
 

 

 

 

Abstract— The paper addresses a problem of adversarial co-

operative path-finding (ACPF) which extends the well-studied 

problem of cooperative path-finding (CPF) with adversaries. In 

addition to cooperative path-finding where non-colliding paths 

for multiple agents connecting their initial positions and desti-

nations are searched, consideration of agents controlled by the 

adversary is included in ACPF. This work is focused on both 

theoretical properties and practical solving techniques of the 

considered problem. We study computational complexity of the 

problem where we show that it is PSPACE-hard and belongs to 

the EXPTIME complexity class. Possible methods suitable for 

practical solving of the problem are introduced and thoroughly 

evaluated. Suggested solving approaches include greedy algo-

rithms, minimax methods, Monte Carlo Tree Search, and adap-

tation of an algorithm for the cooperative version of the prob-

lem. Solving methods for ACPF were compared in a tourna-

ment in which all the pairs of suggested strategies were com-

pared. Surprisingly frequent success rate of greedy methods 

and rather weaker results of Monte Carlo Tree Search were 

indicated by the conducted experimental evaluation. 

Keywords: cooperative path-finding, adversaries, Monte 

Carlo Tree Search, complexity, PSPACE-hardness 

I. INTRODUCTION AND MOTIVATION 

HE problem of adversarial cooperative path-finding 

(ACPF)  can be regarded as a generalization of the well-

studied cooperative path-finding (CPF) [1], [4], [5], [6], [8] 

which is extended by adversarial element. The standard 

cooperative path-finding is a path planning problem in a 

fully observable static environment where the task is to find 

non-colliding routes for agents that lead them from their 

initial locations to given separate destinations. All the agents 

are controlled centrally while agents themselves make no 

decisions. The adversarial element consists in adding agents 

that are outside of the control of the central planning mecha-

nism and that plays against it.  

 The environment where agents are moving is modeled as 

an undirected graph in CPF [1], [6]. The same abstraction is 

adopted in ACPF as well. Hence, CPF and ACPF are both 

considered as discrete combinatorial problems.  The notion 

of adversarial agents has been first introduced in a short 

paper [3] where however solving techniques were not ad-

dressed due to space constraints. In this paper, the concept of 

ACPF is further elaborated in terms of solving techniques 

and a deeper theoretical analysis is given. 
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 The classical CPF is motivated by problems arising in 

both real environments and as well as in virtual worlds (mul-

ti-robot navigation, container relocation, path-finding in 

computer games [8]). Note that, agents do not need to be 

represented by autonomous movable units. They can be 

passive objects or even pieces of certain commodity – the 

only important property is localization and space (virtual) 

occupation by agents. 

The classical CPF has however limited expressive power 

for real world situations, as not all the environments are fully 

cooperative. That is, we cannot regard all the agents as con-

trollable and the environment as static any more. Dealing 

with such adversarial or hostile elements in the environment 

beyond the standard CPF is thus desirable. 

Our suggestion is to introduce two or more teams of 

agents that compete in finding paths to target destinations to 

model the adversarial element in CPF. The objective in the 

ACPF problem is to control agents of one selected team so 

that its agents reach their destinations before agents of ad-

versarial teams. The adversarial agents observe the analogi-

cal objective – they also want to reach their destinations as 

first. The task is thus to find a winning strategy which means 

a decision mechanism that is able to react on all possible 

actions of adversaries. 

There is a variety of possibilities how teams of agents can 

harm each other in the effort to reach their destinations as 

first – occupying target destination, blocking of narrow pas-

sage, or preventing agents from moving. 

In the classical CPF, the combinatorial difficulty arises 

from the need of avoidance between agents [4]. The situation 

in ACPF is even more complex as the planning mechanism 

must consider all possible acting of the adversarial teams. 

Hence, combinatorial difficulty in ACPF comes not only 

from the need of avoidance but also from the need to consid-

er possible harmful actions of adversaries. 

There are many situations in the real world that can be ab-

stracted as ACPF. Police actions or tactical military maneu-

vers such as blockade, encirclement, flanking, or their pre-

venting can be planned through means of ACPF. These days 

it turns out to be extremely important to move troops to 

strategic locations as first without contact with the enemy. 

Another obvious application of the ACPF concept is game 

industry, particularly real-time strategic games. 

The paper is organized as follows. We first concentrate on 

the formal definition of ACPF. Subsequently we will study 
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theoretical properties of the problem, particularly its compu-

tational complexity. It is shown that ACPF is PSPACE-hard. 

The first sketch of the proof of PSPACE-hardness has been 

published in [3], but the proof is very brief and does not 

contain technical details. Here, an alternative proof based on 

different techniques is shown with all the necessary details. 

Investigation of possible solving methods and their exper-

imental evaluation follows in the next part. As the ACPF 

problem is related to  -player games and to the classical 

CPF, we will focus on methods developed for these prob-

lems and consider their adaptation and application for 

ACPF. Conducted experiments should reveal how suitable 

are the suggested methods for solving various types of 

ACPF instances. We will also compare all the pairs of sug-

gested solving methods against each other in a kind of strat-

egy tournament in the final part. 

II. FORMAL DEFINITION OF ADVERSARIAL COOPERATIVE 

PATH FINDING 

An abstraction of the studied problem is necessary for fur-

ther processing. We adopted usual terminology known from 

CPF. The adversarial element present in ACPF requires 

extension and adaptation of existing definitions. The envi-

ronment is modeled as an undirected graph, where vertices 

represent locations that can be occupied by agents. There is 

at most one agent located in each vertex, which models the 

spatial constraints. Edges represent passable regions. That is, 

an agent can relocate from one vertex to a neighboring ver-

tex provided no collision occurs from this relocation. 

 

Definition 1 (ADVERSARIAL COOPERATIVE PATH-

FINDING). An instance of adversarial cooperative path-

finding problem (ACPF) is a 7-tuple                 
       where         is an undirected graph,   
             is a set of agents,                is a set 

of teams with    . Teams are disjoint sets of agents and 

every agent belongs to exactly one team (that is,   

   
 
   ).    denote an index of the selected team for that 

play; other teams are our adversaries.        is an injec-

tive mapping that assigns an initial vertex to each agent (a 

starting position).           assigns a target set of verti-

ces to each agent. Finally,    represent as an adversarial con-

trol mechanism that determines the next placement of all 

agents belonging to adversarial teams. It takes a sequence of 

all the previous placements of all the agents as its input to be 

able to decide according to the past. □ 

  

 The continuous time is divided into discrete time steps in 

APCF. The placement of agents at the  -th time step is an 

injective mapping       . The moves are taken as instan-

taneous transformations of agents' placement. Agent move-

ments must observe several rules that correspond to real 

physical limitations. That is,    can be transformed to      if 

and only if following conditions hold: 

(i) Agents move along edges or stay at a vertex.  

(ii) An agent   can move to an unoccupied vertex   or if 

  was occupied at time step   by agent    different 

from  , agent    must move away. The second condi-

tion allows agents to move around a cycle without 

any free vertex. A trivial case of position swapping 

along an edge is an exception and is forbidden.   

(iii) Teams alternate in their moves. That is, only agents 

of team              moves between times steps   and 

   .  

 

Figure 1. An example of ACPF instance. Agents of two teams are depicted 

as green and red circles. The graph is represented by a 4-connected grid 

with obstacles. Initial positions    correspond to current locations of agents 

and goals    are depicted as squares of color corresponding to the given 

team. Note, that agent 1 of team    (selected green team) and agent 5 of 

team    (adversarial red team) do not have any particular targets.  

  

 The task in ACPF is to find a winning strategy for agents 

of the selected team    . The winning strategy tells us how to 

move agents of the team     in reaction to movements of 

adversarial agents so that agents of     reach their destina-

tions as first. 

 

Definition 2 (SOLUTION OF ACPF INSTANCE). A solution 

to an ACPF instance                             is a 

winning strategy constituted by a mapping    that determines 

moves of team     at time steps when it is on turn so that     
reaches its destinations before other teams whatever they do. 

That is, for any sequence of mappings of agents to vertices 

                                        with     that 

originate in    where        is determined by    from 

                                          for every 

          and all the consecutive mappings satisfy condi-

tions (i)-(iii) from definition 1, one of the following two 

conditions hold: 

 

(1)                 for each       and there exists 

    such that             for         
(    wins at        -th step and all the preceding 

placements of agents are not winning for any team) 

(2) there exists     such that             for any 
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(all the placements of agents in the sequence are not 

winning for any team).  

 

The problem definition does not guarantee the existence 

of a solution since the graph is not required to be connected 

or the agents can block each other so they can never reach 

their target locations. Hence, in practice we focus on weaker 

objectives such as relocating a certain number of agents to 

their targets and/or restrict the time limit.  A winning team 

either manages to relocate its agents into their targets before 

an adversary within the time limit, or achieves a position, 

that is closest to the desired target position among all the 

teams when the time is up. In order to be able to compare the 

teams’ positions, we introduce following definition. 

 

Definition 3 (WINNING TEAM). For a mapping       

and a team     we define        as the number of agents 

from team   placed at their target vertices. Further we 

       as a sum of lengths of the shortest paths between 

current positions of agents from   and their targets. We can 

consider either the shortest path including only unoccupied 

vertices, or the shortest path in graph without agents. Former 

option is always of at least the same length or longer than the 

latter one. Now we can define an ordering of a pair of teams 

        with respect to given mapping  : 

                        

                                  
 

This ordering allows us to determine a winning team, 

even if the run was terminated before any target position 

were reached. 

III. COMPUTATIONAL COMPLEXITY OF ACPF 

We are interested in the decision variant of the problem 

with respect to computational complexity: given an instance 

of ACPF problem, we want to decide whether there exists a 

winning strategy for a selected team. We will show that 

decision variant of ACPF is PSPACE-hard and belongs to 

the EXPTIME complexity class [1]. Whether ACPF belongs 

to PSPACE, that is, if it is PSPACE-complete is currently an 

open question. The problematic point is that we do not have 

any polynomial upper bound on the length of the sequence 

of moves in the winning strategy. 

We will start with the proof of PSPACE-hardness. It will 

be accomplished by a reduction of TQBF – a variant of QBF 

[7]– to ACPF. 

The following auxiliary lemmas will help us to construct 

needful reduction. 

 

Lemma 1 (VERTEX BOOKING). Let               
                 be an ACPF instance and     be so 

called booked vertex. Next, let     be so called booking 

time and     with            be some team, for that the 

vertex should be booked. Then there exists a modified in-

stance                             
 
    

   such that 

the booked vertex   is not accessible by any other agent 

before time-step  . ■ 

 

Proof.    is derived from   by adding an extra vertex    
that is connected by an edge to the vertex  . Alongside we 

put a new agent        at the booked vertex  . Agent    
will enter the vertex    at booking time  . Hence any team-

mate located at a vertex adjacent to   can enter   at time 

step  . Figure 2 depicts the situation. ■ 

 

 
 

Lemma 2 (HAZARDOUS VERTEX). Let              
                 be an ACPF instance and     with 

           be some team. Next let     be so called 

hazardous vertex and    . Then there exists a modified 

instance                             
 
    

   such that 

the hazardous vertex   can be occupied by an agent      
   at time step  , if   is not entered by any other agent 

      at some former time step     . 

 

Proof.    is derived from   by attaching a path          
    

     . Vertex     contains an agent         . This 

agent can approach the vertex   every time step and enter it 

in the  -th step, unless any other agent do it earlier. Situation 

is depicted in the Figure 3. ■ 

 

 
 

Preposition 1. Decision problem whether there exists a 

winning strategy for selected team in a given ACPF instance 

is PSPACE-hard. ■ 

 

Proof plan. We will provide a polynomial-time reduction 

of TQBF [7] to ACPF. Without loss of generality we can 

assume, that given TQBF   is in 3CNF and each variable is 

present both as a positive and negative literal. If these prop-

erties do not hold, we can transform   into an equivalent    
fulfilling these requirements. For given formula   we con-

struct an ACPF instance, where the movement of some 

agents will simulate gradual valuation of variables appearing 

in  . Consequently, we will show that   is valid if and only 

if there exists a winning strategy for the selected team.  The 

Figure 3.  
Hazardous 

vertex. 

Figure 2. 
Vertex booking. 



 

 

 

construction is inspired on the proof of NP-completeness of 

the optimization variant of CPF [10]. 

 

 
 

Construction. Let              be the given formu-

la,   be the number of its variables, and   be the number of 

clauses in  . For every existentially quantified variable   

we will construct a gadget consisting of two parallel paths of 

the length  , joining at a vertex    (see Figure 4). 

There is also a path connected to   , ended by vertex   , 

where sits an agent    from    . The length of the path from 

    to     corresponds to the order of   in the quantifier part 

of  .  Target vertex of the agent    is placed at the vertex 

   . 

For universally quantified variable  , there is a similar 

gadgets (see Figure 5). Agent    placed at the vertex    

belongs to the adversarial team. Vertex     is a target vertex 

of   . Additionally, this gadget contains a path        

with an agent from     ( -agent), that begins at    and its 

target is at the vertex    . 

 

 
 

 For every clause    there will be a path of the length 

      with an agent placed at       (see Figure 6) and an 

extra target vertex      for the agent.  

 
Now we will put all these gadgets together. Consider fol-

lowing example. For the given formula 

               
                   
                    

 

we construct ACPF instance depicted in Figure 7. Clause 

gadget is connected to variable gadgets of that corresponding 

variables appearing in the clause. If   is the  -th variable and 

appears in the   -th clause as a positive literal, then there is 

an edge between             and     . If   is a negative literal, 

then the edge connects            
 and     . Note that paths 

from initial to target vertex for all agents except those start-

ing from vertices   are of the equal length. 

 Now we can finish the proof of proposition 1.  

 

 
Figure 7. Example of reduction. Selected and adversarial teams are associ-

ated with green and red color respectively. Filled circles represent agents, 

unfilled are their targets. Numbers near some vertices indicate, that the 
vertex can be entered by an adversarial gent in certain time step (hazardous 

vertex). Arcs labeled with a number contain that many vertices that are not 

explicitly displayed. Selected team’s turn comes first. 

 

Proof.  Suppose that   to be valid. Variables are assigned 

their truth value gradually one by one according to the order 

in the quantifier part of  . Every sequence of valuation 

showing validity can be considered as a guideline for agents 

of the selected team and lead them to a winning position. 

Evaluation of a variable corresponds to one time step. Every 

time a variable is valuated, another agent in the constructed 

ACPF instance is ready to enter upper or lower path within 

the variable gadget. If some variable x is evaluated as true, 

corresponding agent    enters the lower path (vertex     ), 

otherwise the agent goes to the upper path (vertex     ). 

Since the valuation satisfies the formula, every clause    

has at least one variable   that causes satisfaction of     In 

such case, the clause gadget is connected to the variable 

gadget through a vertex in the other path than the one 

through which agent    advances towards its target. Clause 

agent can then enter the variable gadget without encounter-

ing   . Both agents can continue undisturbed. A purpose of 

 -agents is to prevent opponent’s agents from unwanted 

behavior. For example  -agent is able to ensure, that no 

Figure 6. 

Clause gadget 

Figure 5. 

Universally 
quantified variable 

gadget. 

  

Figure 4. 

Existentially 
quantified variable 

gadget. 

  



 

 

 

opponent’s agent will occupy any clause agent’s target. 

Whenever any opponent’s agent moves unexpectedly, 

 -agent from the same gadget works as a booking vertex 

from the booking lemma. Hence, opponent’s team has no 

chance to avert victory of the selected team. 

Whenever there exists a winning strategy for the con-

structed ACPF instance, variable and clause agents must 

reach their targets on time. This is possible only in case 

variable agents and clause agents do not meet on the hori-

zontal path. They must use different paths. The variable 

agents' selection of upper or lower paths determines the 

evaluation of corresponding variables. If a variable agent 

and clause agent pass by each other on the parallel horizontal 

paths, corresponding variable causes satisfaction of the 

clause. ■ 

  

Now we will show the upper bound of complexity we 

have found so far. Let us recall that         

          
    . As a byproduct, the membership to the 

        class shows that the decision version of the 

ACPF problem is decidable. 

 

 Preposition 1. Decision problem whether there exists a 

winning strategy for selected team in a given ACPF instance 

belongs to EXPTIME complexity class. ■ 

 

Proof. If   denote number of vertices and   denote total 

number of agents, then the number of distinct placements is 

   
 
    with its maximum for     we get up to     possi-

ble placements. Search space of an ACPF instance can be 

regarded as an AND-OR tree. From the  Stirling’s approxi-

mation we infer                      
 

 
 
 

  

       , thus an algorithm with detection of already vis-

ited states that traverses entire tree runs in exponential 

time. ■ 

IV. SOLVING APPROACHES 

 Practical ACPF solving represents a challenging problem 

due to its high complexity. In this section, we suggest sever-

al solving approaches that are inspired in game theory and in 

CPF without adversaries (adversarial agents may be consid-

ered merely as movable obstacles). 

A. Game Theoretic Approach 

If ACPF is regarded as an  -player game [9], then utiliza-

tion of algorithms and domain independent heuristics known 

from board games such as Go, Chess or other combinatorial 

games is applicable. These algorithms involve minimax with 

alpha-beta pruning [12] or variants of Monte Carlo Tree 

Search, that were recently successfully applied in Go play-

ing program [11]. 

Common property that ACPF shares with many board 

games is that agents move in the environment and take turns 

to move. The most significant difference consists in gener-

ality: ACPF defines neither any particular graph nor number 

of agents and locations of their initial and target vertices. In 

addition, every time a team in on turn, all its members can be 

relocated simultaneously. This causes that the size of the 

search space grows exponentially with the number of agents 

and makes the usage of search algorithms impossible for 

even relatively small number of agents. 

B. Greedy Methods 

The most straightforward approach to solving ACPF is the 

use of greedy algorithms. In this case, we need to be able to 

generate all the available moves from a current position and 

select the one that leads to a position with highest score. As 

the space of all possible moves from a certain position is 

exponential in the number of agents, an ordering of agents is 

considered. Then agents are taken one by one in the given 

ordering – the set of possible moves in considered for a 

single agent only. 

C. CPF-based Methods 

We also consider methods designed for CPF. In particular, 

we propose an extension and adaptation of Cooperative A* 

(CA*) algorithm introduced in [6]. CA* works as follows: 

the graph is expanded into the 3
rd

 dimension, such that   
copies (levels) of the original graph are piled up and repre-

sent time dimension of the movement of the agents. The 

edges between vertices within the level are removed, while 

neighboring levels are connected according to the edges in 

the original graph. The algorithm processes agents one by 

one and finds paths to their target vertices in the time-

expansion graph. Vertices that belong to a path are reserved 

and paths for every next processed agent must not contain 

any reserved vertex.  

 

  
Algorithm 1. Adversarial Cooperative A*  
 Input: ACPF instance                       
 

1:          initialize empty paths each member of      
2:  do      
3:         select next move from paths for agents of      
4:   if      is currently illegal then 
    assign new targets to agents without pre-defined targets 
5:           re-plan paths using CA* from current position 
6:          select next move from paths for all agents 
7:              
8:   opponent’s turn 
   while terminal condition not satisfied  

  

 

We extend described algorithm by the adversarial element 

and introduce adversarial cooperative A* (ACA*).  At the 

beginning, agents from the selected team are sorted, so that 

agents with lower number of accessible adjacent vertices 

should be processed before the agents with larger freedom. 

The next step assigns targets. If agent   has nonempty set of 

target vertices      , its path will be planned to the nearest 

vertex from      . In case        ,  ’s path will be 

planned to the nearest target vertex of some adversarial 



 

 

 

agent. When all the targets are determined, the search in the 

extended graph begins. We have to check, whether the next 

move according to the planned paths is still legal at every 

time step. Since the adversarial agents also change their 

locations, it is possible that the scheduled movement of the 

selected team is no longer feasible. In such case we have to 

re-plan. Algorithm 1 summarizes the described process. 

V. EXPERIMENTAL EVALUATION 

We have performed an experimental evaluation in order to 

determine how suggested strategies perform in scenarios, 

which are expectable in practical situations. The definition 

of the ACPF problem is very general and allows large varie-

ty of instances, while many of them do not represent any 

practical situation. Hence, we focused on few types of in-

stances only, which we call instance scenarios. 

A. Experimental Setup 

 An instance scenario defines a graph with two subsets of 

vertices – an initial region and goal region for each team. 

The initial region of team   determines all possible starting 

positions for members of  , while goal region determines 

possible target vertices for agents of team  . We considered 

three instance scenarios: exchange, race and mingled (see 

Figure 8). All the instance scenarios take place on 

4-connected grids with regularly placed obstacles. Initial 

locations and goals of individual agents are selected random-

ly within corresponding initial and goal regions respectively. 

 

  

 

 

 

 

 

 

 
Figure 8. Testing instance scenarios - exchange, race and mingled. Green 

color is associated with the selected team, red color belongs to the oppo-

nent. Dark and light shades represent initial and target locations respective-
ly. Agents and their targets are placed randomly within areas of the same 

color. Instance patterns also include number of agents and their targets.  

 

B. Greedy Strategy Tournament  

The first collection of experiments is aimed on revealing 

which greedy strategy is the most suitable in suggested 

ACPF instance scenarios. We focused on greedy strategies 

with different ways of selection of the next move. The 

greedy strategy always makes a locally optimal step, which 

means that a move that leads to a placement of agents with 

the best value is always performed. The value of a placement 

of    at time step   for the selected team is calculated as fol-

lows: 

                                 

     

 

Where                is a length of the shortest path 

connecting vertices   and   in graph   while the use of cer-

tain vertices is forbidden. We tried various restrictions of 

what vertices are allowed. 

 

(a) all the vertices are allowed 

(b) vertices that does not contain agents of     are al-

lowed 

(c) vertices that does not contain agents from        
(d) unoccupied vertices only are allowed 

(e) vertices that does not contain an agent that is at its 

target 

 

Tables with results are roughly symmetric. The small ob-

servable amount of asymmetry can be attributed to the fact, 

that it is more advantageous for certain strategies to take 

either the first or the second turn.   

 
Table 1. Small tournament of greedy strategies. Testing scenarios over a 

4-connected grid of size 5⨯5 (5⨯     r         r o) with various place-

ments of initial and goal positions of agents as depicted Figure 8 in were 
used. Both teams have 3 agents with a single target. All the possible pairs 

greedy of strategies playing against each other were tried. Score after play-

ing 100 ACPF instances for each test case is reported. Greedy strategies (a), 
(b) and (e) tend to outperform the other strategies. 

Small exchange 

row:column (a) (b) (c) (d) (e) 

(a) - 29:71 70:30 72:28 48:52 

(b) 50:50 - 74:26 73:27 52:48 

(c) 28:72 23:77 - 42:58 29:71 

(d) 34:66 26:74 55:45 - 29:71 

(e) 51:49 34:66 74:26 72:28 - 

 

Small race 

row:column (a) (b) (c) (d) (e) 

(a) - 34:57 49:51 54:46 40:60 

(b) 47:53 - 51:49 50:50 46:54 

(c) 39:61 38:62 - 51:49 33:67 

(d) 40:60 44:56 43:57 - 37:63 

(e) 42:58 48:52 59:41 53:47 - 

 

Small mingled 

row:column (a) (b) (c) (d) (e) 

(a) - 51:49 74:26 73:27 53:47 

(b) 44:56 - 63:37 65:35 52:48 

(c) 36:64 38:62 - 55:45 42:58 

(d) 33:67 39:61 58:42 - 27:73 

(e) 56:44 56:44 71:29 75:25 - 

 

Described five modification of the greedy strategies 

played against each other. Table 1 and Table 2 show the 

results. It is noticeable, that strategies that rather disregard 

vertices occupied by opponent – that is strategies (a), (b)  

and (e) – outperform those, that take agents into considera-

tion in most cases. 

 

Exchange Race Mingled 



 

 

 

Table 2. Big tournament of greedy strategies. The same testing scenarios 

were used but the size of grids increased to 9⨯10 with 6 agents in each 
team. Again, greedy strategies (a), (b) and (e) dominate over the remaining 

strategies. 

Large exchange 

row:column (a) (b) (c) (d) (e) 

(a) - 18:82 69:31 78:22 49:51 

(b) 74:26 - 77:12 88:12 68:32 

(c) 30:70 17:83 - 58:42 22:78 

(d) 26:74 9:91 38:62 - 19:81 

(e) 45:55 57:43 80:20 78:22 - 

 

Large race 

row:column (a) (b) (c) (d) (e) 

(a) - 59:41 65:35 67:33 45:55 

(b) 50:50 - 68:32 73:27 39:61 

(c) 38:62 39:61 - 61:39 30:70 

(d) 38:62 35:75 43:57 - 27:63 

(e) 51:49 54:46 74:26 72:28 - 

 

Large mingled 

row:column (a) (b) (c) (d) (e) 

(a) - 56:44 68:32 75:25 49:51 

(b) 45:55 - 64:36 73:27 43:57 

(c) 33:67 31:69 - 72:28 31:69 

(d) 26:74 16:84 24:76 - 21:79 

(e) 53:47 59:41 75:25 83:17 - 

 

 This finding might seem counterintuitive, however the 

explanation is simple: when a strategy takes opponent’s 

agents into account, it tends to select moves try to avoid the 

adversaries, which clears the path for them. Adversarial 

agents can then reach their targets easier. This property is 

apparent in all scenarios although it is less significant in the 

race scenario than in the other two. The interaction among 

agents (an agent wants to enter occupied vertex) is less likely 

to occur in the race scenario, which partly reduces the differ-

ences between considered greedy approaches. 

 

 

Figure 9. Comparison of the most successful greedy strategies. The number 
of wins of the team playing the greedy strategy (a) against a team playing 

the greedy strategy (b) in instances over a grid of size 11⨯12 is shown. In 
total, 200 instances of the type exchange in which 100 times (a) starts 
and 100 times (b) starts were used. It can be observed that the perfor-
mance of the (a) strategy degrades with the increasing number of 
agents. 

 The two most successful greedy strategies (a) and (b) 

were compared separately. The test was targeted on the 

performance for the increasing number of agents. Results are 

shown in Figure 9. It can be observed that the (a) greedy 

strategy has better performance for few agents and its per-

formance degrades as the number of agents increases. 

C. Full-Spectrum Strategy Tournament 

 Several conceptually different strategies played against 

each other a tournament in order to find out which strategy 

performs as best. Again all the pairs of competing strategies 

were evaluated. Four strategies participated in the tourna-

ment. Every pair of strategies was tested over 100 instances 

conforming to suggested instance scenarios. Results are 

summarized in Table 3 and Table 4. 

 
Table 3. Small tournament of all strategies. Considered scenarios were 

tested on instances of size  5⨯5. 1 out of 3 agents in each team did not have 

any particular target. Classic alpha-beta algorithms seem to be more suc-
cessful than others. 

Small exchange 

row:column  Greedy ACA* α-β MCTS 

Greedy - 40:60 44:56 48:52 

ACA* 53:47 - 51:49 48:52 

α-β 60:40 65:35 - 64:36 

MCTS 47:53 35:65 41:59 - 

 

Small race 

row:column  Greedy ACA* α-β MCTS 

Greedy - 27:73 40:60 35:65 

ACA* 67:33 - 60:40 58:42 

α-β 51:49 29:71 - 65:35 

MCTS 49:51 35:65 39:61 - 

 

Small mingled 

row:column  Greedy ACA* α-β MCTS 

Greedy - 19:81 31:69 37:63 

ACA* 76:24 - 74:26 68:32 

α-β 75:25 43:57 - 58:42 

MCTS 50:50 23:77 39:61 - 

 

 It can be observed that alpha-beta algorithm wins in ma-

jority of cases in small instances. The large size of the search 

space in case of game-based strategies becomes evident in 

large instances where these strategies are often defeated. 

Success rate of the cooperative approach (ACA*) is besides 

other things caused by agents without targets, that are used 

for capturing opponent’s targets. 

 Number of agents in instances, where these methods can 

be employed is very limited due to the exponential search 

space growth. Instances containing tens of agents must be 

solved by either greedy or cooperative methods. 

 Like in the case of greedy strategies, a more detailed 

comparison of two best strategies overall has been conduct-

ed. Greedy strategy (a) and the ACA* strategy were com-

pared for the increasing number of agents without targets. 
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Results are shown in Figure 10. The performance of ACA* 

degrades for higher number of agents without targets. 

 
Table 4. Large tournament of all strategies. Again, considered scenar-

ios were tested on instances of size  9⨯10, while 2 out of 6 agents in each 

team were without target. Classic alpha-beta algorithms seem to be more 
successful than others. Cooperative approach (ACA*) algorithm is more 

successful than other methods. 

Large exchange 

row:column  Greedy ACA* α-β MCTS 

Greedy - 27:73 55:45 73:27 

ACA* 67:33 - 72:28 70:30 

α-β 54:46 23:77 - 74:26 

MCTS 38:62 30:70 27:73 - 

 

Large race 

row:column  Greedy ACA* α-β MCTS 

Greedy - 26:74 37:63 72:28 

ACA* 82:18 - 84:16 85:15 

α-β 43:57 28:72 - 64:36 

MCTS 28:72 13:87 21:79 - 

 

Large mingled 

row:column  Greedy ACA* α-β MCTS 

Greedy - 8:92 50:50 59:41 

ACA* 75:25 - 72:28 65:35 

α-β 44:56 14:86  - 70:30 

MCTS 36:64 31:69 33:67 - 

 

 

 
Figure 10. Comparison of the overall most successful strategies. The 

ACA* strategy and the greedy strategy (a) are compared in instances over 
a grid of size 11⨯12 with 11 agents on both sides. The performance of 
strategies is shown for the increasing number of agents without any 
targets (on each side). The performance of the cooperative strategy 
degrades with increasing number of agents without targets. 

VI. CONCLUSIONS, DISCUSSION, AND FUTURE WORK 

 We have studied the problem of adversarial cooperative 

path-finding (ACPF). It can be regarded as the extension of 

the standard cooperative path-finding (CPF) with adversarial 

agents. The task in ACPF is to control movements of agents 

so that they reach their targets before the adversarial agents.  

 The major challenge in ACPF consists in designing an 

efficient decision strategy that leads controlled agents to the 

victory. Designing such a strategy is a difficult task. Note 

that the strategy needs to take into account all the possible 

actions of adversarial agents and their reactions. 

 The ACPF problem is studied theoretically as well as 

from the practical point of view. Regarding the theory, we 

studied the complexity of the decision version of ACPF 

where we are interested in the question whether there exists 

a winning strategy. We have shown that decision version of 

ACPF is PSPACE-hard. It remains an open question whether 

it belongs to PSPACE. We are not aware of any polynomial 

upper bound on the size of the solution of ACPF, which 

would allow us to prove membership of ACPF into PSPACE 

(note that in case of CPF such bound exists). Next, we have 

shown that the problem is in EXPTIME, which by the way 

also show that it is decidable. 

 Regarding practical solving of ACPF we suggested sever-

al approaches – simple greedy method, game theoretical 

methods, and methods based on CPF solving. Game theoret-

ical methods include Monte-Carlo tree search and alpha-beta 

tree search. CPF-based solving is in fact a re-planning meth-

od. All these methods were compared in a tournament from 

which a quite counter-intuitively greedy methods and CPF-

based methods came out as winners defeating game-based 

methods. 
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