 9 0 3
ordering ordering 5 1 0
ordering_m?2u ordering 3 1 2
evacuation evacuation 26 0 1
evacuation_m2u evacuation 25 0 1
roundabout roundabout | 33 0 0
roundabout_m2u roundabout 30 0 1

update its speed at an intersection because it was not detected
by its sensors. This almost always resulted in an execution
failure if the agent did not slow down before a turn. The
first experiments showed that the success rate of an Ozobot to
detect an intersection correctly fluctuates with changing light
conditions and performing calibrations. However, results from
the plan executions on the roundabout map suggest that the
complexity of the paths might also affect the frequency of
these mistakes.

The maneuvers as CC and WoT also caused a few execution
failures. To fail to execute the U-turn, the robot can either
arrive at the tile too soon or too late. If it arrives too soon,
it fails to read the whole code and does not rotate at all.
If it arrives too late, it reads the code twice and makes two
rotations ending up in the original orientation. Both of these

TABLE III
RESULTS OF THE EXPERIMENTS
Plan name || Success | Fail || SC | MI | CC | WoT | EC
snake 32 0 0 0 0 0 0
snake_m2u 32 0 0 0 0 0 0
rotation 29 3 0 3 0 0 0
swap 30 2 0 1 0 1 0
swap_m2u 30 2 1 0 1 0 0
ordering 30 2 1 0 1 0 0
ordering_m?2u 24 8 0 0 4 3 1
evacuation 28 4 2 0 0 2 0
evacuation_m2u 30 2 0 2 0 0 0
roundabout 23 9 0 9 0 0 0
roundabout_m2u 19 13 0 8 0 3 2




scenarios ensure the failure of plan execution. Performing
the WoT maneuver, the robot sometimes makes a U-turn at
the end of the following guiding line. This behavior is most
likely triggered when Ozobot loses the following line without
detecting a line end.

The last problem noticed during the experiments was
Ozobot failing to exit a curve (EC). Even though this was
a rare occurrence, sometimes, when the bot passed through a
curved turn, it was unable to detect the following line correctly
and lost the path.

VIII. CONCLUSION

This work has introduced a novel approach to executing
discrete MAPF algorithms on a swarm of physical robots
called ESO-NAv. The approach uses environment outputs
and reflex-based robotic agents to emulate centralized control
and shifts the computational complexity of the system from
planning towards execution. This should make the system
more scalable for a large number of robots. A swarm of
Ozobot Evo robots has been used for the prototype.

Despite the limitation of these robots, the tests showed that
the ESO-NAV approach can deploy various MAPF scenarios
on physical agents using existing MAPF algorithms that use
classical discrete models. We also identified various problems
that need to be overcome to carry out the execution success-
fully. Most of them are dependent on the capabilities of robots
being used. Unlike previous works dealing with robotic agents
deployment, we did not need to augment the classical MAPF
model in any sense, and an off-the-shelf MAPF solver was
used. Using reflex control of robots through path animation
on the surface of the screen makes our approach more flexible
and easy to use.

The secondary contribution of our simulation approach is
the prototype that can be used for demonstration in research or
academics, as well as in testing of real-world applications. We
believe the novel approach could be used in applications like
intelligent evacuation systems or indoor transporter navigation.
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