

Abstract— The paper addresses a problem of adversarial co-

operative path-finding (ACPF) which extends the well-studied

problem of cooperative path-finding (CPF) with adversaries. In

addition to cooperative path-finding where non-colliding paths

for multiple agents connecting their initial positions and desti-

nations are searched, consideration of agents controlled by the

adversary is included in ACPF. This work is focused on both

theoretical properties and practical solving techniques of the

considered problem. We study computational complexity of the

problem where we show that it is PSPACE-hard and belongs to

the EXPTIME complexity class. Possible methods suitable for

practical solving of the problem are introduced and thoroughly

evaluated. Suggested solving approaches include greedy algo-

rithms, minimax methods, Monte Carlo Tree Search, and adap-

tation of an algorithm for the cooperative version of the prob-

lem. Solving methods for ACPF were compared in a tourna-

ment in which all the pairs of suggested strategies were com-

pared. Surprisingly frequent success rate of greedy methods

and rather weaker results of Monte Carlo Tree Search were

indicated by the conducted experimental evaluation.

Keywords: cooperative path-finding, adversaries, Monte

Carlo Tree Search, complexity, PSPACE-hardness

I. INTRODUCTION AND MOTIVATION

HE problem of adversarial cooperative path-finding

(ACPF) can be regarded as a generalization of the well-

studied cooperative path-finding (CPF) [1], [4], [5], [6], [8]

which is extended by adversarial element. The standard

cooperative path-finding is a path planning problem in a

fully observable static environment where the task is to find

non-colliding routes for agents that lead them from their

initial locations to given separate destinations. All the agents

are controlled centrally while agents themselves make no

decisions. The adversarial element consists in adding agents

that are outside of the control of the central planning mecha-

nism and that plays against it.

 The environment where agents are moving is modeled as

an undirected graph in CPF [1], [6]. The same abstraction is

adopted in ACPF as well. Hence, CPF and ACPF are both

considered as discrete combinatorial problems. The notion

of adversarial agents has been first introduced in a short

paper [3] where however solving techniques were not ad-

dressed due to space constraints. In this paper, the concept of

ACPF is further elaborated in terms of solving techniques

and a deeper theoretical analysis is given.

This research is supported by the Czech Science Foundation under the
contract number GAP103/10/1287.

 The classical CPF is motivated by problems arising in

both real environments and as well as in virtual worlds (mul-

ti-robot navigation, container relocation, path-finding in

computer games [8]). Note that, agents do not need to be

represented by autonomous movable units. They can be

passive objects or even pieces of certain commodity – the

only important property is localization and space (virtual)

occupation by agents.

The classical CPF has however limited expressive power

for real world situations, as not all the environments are fully

cooperative. That is, we cannot regard all the agents as con-

trollable and the environment as static any more. Dealing

with such adversarial or hostile elements in the environment

beyond the standard CPF is thus desirable.

Our suggestion is to introduce two or more teams of

agents that compete in finding paths to target destinations to

model the adversarial element in CPF. The objective in the

ACPF problem is to control agents of one selected team so

that its agents reach their destinations before agents of ad-

versarial teams. The adversarial agents observe the analogi-

cal objective – they also want to reach their destinations as

first. The task is thus to find a winning strategy which means

a decision mechanism that is able to react on all possible

actions of adversaries.

There is a variety of possibilities how teams of agents can

harm each other in the effort to reach their destinations as

first – occupying target destination, blocking of narrow pas-

sage, or preventing agents from moving.

In the classical CPF, the combinatorial difficulty arises

from the need of avoidance between agents [4]. The situation

in ACPF is even more complex as the planning mechanism

must consider all possible acting of the adversarial teams.

Hence, combinatorial difficulty in ACPF comes not only

from the need of avoidance but also from the need to consid-

er possible harmful actions of adversaries.

There are many situations in the real world that can be ab-

stracted as ACPF. Police actions or tactical military maneu-

vers such as blockade, encirclement, flanking, or their pre-

venting can be planned through means of ACPF. These days

it turns out to be extremely important to move troops to

strategic locations as first without contact with the enemy.

Another obvious application of the ACPF concept is game

industry, particularly real-time strategic games.

The paper is organized as follows. We first concentrate on

the formal definition of ACPF. Subsequently we will study

Adversarial Cooperative Path-finding: Complexity and Algorithms

Marika Ivanová and Pavel Surynek

Charles University Prague, Malostranské náměstí 25, Praha, 118 00, Czech Republic

MarikaIvanova@seznam.cz, pavel.surynek@mff.cuni.cz

T

mailto:MarikaIvanova@seznam.cz
mailto:pavel.surynek@mff.cuni.cz

theoretical properties of the problem, particularly its compu-

tational complexity. It is shown that ACPF is PSPACE-hard.

The first sketch of the proof of PSPACE-hardness has been

published in [3], but the proof is very brief and does not

contain technical details. Here, an alternative proof based on

different techniques is shown with all the necessary details.

Investigation of possible solving methods and their exper-

imental evaluation follows in the next part. As the ACPF

problem is related to -player games and to the classical

CPF, we will focus on methods developed for these prob-

lems and consider their adaptation and application for

ACPF. Conducted experiments should reveal how suitable

are the suggested methods for solving various types of

ACPF instances. We will also compare all the pairs of sug-

gested solving methods against each other in a kind of strat-

egy tournament in the final part.

II. FORMAL DEFINITION OF ADVERSARIAL COOPERATIVE

PATH FINDING

An abstraction of the studied problem is necessary for fur-

ther processing. We adopted usual terminology known from

CPF. The adversarial element present in ACPF requires

extension and adaptation of existing definitions. The envi-

ronment is modeled as an undirected graph, where vertices

represent locations that can be occupied by agents. There is

at most one agent located in each vertex, which models the

spatial constraints. Edges represent passable regions. That is,

an agent can relocate from one vertex to a neighboring ver-

tex provided no collision occurs from this relocation.

Definition 1 (ADVERSARIAL COOPERATIVE PATH-

FINDING). An instance of adversarial cooperative path-

finding problem (ACPF) is a 7-tuple
 where is an undirected graph,
 is a set of agents, is a set

of teams with . Teams are disjoint sets of agents and

every agent belongs to exactly one team (that is,

). denote an index of the selected team for that

play; other teams are our adversaries. is an injec-

tive mapping that assigns an initial vertex to each agent (a

starting position). assigns a target set of verti-

ces to each agent. Finally, represent as an adversarial con-

trol mechanism that determines the next placement of all

agents belonging to adversarial teams. It takes a sequence of

all the previous placements of all the agents as its input to be

able to decide according to the past. □

 The continuous time is divided into discrete time steps in

APCF. The placement of agents at the -th time step is an

injective mapping . The moves are taken as instan-

taneous transformations of agents' placement. Agent move-

ments must observe several rules that correspond to real

physical limitations. That is, can be transformed to if

and only if following conditions hold:

(i) Agents move along edges or stay at a vertex.

(ii) An agent can move to an unoccupied vertex or if

 was occupied at time step by agent different

from , agent must move away. The second condi-

tion allows agents to move around a cycle without

any free vertex. A trivial case of position swapping

along an edge is an exception and is forbidden.

(iii) Teams alternate in their moves. That is, only agents

of team moves between times steps and

 .

Figure 1. An example of ACPF instance. Agents of two teams are depicted

as green and red circles. The graph is represented by a 4-connected grid

with obstacles. Initial positions correspond to current locations of agents

and goals are depicted as squares of color corresponding to the given

team. Note, that agent 1 of team (selected green team) and agent 5 of

team (adversarial red team) do not have any particular targets.

 The task in ACPF is to find a winning strategy for agents

of the selected team . The winning strategy tells us how to

move agents of the team in reaction to movements of

adversarial agents so that agents of reach their destina-

tions as first.

Definition 2 (SOLUTION OF ACPF INSTANCE). A solution

to an ACPF instance is a

winning strategy constituted by a mapping that determines

moves of team at time steps when it is on turn so that
reaches its destinations before other teams whatever they do.

That is, for any sequence of mappings of agents to vertices

 with that

originate in where is determined by from

 for every

 and all the consecutive mappings satisfy condi-

tions (i)-(iii) from definition 1, one of the following two

conditions hold:

(1) for each and there exists

 such that for
(wins at -th step and all the preceding

placements of agents are not winning for any team)

(2) there exists such that for any

4

5

6

6

4

3

1

2

3

2

 (green)

(all the placements of agents in the sequence are not

winning for any team).

The problem definition does not guarantee the existence

of a solution since the graph is not required to be connected

or the agents can block each other so they can never reach

their target locations. Hence, in practice we focus on weaker

objectives such as relocating a certain number of agents to

their targets and/or restrict the time limit. A winning team

either manages to relocate its agents into their targets before

an adversary within the time limit, or achieves a position,

that is closest to the desired target position among all the

teams when the time is up. In order to be able to compare the

teams’ positions, we introduce following definition.

Definition 3 (WINNING TEAM). For a mapping

and a team we define as the number of agents

from team placed at their target vertices. Further we

 as a sum of lengths of the shortest paths between

current positions of agents from and their targets. We can

consider either the shortest path including only unoccupied

vertices, or the shortest path in graph without agents. Former

option is always of at least the same length or longer than the

latter one. Now we can define an ordering of a pair of teams

 with respect to given mapping :

This ordering allows us to determine a winning team,

even if the run was terminated before any target position

were reached.

III. COMPUTATIONAL COMPLEXITY OF ACPF

We are interested in the decision variant of the problem

with respect to computational complexity: given an instance

of ACPF problem, we want to decide whether there exists a

winning strategy for a selected team. We will show that

decision variant of ACPF is PSPACE-hard and belongs to

the EXPTIME complexity class [1]. Whether ACPF belongs

to PSPACE, that is, if it is PSPACE-complete is currently an

open question. The problematic point is that we do not have

any polynomial upper bound on the length of the sequence

of moves in the winning strategy.

We will start with the proof of PSPACE-hardness. It will

be accomplished by a reduction of TQBF – a variant of QBF

[7]– to ACPF.

The following auxiliary lemmas will help us to construct

needful reduction.

Lemma 1 (VERTEX BOOKING). Let
 be an ACPF instance and be so

called booked vertex. Next, let be so called booking

time and with be some team, for that the

vertex should be booked. Then there exists a modified in-

stance

 such that

the booked vertex is not accessible by any other agent

before time-step . ■

Proof. is derived from by adding an extra vertex
that is connected by an edge to the vertex . Alongside we

put a new agent at the booked vertex . Agent
will enter the vertex at booking time . Hence any team-

mate located at a vertex adjacent to can enter at time

step . Figure 2 depicts the situation. ■

Lemma 2 (HAZARDOUS VERTEX). Let
 be an ACPF instance and with

 be some team. Next let be so called

hazardous vertex and . Then there exists a modified

instance

 such that

the hazardous vertex can be occupied by an agent
 at time step , if is not entered by any other agent

 at some former time step .

Proof. is derived from by attaching a path

 . Vertex contains an agent . This

agent can approach the vertex every time step and enter it

in the -th step, unless any other agent do it earlier. Situation

is depicted in the Figure 3. ■

Preposition 1. Decision problem whether there exists a

winning strategy for selected team in a given ACPF instance

is PSPACE-hard. ■

Proof plan. We will provide a polynomial-time reduction

of TQBF [7] to ACPF. Without loss of generality we can

assume, that given TQBF is in 3CNF and each variable is

present both as a positive and negative literal. If these prop-

erties do not hold, we can transform into an equivalent
fulfilling these requirements. For given formula we con-

struct an ACPF instance, where the movement of some

agents will simulate gradual valuation of variables appearing

in . Consequently, we will show that is valid if and only

if there exists a winning strategy for the selected team. The

Figure 3.
Hazardous

vertex.

Figure 2.
Vertex booking.

construction is inspired on the proof of NP-completeness of

the optimization variant of CPF [10].

Construction. Let be the given formu-

la, be the number of its variables, and be the number of

clauses in . For every existentially quantified variable

we will construct a gadget consisting of two parallel paths of

the length , joining at a vertex (see Figure 4).

There is also a path connected to , ended by vertex ,

where sits an agent from . The length of the path from

 to corresponds to the order of in the quantifier part

of . Target vertex of the agent is placed at the vertex

 .

For universally quantified variable , there is a similar

gadgets (see Figure 5). Agent placed at the vertex

belongs to the adversarial team. Vertex is a target vertex

of . Additionally, this gadget contains a path

with an agent from (-agent), that begins at and its

target is at the vertex .

 For every clause there will be a path of the length

 with an agent placed at (see Figure 6) and an

extra target vertex for the agent.

Now we will put all these gadgets together. Consider fol-

lowing example. For the given formula

we construct ACPF instance depicted in Figure 7. Clause

gadget is connected to variable gadgets of that corresponding

variables appearing in the clause. If is the -th variable and

appears in the -th clause as a positive literal, then there is

an edge between and . If is a negative literal,

then the edge connects
 and . Note that paths

from initial to target vertex for all agents except those start-

ing from vertices are of the equal length.

 Now we can finish the proof of proposition 1.

Figure 7. Example of reduction. Selected and adversarial teams are associ-

ated with green and red color respectively. Filled circles represent agents,

unfilled are their targets. Numbers near some vertices indicate, that the
vertex can be entered by an adversarial gent in certain time step (hazardous

vertex). Arcs labeled with a number contain that many vertices that are not

explicitly displayed. Selected team’s turn comes first.

Proof. Suppose that to be valid. Variables are assigned

their truth value gradually one by one according to the order

in the quantifier part of . Every sequence of valuation

showing validity can be considered as a guideline for agents

of the selected team and lead them to a winning position.

Evaluation of a variable corresponds to one time step. Every

time a variable is valuated, another agent in the constructed

ACPF instance is ready to enter upper or lower path within

the variable gadget. If some variable x is evaluated as true,

corresponding agent enters the lower path (vertex),

otherwise the agent goes to the upper path (vertex).

Since the valuation satisfies the formula, every clause

has at least one variable that causes satisfaction of In

such case, the clause gadget is connected to the variable

gadget through a vertex in the other path than the one

through which agent advances towards its target. Clause

agent can then enter the variable gadget without encounter-

ing . Both agents can continue undisturbed. A purpose of

 -agents is to prevent opponent’s agents from unwanted

behavior. For example -agent is able to ensure, that no

Figure 6.

Clause gadget

Figure 5.

Universally
quantified variable

gadget.

Figure 4.

Existentially
quantified variable

gadget.

opponent’s agent will occupy any clause agent’s target.

Whenever any opponent’s agent moves unexpectedly,

 -agent from the same gadget works as a booking vertex

from the booking lemma. Hence, opponent’s team has no

chance to avert victory of the selected team.

Whenever there exists a winning strategy for the con-

structed ACPF instance, variable and clause agents must

reach their targets on time. This is possible only in case

variable agents and clause agents do not meet on the hori-

zontal path. They must use different paths. The variable

agents' selection of upper or lower paths determines the

evaluation of corresponding variables. If a variable agent

and clause agent pass by each other on the parallel horizontal

paths, corresponding variable causes satisfaction of the

clause. ■

Now we will show the upper bound of complexity we

have found so far. Let us recall that

 . As a byproduct, the membership to the

 class shows that the decision version of the

ACPF problem is decidable.

 Preposition 1. Decision problem whether there exists a

winning strategy for selected team in a given ACPF instance

belongs to EXPTIME complexity class. ■

Proof. If denote number of vertices and denote total

number of agents, then the number of distinct placements is

 with its maximum for we get up to possi-

ble placements. Search space of an ACPF instance can be

regarded as an AND-OR tree. From the Stirling’s approxi-

mation we infer

 , thus an algorithm with detection of already vis-

ited states that traverses entire tree runs in exponential

time. ■

IV. SOLVING APPROACHES

 Practical ACPF solving represents a challenging problem

due to its high complexity. In this section, we suggest sever-

al solving approaches that are inspired in game theory and in

CPF without adversaries (adversarial agents may be consid-

ered merely as movable obstacles).

A. Game Theoretic Approach

If ACPF is regarded as an -player game [9], then utiliza-

tion of algorithms and domain independent heuristics known

from board games such as Go, Chess or other combinatorial

games is applicable. These algorithms involve minimax with

alpha-beta pruning [12] or variants of Monte Carlo Tree

Search, that were recently successfully applied in Go play-

ing program [11].

Common property that ACPF shares with many board

games is that agents move in the environment and take turns

to move. The most significant difference consists in gener-

ality: ACPF defines neither any particular graph nor number

of agents and locations of their initial and target vertices. In

addition, every time a team in on turn, all its members can be

relocated simultaneously. This causes that the size of the

search space grows exponentially with the number of agents

and makes the usage of search algorithms impossible for

even relatively small number of agents.

B. Greedy Methods

The most straightforward approach to solving ACPF is the

use of greedy algorithms. In this case, we need to be able to

generate all the available moves from a current position and

select the one that leads to a position with highest score. As

the space of all possible moves from a certain position is

exponential in the number of agents, an ordering of agents is

considered. Then agents are taken one by one in the given

ordering – the set of possible moves in considered for a

single agent only.

C. CPF-based Methods

We also consider methods designed for CPF. In particular,

we propose an extension and adaptation of Cooperative A*

(CA*) algorithm introduced in [6]. CA* works as follows:

the graph is expanded into the 3
rd

 dimension, such that
copies (levels) of the original graph are piled up and repre-

sent time dimension of the movement of the agents. The

edges between vertices within the level are removed, while

neighboring levels are connected according to the edges in

the original graph. The algorithm processes agents one by

one and finds paths to their target vertices in the time-

expansion graph. Vertices that belong to a path are reserved

and paths for every next processed agent must not contain

any reserved vertex.

Algorithm 1. Adversarial Cooperative A*
 Input: ACPF instance

1: initialize empty paths each member of
2: do
3: select next move from paths for agents of
4: if is currently illegal then
 assign new targets to agents without pre-defined targets
5: re-plan paths using CA* from current position
6: select next move from paths for all agents
7:
8: opponent’s turn
 while terminal condition not satisfied

We extend described algorithm by the adversarial element

and introduce adversarial cooperative A* (ACA*). At the

beginning, agents from the selected team are sorted, so that

agents with lower number of accessible adjacent vertices

should be processed before the agents with larger freedom.

The next step assigns targets. If agent has nonempty set of

target vertices , its path will be planned to the nearest

vertex from . In case , ’s path will be

planned to the nearest target vertex of some adversarial

agent. When all the targets are determined, the search in the

extended graph begins. We have to check, whether the next

move according to the planned paths is still legal at every

time step. Since the adversarial agents also change their

locations, it is possible that the scheduled movement of the

selected team is no longer feasible. In such case we have to

re-plan. Algorithm 1 summarizes the described process.

V. EXPERIMENTAL EVALUATION

We have performed an experimental evaluation in order to

determine how suggested strategies perform in scenarios,

which are expectable in practical situations. The definition

of the ACPF problem is very general and allows large varie-

ty of instances, while many of them do not represent any

practical situation. Hence, we focused on few types of in-

stances only, which we call instance scenarios.

A. Experimental Setup

 An instance scenario defines a graph with two subsets of

vertices – an initial region and goal region for each team.

The initial region of team determines all possible starting

positions for members of , while goal region determines

possible target vertices for agents of team . We considered

three instance scenarios: exchange, race and mingled (see

Figure 8). All the instance scenarios take place on

4-connected grids with regularly placed obstacles. Initial

locations and goals of individual agents are selected random-

ly within corresponding initial and goal regions respectively.

Figure 8. Testing instance scenarios - exchange, race and mingled. Green

color is associated with the selected team, red color belongs to the oppo-

nent. Dark and light shades represent initial and target locations respective-
ly. Agents and their targets are placed randomly within areas of the same

color. Instance patterns also include number of agents and their targets.

B. Greedy Strategy Tournament

The first collection of experiments is aimed on revealing

which greedy strategy is the most suitable in suggested

ACPF instance scenarios. We focused on greedy strategies

with different ways of selection of the next move. The

greedy strategy always makes a locally optimal step, which

means that a move that leads to a placement of agents with

the best value is always performed. The value of a placement

of at time step for the selected team is calculated as fol-

lows:

Where is a length of the shortest path

connecting vertices and in graph while the use of cer-

tain vertices is forbidden. We tried various restrictions of

what vertices are allowed.

(a) all the vertices are allowed

(b) vertices that does not contain agents of are al-

lowed

(c) vertices that does not contain agents from
(d) unoccupied vertices only are allowed

(e) vertices that does not contain an agent that is at its

target

Tables with results are roughly symmetric. The small ob-

servable amount of asymmetry can be attributed to the fact,

that it is more advantageous for certain strategies to take

either the first or the second turn.

Table 1. Small tournament of greedy strategies. Testing scenarios over a

4-connected grid of size 5⨯5 (5⨯ r r o) with various place-

ments of initial and goal positions of agents as depicted Figure 8 in were
used. Both teams have 3 agents with a single target. All the possible pairs

greedy of strategies playing against each other were tried. Score after play-

ing 100 ACPF instances for each test case is reported. Greedy strategies (a),
(b) and (e) tend to outperform the other strategies.

Small exchange

row:column (a) (b) (c) (d) (e)

(a) - 29:71 70:30 72:28 48:52

(b) 50:50 - 74:26 73:27 52:48

(c) 28:72 23:77 - 42:58 29:71

(d) 34:66 26:74 55:45 - 29:71

(e) 51:49 34:66 74:26 72:28 -

Small race

row:column (a) (b) (c) (d) (e)

(a) - 34:57 49:51 54:46 40:60

(b) 47:53 - 51:49 50:50 46:54

(c) 39:61 38:62 - 51:49 33:67

(d) 40:60 44:56 43:57 - 37:63

(e) 42:58 48:52 59:41 53:47 -

Small mingled

row:column (a) (b) (c) (d) (e)

(a) - 51:49 74:26 73:27 53:47

(b) 44:56 - 63:37 65:35 52:48

(c) 36:64 38:62 - 55:45 42:58

(d) 33:67 39:61 58:42 - 27:73

(e) 56:44 56:44 71:29 75:25 -

Described five modification of the greedy strategies

played against each other. Table 1 and Table 2 show the

results. It is noticeable, that strategies that rather disregard

vertices occupied by opponent – that is strategies (a), (b)

and (e) – outperform those, that take agents into considera-

tion in most cases.

Exchange Race Mingled

Table 2. Big tournament of greedy strategies. The same testing scenarios

were used but the size of grids increased to 9⨯10 with 6 agents in each
team. Again, greedy strategies (a), (b) and (e) dominate over the remaining

strategies.

Large exchange

row:column (a) (b) (c) (d) (e)

(a) - 18:82 69:31 78:22 49:51

(b) 74:26 - 77:12 88:12 68:32

(c) 30:70 17:83 - 58:42 22:78

(d) 26:74 9:91 38:62 - 19:81

(e) 45:55 57:43 80:20 78:22 -

Large race

row:column (a) (b) (c) (d) (e)

(a) - 59:41 65:35 67:33 45:55

(b) 50:50 - 68:32 73:27 39:61

(c) 38:62 39:61 - 61:39 30:70

(d) 38:62 35:75 43:57 - 27:63

(e) 51:49 54:46 74:26 72:28 -

Large mingled

row:column (a) (b) (c) (d) (e)

(a) - 56:44 68:32 75:25 49:51

(b) 45:55 - 64:36 73:27 43:57

(c) 33:67 31:69 - 72:28 31:69

(d) 26:74 16:84 24:76 - 21:79

(e) 53:47 59:41 75:25 83:17 -

 This finding might seem counterintuitive, however the

explanation is simple: when a strategy takes opponent’s

agents into account, it tends to select moves try to avoid the

adversaries, which clears the path for them. Adversarial

agents can then reach their targets easier. This property is

apparent in all scenarios although it is less significant in the

race scenario than in the other two. The interaction among

agents (an agent wants to enter occupied vertex) is less likely

to occur in the race scenario, which partly reduces the differ-

ences between considered greedy approaches.

Figure 9. Comparison of the most successful greedy strategies. The number
of wins of the team playing the greedy strategy (a) against a team playing

the greedy strategy (b) in instances over a grid of size 11⨯12 is shown. In
total, 200 instances of the type exchange in which 100 times (a) starts
and 100 times (b) starts were used. It can be observed that the perfor-
mance of the (a) strategy degrades with the increasing number of
agents.

 The two most successful greedy strategies (a) and (b)

were compared separately. The test was targeted on the

performance for the increasing number of agents. Results are

shown in Figure 9. It can be observed that the (a) greedy

strategy has better performance for few agents and its per-

formance degrades as the number of agents increases.

C. Full-Spectrum Strategy Tournament

 Several conceptually different strategies played against

each other a tournament in order to find out which strategy

performs as best. Again all the pairs of competing strategies

were evaluated. Four strategies participated in the tourna-

ment. Every pair of strategies was tested over 100 instances

conforming to suggested instance scenarios. Results are

summarized in Table 3 and Table 4.

Table 3. Small tournament of all strategies. Considered scenarios were

tested on instances of size 5⨯5. 1 out of 3 agents in each team did not have

any particular target. Classic alpha-beta algorithms seem to be more suc-
cessful than others.

Small exchange

row:column Greedy ACA* α-β MCTS

Greedy - 40:60 44:56 48:52

ACA* 53:47 - 51:49 48:52

α-β 60:40 65:35 - 64:36

MCTS 47:53 35:65 41:59 -

Small race

row:column Greedy ACA* α-β MCTS

Greedy - 27:73 40:60 35:65

ACA* 67:33 - 60:40 58:42

α-β 51:49 29:71 - 65:35

MCTS 49:51 35:65 39:61 -

Small mingled

row:column Greedy ACA* α-β MCTS

Greedy - 19:81 31:69 37:63

ACA* 76:24 - 74:26 68:32

α-β 75:25 43:57 - 58:42

MCTS 50:50 23:77 39:61 -

 It can be observed that alpha-beta algorithm wins in ma-

jority of cases in small instances. The large size of the search

space in case of game-based strategies becomes evident in

large instances where these strategies are often defeated.

Success rate of the cooperative approach (ACA*) is besides

other things caused by agents without targets, that are used

for capturing opponent’s targets.

 Number of agents in instances, where these methods can

be employed is very limited due to the exponential search

space growth. Instances containing tens of agents must be

solved by either greedy or cooperative methods.

 Like in the case of greedy strategies, a more detailed

comparison of two best strategies overall has been conduct-

ed. Greedy strategy (a) and the ACA* strategy were com-

pared for the increasing number of agents without targets.

0

20

40

60

80

100

2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

w
in

s
o

f
(a

)

Greedy strategy (a) vs.(b) (a) starts

(b) starts

total

|A|

Results are shown in Figure 10. The performance of ACA*

degrades for higher number of agents without targets.

Table 4. Large tournament of all strategies. Again, considered scenar-

ios were tested on instances of size 9⨯10, while 2 out of 6 agents in each

team were without target. Classic alpha-beta algorithms seem to be more
successful than others. Cooperative approach (ACA*) algorithm is more

successful than other methods.

Large exchange

row:column Greedy ACA* α-β MCTS

Greedy - 27:73 55:45 73:27

ACA* 67:33 - 72:28 70:30

α-β 54:46 23:77 - 74:26

MCTS 38:62 30:70 27:73 -

Large race

row:column Greedy ACA* α-β MCTS

Greedy - 26:74 37:63 72:28

ACA* 82:18 - 84:16 85:15

α-β 43:57 28:72 - 64:36

MCTS 28:72 13:87 21:79 -

Large mingled

row:column Greedy ACA* α-β MCTS

Greedy - 8:92 50:50 59:41

ACA* 75:25 - 72:28 65:35

α-β 44:56 14:86 - 70:30

MCTS 36:64 31:69 33:67 -

Figure 10. Comparison of the overall most successful strategies. The

ACA* strategy and the greedy strategy (a) are compared in instances over
a grid of size 11⨯12 with 11 agents on both sides. The performance of
strategies is shown for the increasing number of agents without any
targets (on each side). The performance of the cooperative strategy
degrades with increasing number of agents without targets.

VI. CONCLUSIONS, DISCUSSION, AND FUTURE WORK

 We have studied the problem of adversarial cooperative

path-finding (ACPF). It can be regarded as the extension of

the standard cooperative path-finding (CPF) with adversarial

agents. The task in ACPF is to control movements of agents

so that they reach their targets before the adversarial agents.

 The major challenge in ACPF consists in designing an

efficient decision strategy that leads controlled agents to the

victory. Designing such a strategy is a difficult task. Note

that the strategy needs to take into account all the possible

actions of adversarial agents and their reactions.

 The ACPF problem is studied theoretically as well as

from the practical point of view. Regarding the theory, we

studied the complexity of the decision version of ACPF

where we are interested in the question whether there exists

a winning strategy. We have shown that decision version of

ACPF is PSPACE-hard. It remains an open question whether

it belongs to PSPACE. We are not aware of any polynomial

upper bound on the size of the solution of ACPF, which

would allow us to prove membership of ACPF into PSPACE

(note that in case of CPF such bound exists). Next, we have

shown that the problem is in EXPTIME, which by the way

also show that it is decidable.

 Regarding practical solving of ACPF we suggested sever-

al approaches – simple greedy method, game theoretical

methods, and methods based on CPF solving. Game theoret-

ical methods include Monte-Carlo tree search and alpha-beta

tree search. CPF-based solving is in fact a re-planning meth-

od. All these methods were compared in a tournament from

which a quite counter-intuitively greedy methods and CPF-

based methods came out as winners defeating game-based

methods.

REFERENCES

[1] Hearn, R. A., Demaine, E. D. PSPACE-completeness of sliding-block

puzzles and other problems through the nondeterministic constraint

logic model of computation. Theoretical Computer Science, Volume
343(1-2), Elsevier, 2005, pp. 72-96.

[2] Kornhauser, D., Miller, G. L., Spirakis, P. G., “Coordinating Pebble

Motion on Graphs, the Diameter of Permutation Groups, and Applica-

tions”, Proceedings of the 25th Annual Symposium on Foundations of

Computer Science (FOCS 1984), IEEE Press, 1984, pp. 241-250.

[3] Ivanová, M., Surynek, P., “Adversarial Cooperative Path-Finding: A
First View“, Late-Breaking Developments in the Field of Artificial In

 telligence (AAAI 2013 Late-Breaking Developments), AAAI Press

2013.
[4] Ratner, D., Warmuth, M. K. “Finding a Shortest Solution for the N ×

N Extension of the 15-PUZZLE Is Intractable”, Proceedings of AAAI

1986, Morgan Kaufmann, 1986, pp. 168-172.
[5] Ryan, M. R. K. “Exploiting Subgraph Structure in Multi-Robot Path

Planning”, Journal of Artificial Intelligence Research (JAIR), Volume

31, AAA Press, 2008, pp. 497-542.
[6] Silver, D. “Cooperative Pathfinding”, Proceedings of the 1st Artificial

Intelligence and Interactive Digital Entertainment Conference (AIIDE

2005), AAAI Press, 2005, pp. 117-122.
[7] Sipser, D. “Introduction to the Theory of Computation”, CENGAGE

Learning Custom Publishing, 2012.

[8] Wang, K. C., Botea, A. “MAPP: a Scalable Multi-Agent Path Plan-

ning Algorithm with Tractability and Completeness Guarantees”,

JAIR, Volume 42, AAAI Press, 2011, pp. 55-90.

[9] Watson, J. "Strategy: An Introduction to Game Theory", W W Norton
& Company Incorporated, 2012.

[10] Yu, J., LaValle, S. M. “Structure and Intractability of Optimal Multi-

Robot Path Planning on Graphs”, Proceedings of the 27th AAAI
Conference on Artificial Intelligence (AAAI 2013), AAAI Press,

2013.

[11] Browne, C., Powley, E. J., Whitehouse, D., Lucas, S. M., Cowling, P.
I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S. & Colton,

S. “A Survey of Monte Carlo Tree Search Methods”, IEEE Trans.

Comput. Intellig. and AI in Games 4 (1) , 27-29 .
[12] Poole, P. C., Fuller, S. H., Gaschnig, J. G., Gillogly, J. J. "Analysis of

the Alpha-Beta pruning algorithm", Technical report, Carnegie-

Mellon University, Pittsburgh, PA, July 1973.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

w
in

s
o

f
co

o
p

e
ra

ti
ve

ACA* vs. greedy
exchange

race

mingled

