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Abstract

In the multi-agent path finding (MAPF) the task is
to find non-conflicting paths for multiple agents. In
this paper we present the first SAT-solver for the sum-
of-costs variant of MAPF which was previously only
solved by search-based methods. Using both a lower
bound on the sum-of-costs and an upper bound on the
makespan, we are able to have a reasonable number of
variables in our SAT encoding. We then further improve
the encoding by borrowing ideas from ICTS, a search-
based solver. Experimental evaluation on several do-
mains shown that there are many scenarios where the
new SAT-based method outperforms the best variants
of previous sum-of-costs search solvers - the ICTS and
ICBS algorithms.

1 Introduction and Background
The multi-agent path finding (MAPF) problem consists

a graph, G = (V,E) and a set A = {a1, a2, . . . am} of
m agents. Time is discretized into time steps. The arrange-
ment of agents at time-step t is denoted as αt. Each agent
ai has a start position α0(ai) ∈ V and a goal position
α+(ai) ∈ V . At each time step an agent can either move
to an adjacent empty location1 or wait in its current loca-
tion. The task is to find a sequence of move/wait actions
for each agent ai, moving it from α0(ai) to α+(ai) such
that agents do not conflict, i.e., do not occupy the same lo-
cation at the same time. Formally, an MAPF instance is a
tuple Σ = (G = (V,E), A, α0, α+). A solution for Σ is a
sequence of arrangements S(Σ) = [α0, α1, ..., αµ] such that
αµ = α+ where αt+1 results from valid movements from αt
for t = 1, 2, ..., µ−1. An example of MAPF and its solution
are shown in Figure 1.

MAPF has practical applications in video games, traffic
control, robotics etc. (see Sharon et al. (2015) for a survey).
The scope of this paper is limited to the setting of fully coop-
erative agents that are centrally controlled. MAPF is usually
solved aiming to minimize one of the two commonly-used
global cumulative cost functions:

1Some variants of MAPF relax the empty location requirement
by allowing a chain of neighboring agents to move, given that the
head of the chain enters an empty locations. Most MAPF algo-
rithms are robust (or at least easily modified) across these variants.
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Figure 1: Example of MAPF for agents a1, a2, and a3 over
a 4-connected grid (left) and its optimal solution (right)

(1) sum-of-costs (denoted ξ) is the summation, over all
agents, of the number of time steps required to reach the goal
location Dresner and Stone (2008); Standley (2010); Sharon
et al. (2013, 2015). Formally, ξ =

∑m
i=1 ξ(ai), where ξ(ai)

is an individual path cost of agent ai.
(2) makespan: (denoted µ) is the total time until the last
agent reaches its destination (i.e., the maximum of the indi-
vidual costs) Surynek (2010, 2014a, 2015).

It is important to note that in any solution S(Σ) it holds
that µ ≤ ξ ≤ m · µ Thus the optimal makespan is usually
smaller than the optimal sum-of-costs.

Finding optimal solutions for both variants is NP-Hard Yu
and LaValle (2013b); Surynek (2010). Therefore, many sub-
optimal solvers were developed and are usually used when
m is large Ryan (2010); Cohen, Uras, and Koenig (2015);
Silver (2005); Röger and Helmert (2012); Khorshid, Holte,
and Sturtevant (2011); Wang and Botea (2011)

1.1 Optimal MAPF Solvers
The focus of this paper is on optimal solvers which are di-
vided into two main classes:
(1) Reduction-based solvers. Many recent optimal solvers
reduce MAPF to known problems such as CSP Ryan (2010),
SAT Surynek (2012), Inductive Logic Programming Yu and
LaValle (2013a) and Answer Set Programming Erdem et al.
(2013). These papers mostly prove a polynomial-time reduc-
tion from MAPF to these problems. These reductions are
usually designed for the makespan variant of MAPF; they
are not applicable for the sum-of-costsvariant.
(2) Search-based solvers. By contrast, many recent opti-
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Figure 2: An example of time expansion graph.

mal MAPF solvers are search-based. Some are variants of
the A* algorithm on a global search space – all different
ways to place m agents into V vertices, one agent per ver-
tex Standley (2010); Wagner and Choset (2015). Other em-
ploy novel search trees Sharon et al. (2013, 2015); Boyarski
et al. (2015). These search-based solvers are usually de-
signed for the sum-of-costs MAPF variant.

A major weaknesses is that connection/comparison be-
tween different algorithms was usually done only within a
given class of algorithms and cost variant but not across
these two classes.

1.2 Contributions
This paper aims to start and close the gap. Most of the
search-based algorithms can be easily modified to the
makespan variant by modifying the cost function and the
way the state-space is represented. Some initial directions
are given by Sharon et al. (2015). By contrast, the reduction-
based algorithms are not trivially modified to the sum-of-
costs variant and sometimes a completely new reduction is
needed.

In this paper we develop the first SAT-based solvers for
the sum-of-costs variant which is based on adding cardi-
nality constraints Bailleux and Boufkhad (2003); Silva and
Lynce (2007) for bounding the sum-of-costs. We show how
to use known lower bounds on the sum-of-costs to reduce the
number of variables that encode these cardinality constraints
so as to be practicle for current SAT solvers. We then present
an enhanced SAT-solver which adapts ideas from the ICTS
algorithm Sharon et al. (2013) and uses multi-value decision
diagrams (MDDs) Srinivasan et al. (1990) to further reduce
the encoding. Experimental results show that our SAT solver
outperforms the best existing search-based solvers for the
sum-of-costs variant on many scenarios.

2 SAT Encoding for Optimal Makespan
SAT solvers encompass boolean variables and answer bi-
nary questions. The challenge is to apply SAT for MAPF
where there is a cumulative cost function. This challenge is
stronger for the sum-of-costs variant where each agent has
its own cost. We first describe existing SAT encodings for
makespan. Then, we present our SAT encoding for sum-of-
costs.

A time expansion graph (denoted TEG) is a basic concept
used in SAT solvers for makespan Surynek (2014a). We use
it too in the sum-of-costs variant below. A TEG is a directed

acyclic graph (DAG). First, the set of vertices of the under-
laying graph G are duplicated for all time-steps from 0 up to
the given bound µ. Then, possible actions (move along edges
or wait) are represented as directed edges between succes-
sive time steps. Figure 2 shows a graph and its TEG for time
steps 0, 1 and 2 (vertical layouts). It is important to note that
in this example (1) horizonal edges in TEG correspond to
wait actions. (2) diagonal moves in TEG correspond to real
moves. Formally a TEG is defined as follows:
Definition 1. Time expansion graph of depth µ is a digraph
(V,E) where V = {utj |t = 0, 1, ..., µ ∧ uj ∈ V } and E ⊆
{(utj , u

t+1
k )|t = 0, 1, ..., µ− 1 ∧ ({uj , uk} ∈ E ∨ j = k)}.

The encoding for MAPF introduces propositional vari-
ables and constraints for a single time-step t in order to rep-
resent any possible arrangement of agents at time t. Given a
desired makespan µ, the formula represents the question of
whether there is a solution in the TEG of µ time steps. The
search for optimal makespan is done by iteratively incre-
menting µ (=0, 1, 2...) until a satisfiable formula is obtained.
This ensures optimality in case of a solvable MAPF instance.
More information on SAT encoding for the makespan vari-
ant can be found, e.g. in Surynek (2014a,b,c)

3 Basic-SAT for Optimal Sum-of-costs
The general scheme described above for finding optimal
makespan is to convert the optimization problem (finding
minimal makespan) to a sequence of decision problems (is
there a solution of a given makespan µ). We apply the same
scheme for finding optimal sum-of-costs, converting it to
a sequence of decision problems – is there a solution of a
given sum-of-costs ξ. However, encoding this decision prob-
lem is more challenging than the makespan case, because
one needs to both bound the sum-of-costs, but also to pre-
dict how many time expansions are needed. We address this
challenge by using two key techniques descried next: (1)
Cardinality constraint for bounding ξ and (2) Bounding the
Makespan.

3.1 Cardinality Constraint for Bounding ξ
The SAT literature offers a technique for encoding a cardi-
nality constraint Bailleux and Boufkhad (2003); Silva and
Lynce (2007), which allows calculating and bounding a nu-
meric cost within the formula. Formally, for a bound λ ∈ N
and a set of propositional variablesX = {x1, x2, ..., xk} the
cardinality constraint ≤λ {x1, x2, ..., xk} is satisfied iff the
number of variables from the set X that are set to TRUE is
≤ λ.

In our SAT encoding, we bound the sum-of-costs by map-
ping every agent’s action to a propositional variable, and
then encoding a cardinality constraint on these variables.
Thus, one can use the general structure of the makespan SAT
encoding (which iterates over possible makespans), and add
such a cardinality constraint on top. Next we address the
challenge of how to connect these two factors together.

3.2 Bounding the Makespan for the Sum of Costs
Next, we compute how many time expansions (µ) are needed
to guarantee that if a solution with sum-of-costs ξ exists then



Algorithm 1: SAT consult
1 MAPF-SAT(MAPF Σ = (G = (V,E), A, α0, α+))
2 µ0 = maxai∈A ξ0(ai) ;∆← 0
3 while Solution not found do
4 µ← µ0 + ∆;
5 for each agent ai do
6 build TEGi(µ);
7 end
8 Solution=Consult-SAT-SOLVER(Σ, µ,∆);
9 if Solution not found then

10 ∆++;
11 end
12 end
13 return (Solution);
14 end

it will be found. In other words, in our encoding, the values
we give to ξ and µ must fulfill the following requirement:
R1: all possible solutions with sum-of-costs ξ must be pos-
sible for a makespan of at most µ.

To find a µ value that meets R1, we require the follow-
ing definitions. Let ξ0(ai) be the shortest individual path for
agent ai, and let ξ0 =

∑
ai∈A ξ0(ai). ξ0 was called the sum

of individual costs (SIC) Sharon et al. (2013). ξ0 is an admis-
sible heuristic for optimal sum-of-costs search algorithms,
since ξ0 is a lower bound on the minimal sum-of-costs. ξ0
is calculated by relaxing the problem by omitting the other
agents. Similarly, we define µ0 = maxai∈A ξ0(ai). µ0 is
length of the longest of the shortest individual paths and is
thus a lower bound on the minimal makespan. Finally, let ∆
be the extra cost over SIC (as done in Sharon et al. (2013)).
That is, let ∆ = ξ − ξ0.
Proposition 1. For makespan µ of any solution with sum-
of-costs ξ, R1 holds for µ ≤ µ0 + ∆.

Proof outline: The worst-case scenario, in terms of
makespan, is that all the ∆ extra moves belong to a single
agent. Given this scenario, in the worst case, ∆ is assigned
to the agent with the largest shortest-path. Thus, the result-
ing path of that agent would be µ0 + ∆, as required. �

Using Proposition 1, we can safely encode the decision
problem of whether there is a solution with sum-of-costs ξ
by using µ = µ0 + ∆ time expansions, knowing that if a so-
lution of cost ξ exists then it will be found within µ = µ0+∆
time expansions. Algorithm 1 summarizes our optimal sum-
of-costs algorithm. In every iteration, µ is set to µ0+∆ (Line
4) and the relevant TEGs (described below) for the various
agents are built. Next a decision problem asking whether
there is a solution with sum-of-costs ξ and makespan µ is
queried (Line 8). The first iteration starts with ∆ = 0. If such
a solution exists, it is returned. Otherwise ξ is incremented
by one, ∆ and consequently µ are modified accordingly and
another iteration of SAT consulting is activated.

This algorithm clearly terminates for solvable MAPF in-
stances as we start seeking a solution of ξ = ξ0 (∆ = 0)
and increment ξ (and ∆) to all possible values. The un-
solvability of an MAPF instance can be checked separately
by a polynomial-time complete sub-optimal algorithm such
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Figure 3: A TEG for an agent that need to go from u1 to u3.

as PUSH-AND-ROTATE de Wilde, ter Mors, and Witteveen
(2014).

3.3 Efficient Use of the Cardinality Constraint
The complexity of encoding a cardinality constraint de-
pends linearly in the number of constrained variables Silva
and Lynce (2007); Sinz (2005). Since each agent ai must
move at least ξ0(ai), we can reduce the number of variables
counted by the cardinality constraint by only counting the
variables corresponding to extra movements over the first
ξ0(ai) movement ai makes. We implement this by introduc-
ing a TEG for a given agent ai (labeled TEGi).
TEGi differs from TEG (Definition 1) in that it distin-

guishes between two types of edges: Ei and Fi. Ei are (di-
rected) edges whose destination is at time step ≤ ξ0(ai).
These are called standard edges. Fi denoted by extra edges
are directed edges whose destination is at time step >
ξ0(ai). Figure 3 shows an underlying graph for agent a1

(left) and the corresponding TEG1. Note that the optimal
solution of cost 2 is denoted by the diagonal path of the
TEG. Edges that belong to Fi are those that their destina-
tion is time step 3 (dotted lines). The key in this definition is
that the cardinality constraint would only be applied to the
extra edges, that is, we will only bound the number of extra
edges (they sum up to ∆) making it more efficient.

3.4 Detailed Description of the SAT Encoding
Agent ai must go from its initial position to its goal within
TEGi. This simulates its location in time in the underly-
ing graphG. That is, the task is to find a path from α0

0(ai) to
αµ+(ai) in TEGi. The search for such a path will be encoded
within the Boolean formula. Additional constraints will be
added to capture all movement constraints such as collision
avoidance etc. And, of course, we will encode the cardinal-
ity constraint that the number of extra edges must be exactly
∆.

We want to ask whether a sum-of-costs solution of ξ exist.
For this we build TEGi for each agent ai ∈ A of depth µ0 +
∆. We use Vi to denote the set of vertices in TEGi that agent
ai might occupy during the time steps. Next we introduce
the Boolean encoding (denoted BASIC-SAT)which has the
following Boolean variables:
1:) X tj (ai) for every t ∈ {0, 1, ..., µ} and utj ∈ Vi – Boolean
variable of whether agent ai is in vertex vj at time step t.



2:) Etj,k(ai) for every t ∈ {0, 1, ..., µ− 1} and (utj , u
t+1
k ) ∈

(Ei∪i) — Boolean variables that model transition of agent
ai from vertex vj to vertex vk through any edge (standard or
extra) between time steps t and t+ 1 respectively.
3:) Ct(ai) for every t ∈ {0, 1, ..., µ−1} such that there exist
utj ∈ Vi and ut+1

k ∈ Vi with (utj , u
t+1
k ) ∈ Fi — Boolean

variables that model cost of movements along extra edges
(from Fi) between time steps t and t+ 1.

We now introduce constraints on these variables to restrict
illegal values as defined by our variant of MAPF. Other vari-
ants may use a slightly different encoding but the principle
is the same. Let Tµ = {0, 1, ..., µ − 1}. Several groups of
constraints are introduced for each agent ai ∈ A as follows:
C1: If an agent appears in a vertex at a given time step, then
it must follow through exactly one adjacent edge into the
next time step. This is encoded by the following two con-
straints, which are posted for every t ∈ Tµ and utj ∈ Vi

X tj (ai)⇒
∨

(ut
j ,u

t+1
k )∈Ei∪Fi

Etj,k(ai) (1)

∧
(ut

j ,u
t+1
k ),(ut

j ,u
t+1
l )∈Ei∪Fi∧k<l

¬Etj,k(ai) ∨ ¬Etj,l(ai) (2)

C2: Whenever an agent occupies an edge it must also enter
it before and leave it at the next time-step. This is ensured
by the following constraint introduced for every t ∈ Tµ and
(utj , u

t+1
k ) ∈ Ei ∪ Fi:

Etj,k(ai)⇒ X tj (ai) ∧ X t+1
k (ai) (3)

C3: The target vertex of any movement except wait action
must be empty. This is ensured by the following constraint
introduced for every t ∈ Tµ and (utj , u

t+1
k ) ∈ Ei ∪ Fi such

that j 6= k.

Etj,k(ai)⇒
∧

al∈A∧al 6=ai∧ut
j∈Vl

¬X tj (al) (4)

C4: No two agents can appear in the same vertex at the same
time step. That is the following constraint is added for every
t ∈ Tµ and pair of of agents ai, al ∈ A such that i 6= l:∧

ut
j∈Vi∩Vl

¬X tj (ai) ∨ ¬X tj (al) (5)

C5: Whenever an extra edge is traversed the cost needs to be
accumulated. In fact, this is the only cost that we accumulate
as discussed above. This is done by the following constraint
for every t ∈ Tµ and extra edge (utj , u

t+1
k ) ∈ Fi.

Etj,k(ai)⇒ Ct(ai) (6)

C6: Cardinality constraint. Finally the bound on the total
cost needs to be introduced. Reaching the sum-of-costs of
ξ corresponds to traversing exactly ∆ extra edges from Fi.
The following cardinality constrains ensures this:

≤∆

{ Ct(ai)|i = 1, 2, ..., n ∧ t = 0, 1, ..., µ− 1
∧{(utj , u

t+1
k ) ∈ Fi} 6= ∅

}
(7)

Final formula. The resulting Boolean formula that is a con-
junction of C1 . . . C6 will be denoted as FBASIC(Σ, µ,∆)
and is the one that is consulted by Algorithm 1 (line 4).

The following proposition summarizes the correctness of
our encoding.
Proposition 2. MAPF Σ = (G = (V,E), A, α0, α+) has a
sum-of-costs solution of ξ if and only if FBASIC(Σ, µ,∆) is
satisfiable. Moreover, a solution of MAPF Σ with the sum-
of-costs of ξ can be extracted from the satisfying valuation
of FBASIC(Σ, µ,∆) by reading its X tj (ai) variables.
Proof: The direct consequence of the above definitions is
that a valid solution of a given MAPF Σ corresponds to
non-conflicting paths in the TEGs of the individual agents.
These non-conflicting paths further correspond to satisfying
the variable assignment of FBASIC(Σ, µ,∆), i.e., that there
are ∆ extra edges in TEGs of depth µ = µ0 + ∆. �

Proposition 3. Let D be the maximal degree of any vertex
in G and let m be the number of agents. If m · |E| ≥ ∆ and
m ≥ D then the number of clauses in FBASIC(Σ, µ,∆) is
O(µ·m2 ·|E|), and the number of variables isO(µ·|E|·m).
Proof: The components ofFBASIC(Σ, µ,∆) is described in
equations 1– 7. Equation 1 introduces at most O(m ·µ · |E|)
clauses. Equation 2 introduces at most O(m · µ|E| · D)
clauses. Equation 3 introduces at mostO(m·µ·|E|) clauses.
Equation 4 introduces at most O(m2 · µ · |E|) Equation 5
introduces at most O(m2 ·µ · |V |) clauses. Equation 6 intro-
duces at most O(m · µ · |E|) clauses. Equation 7 introduces
at most O(m · µ · (ξ − ξ0)) clauses, since a cardinality con-
straint checking that n variables has a cardinality constraint
ofm requiresO(n·m) clauses Sinz (2005). Summing all the
above results in a total ofO(µ·m·(|E|·(D+m)+(ξ−ξ0))).
If we assume that m > D and that m · |E| > (ξ − ξ0) then
the number of clauses is O(µ · m2 · |E|). The number of
variables is easily computed in a similar way. �

4 Improving Basic SAT by Adding MDDs
A major parameter that affects the speed of solving of
Boolean formulae is their size Petke (2015). The size of for-
mulae in the BASIC-SAT encoding is affected mostly by the
size of the TEGs (this is embodied in the |E| factor in the
encoding size). To obtain a significant speedup we reduce
the size of TEGi for agent ai in terms of number of vertices
while the soundness of encoding is preserved.

Let TEGµi denote TEGi for µ time expansions. We set
µ = µ0 + ∆ in our solution. The data structure we use for
reducing TEGµi is a multi-value Decision Diagram (MDD).
MDDs were already used in the search-based MAPF algo-
rithm ICTS Sharon et al. (2013). In our context,MDDµ

i is a
digraph that represents all possible valid paths from α0(ai)
to α+(ai) of cost µ for agent ai.MDDµ

i has a single source
node at level 0 and a single sink node at level µ. Every node
at depth t ofMDDµ

i corresponds to a possible location of ai
at time t, that is on a path of cost µ from α0(ai) to α+(ai).
It is easy to see that MDDµ

i is subgraph of TEGi. While
TEGµi includes all vertices of G at each time step, MDDµ

i
includes only those vertices and edges that represent pos-
sible valid paths, and thus vertices not in MDDµ

i can be
ignored.
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Moreover, the maximum cost that can be consumed
by single agent ai under given sum-of-costs bound ξ is
ξ0(ai) + ∆ where, as defined above, ξ0(ai) is the short-
est path connecting α0(ai) with α+(ai) in G (assuming no
other agent exist). Thus, it is sufficient to replace TEGµi
with MDD

ξ0(ai)+∆
i , which is useful since ξ0(ai) + ∆ ≤

µ0 + ∆ = µ.

MDDs for the agents of Figure 1 are shown in Figure 4.
Indeed, the size of the MDDs is much smaller than the cor-
responding TEGs which include all states for all time steps.

The encoding that uses MDD-based time expansion will
be called MDD-SAT and the corresponding formulae will be
denoted as FMDD(Σ, µ,∆). FMDD(Σ, µ,∆) are similar to
BASIC-SAT. The only different is that in BASIC-SAT there
is a variable for all vertices and edges of the TEGs while
in MDD-SAT, only variables for the vertices and edges of
the MDDs are needed. This difference can be significant.
Table 1 presents the number of propositional variables and
clauses accumulated over all the constructed formulae for a
given MAPF instance for BASIC-SAT and for MDD-SAT
over 8× 8 grid with 10% obstacles. The average values out
of 10 random instances per number of agents is shown. Up
to two orders of magnitude reduction is shown.

5 Experimental Evaluation
We experimented on 4-connected grids with randomly

placed obstacles Silver (2005); Standley (2010) and on
Dragon Age maps Sturtevant (2012). Both settings are a
standard MAPF benchmarks. The initial position of the
agents was randomly selected. To ensure solvability the goal
positions were selected by performing a long random walk
from the initial arrangement.

We compared our SAT solvers to several state-of-the-art
search-based algorithms: the increasing cost tree search -
ICTS Sharon et al. (2013), Enhanced Partial Expansion A*
- EPEA* Goldenberg et al. (2014) and improved conflict-
based search - ICBS Boyarski et al. (2015). For all the
search algorithms we used the best known setup of their pa-
rameters and enhancements suitable for solving the given
instances.

The SAT approaches were implemented in C++ using
Glucose 3.0 Audemard and Simon (2009); Audemard,
Lagniez, and Simon (2013); a top performing SAT solver
in the SAT Competition Järvisalo et al. (2012); Surynek
(2014a). The cardinality constraint was encoded using a
simple standard circuit based encoding called sequential
counter Sinz (2005). ICTS and ICBS were implemented in
C#, based on their original implementation. All experiments
were performed on a Xeon 2Ghz, and on Phenom II 3.6Ghz,
both with 12 Gb of memory.

5.1 Square Grid Experiments
We first experimented on 8× 8, 16× 16, and 32× 32 grids
with 10% obstacles while varying the number of agents from
1 to 20. Figure 5 presents results over 10 instances where
each algorithm was given a time limit of 300 seconds. The
leftmost plot shows the success rate (=precantage of in-
stances solved within the time limit) as a function of the
number of agents. The next plot reports the average runtime
for instances that were solved by all algorithms. The right
plots visualize the results on 16 × 16 and 32 × 32 grids but

Grid 8x8 
m 

BASIC-SAT MDD-SAT 
Variables Clauses Variables Clauses 

1 
4 
8 

16 

1 552.8 11 617.6 20.6 27.9 

14 712.0 127 732.2 276.5 554.0 

226 391.2 2 099 127.6 18 355.6 68 826.0 

4 075 187.2 32 108 347.2 2 253 508.2 13 128 646.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: The number of variables and clauses
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Figure 6: The number of solved instances in the given runtime on Dragon Age maps for 16 and 32 agents.
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Figure 7: Success rate and runtime on the 8 × 8 grid with
increasing number of obstacles (out of 64 cells).

in a different way. Here, we present the number of instances
(out of all 200 instances for all number of agents) that each
method solved (y-axis) as a function of the elapsed time (x-
axis).

The first clear trend is that MDD-SAT significantly out-
performs BASIC-SAT in all aspects. This shows the impor-
tance of developing efficient SAT encodings for this prob-
lem. In addition, a prominent trend observed in all the plots
is that MDD-SAT has higher success rate and solves more
instances than all other algorithms. In some cases, however,
where the available runtime is very small, MDD-SAT is out-
performed by the search-based algorithms.

For the rest of our experiments, we only evaluated the
most efficient algorithms, namely, MDD-SAT, ICTS, and
ICBS.

Next, we varied the number of obstacles for the 8 × 8
grid with 10 agents. Results are shown in Figure 7. Clearly
MDD-SAT can solve more instances over all settings. MDD-
SAT was always faster except for some easy instances where
ICBS was slightly faster. Interestingly, increasing the num-
ber of obstacles reduces the number of open cells. This is an
advantage for the SAT solver as the SAT formula has less
variables. By contrast, for the search-based solvers, adding
obstacles means that the graphs gets denser and harder to
solve.

5.2 Results on the Dragon Age Maps
Next, we experimented on three Dragon-Age maps
(ost003d, den520d, and brc202d) commonly used as
testbeds. In these maps there is a large number of open cells
but the graph is sparse with agents. This gives a clear ad-

vantage to the search-based solvers. To obtain instances of
various difficulties we varied the distance between start and
goal locations. 10 random instances were generated for each
distance in the range: {8, 16, 24, . . . , 200}. The results are
shown in Figure 6 (the number of instances solved as the
function of time).

In the Dragon-Age setting there is no universal win-
ner. Each algorithm was the best for some of the instances
(especially in case of ost003d). When limited time is al-
lowed ICTS or ICBS are better. However, given enough time
MDD-SAT catches up and even outperforms the other algo-
rithms. This was evident in all these experiments except for
ost003d with 32 agents. Concrete runtimes for 10 instances
of ost003d are given in Table 2. MDD-SAT solves the hard-
est instance (#1) while other solvers ran out of time. The
right part of the table illustrates the cumulative size of the
formulae generated during the solving process. Although the
map is much larger than the square grids, the size of for-
mulae is comparable to the densely occupied grid (see Fig-
ure 1). This is because ξ0 is a good lower bound of the opti-
mal cost in the sparse maps.

The entire set of experiments show a clear trend. When
a small amount of time is given the search-based algorithm
may be faster. But, given enough time MDD-SAT is the cor-
rect choice, even in the large maps where it has an initial
disadvantage. One of the reasons for this is modern SAT
solvers have the ability to learn and improve their speed
during the process of answering a SAT question. But, this
learning needs sufficient time and large search trees to be
effective. By contrast, search algorithms do not have this ad-
vantage.

6 Summary and Conclusions
We introduced the first state-of-the-art SAT-based solver

for the sum-of-costs variant of MAPF. The resulting encod-
ing, called MDD-SAT, was shown to be competitive in com-
parison with the state-of-the-art search-based solvers over a
variety of domains. Nevertheless, as previous authors men-
tioned Sharon et al. (2015); Boyarski et al. (2015) there is
no universal winner and each of the approaches has pros and
cons and worsk best in different circumstances. This calls
for a deeper study of various classes of MAPF instances and
their characteristics.

There are several factors behind the performance of the
SAT-based approach: clause learning, constraint propaga-
tion, good implementation of the SAT solver. On the other



hand, the SAT solver doesn’t understand the structure of the
encoded problem which may downgrade the performance.
Hence, we consider that implementing techniques such as
learning directly into the dedicated MAPF solver may be a
future direction.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAPF 
Ost003d (seconds) 

16 agents, distance=168 
MDD-SAT ICBS ICTS 

1 101.4 N/A N/A 
2 12.8 9.7 2.4 
3 13.2 4.4 2.4 
4 3.8 0.6 1.2 
5 13.5 9.6 3.2 
6 22.7 10.7 N/A 
7 N/A N/A N/A 
8 36.9 49.6 2.5 
9 12.0 2.6 1.4 

10 N/A N/A N/A 

 

m 

Distance 

MDD-SAT, 16 agents 

Variables Clauses 

8 758.0 1 169.7 
64 34 648.7 120 961.1 

128 932 440.9 9 128 568.8 

 
m 

Distance 

MDD-SAT, 32 agents 

Variables Clauses 

8 2 377.6 3 751.3 
64 571 915.1 3 672 249.3 

128 5 163 157.0 49 201 960.0 

 

Table 2: Runtime for 10 instances (left) and the average size
of the MDD-SAT formulae for ost003d (right)
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