
Improving Solutions of Problems of Motion on Graphs
by Redundancy Elimination

Pavel Surynek and Petr Koupý

Faculty of Mathematics and Physics
Charles University in Prague, Czech Republic

Problem of motion on a graph
 Abstraction for tasks of motion of multiple (autonomous or

passive) entities in a certain environment (real or virtual).
 Entities have given an initial and a goal arrangement in the

environment.

 We need to plan movements of entities in time, so that
entities reach the goal arrangement while physical limitations
are respected.

 Physical limitations are:
 Entities must not collide with each other.

 Entities must not collide with obstacles in the environment..

 There are two basic abstractions of the task:
 The problem of pebble motion on a graph.

 The problem of path-planning for multiple robots.

Pavel Surynek, Petr KoupýECAI - STeDy 2010

Problem of pebble motion on a graph (1)
Wilson, 1974; Kornhauser et al., 1984

 A popular moving puzzle, that can be abstracted
as the problem of pebble motion on a graph is
known as Lloyd’s fifteen.
 Entities are represented by pebbles labeled

by numbers.

 The environment is modeled as an undirected graph where
vertices represent locations in the environment and edges
represent possibility of going to the neighboring location.

 Formal definition of the task of pebble motion on a graph:
 It is a quadruple Π = (G, P, SP

0, SP
+), where:

 G=(V,E) is an undirected graph,
 P = {p1,p2,...,pμ}, where μ<|V| is a set of pebbles,
 SP

0: P V is a uniquely invertible function determining the initial
arrangement of pebbles in vertices of G, and

 SP
+: P V is a uniquely invertible function determining the goal

arrangement of pebbles in vertices of G.

Pavel Surynek, Petr KoupýECAI - STeDy 2010

Problem of pebble motion on a graph (2)
Wilson, 1974; Kornhauser et al., 1984

 Time is discrete in the model. Time steps and their ordering is
isomorphic to the structure of natural numbers.

 The dynamicity of the task is as follows:
 A pebble occupying a vertex at time step i can move into a

neighboring vertex (the move is finished at time step i+1) if the
target vertex is unoccupied at time step i and no other pebble is
moving simultaneously into the same target vertex

 For the given Π = (G, P, SP
0, SP

+), we need to find:

 A sequence of moves for every pebble such that dynamicity
constraint is satisfied and every pebble reaches its goal vertex.

v1

v2

v3

v5

v4

v8

v7

1

2

3

SP
0 SP

+

v6 v9

v1

v2

v3

v5

v4

v8

v7

2

3

v6 v9

1

M1=[v1, v4, v7, v8, v9, v9, v9]

M2=[v2, v2, v1, v4, v7, v8, v8]

M3=[v3, v3, v3, v2, v1, v4, v7]
makespan=7

1 2 3 4 5 6 7Time step:

Solution of an instance of the problem of

pebble motion on a graph with P={1,2,3}

Pavel Surynek, Petr KoupýECAI - STeDy 2010

Is there any real-life motivation?
 Container rearrangement

(entity = container)

 Heavy traffic
(entity = automobile (in jam))

 Data transfer
(entity = data packet)

 Generalized lifts
(entity = lift)

Pavel Surynek, Petr KoupýECAI - STeDy 2010

Is the motion task easy or hard?
 Basic variant of the task is easy to solve:

 There exists an algorithm with worst case time complexity of
O(|V|3) that generates solutions of the makespan O(|V|3) for any
instance of pebble motion on G=(V,E) (Kornhauser et al., 1984).

 If we want a solution that is as short as possible the
complexity increases:

 The optimization variant of the problem of pebble motion on a
graph is NP-hard (Ratner a Warmuth, 1986).

 We focused on generating and improving sub-optimal
solutions:

 Restriction on bi-connected graphs – the task is almost always
solvable.

Pavel Surynek, Petr KoupýECAI - STeDy 2010

The case with bi-connected graph
 Instances over bi-connected graph are practically most important.

 Almost all the goal arrangements of pebbles are reachable from any initial
arrangement.

 We allow only a single unoccupied vertex (this represents the most
difficult case).

 An undirected graph G=(V,E) is bi-connected if|V|≥3 and vV the
graph G=(V-{v},E’) where E’={{x,y}E | x,y ≠ v} is connected.

 The important property: Every bi-connected graph can be
constructed from a cycle by adding handles.
→ handle decomposition

initial cycle

1st handle

2nd handle

3rd handle

Pavel Surynek, Petr KoupýECAI - STeDy 2010

Algorithm BIBOX-θ (1)
Surynek, 2009

 Algorithm BIBOX-θ solves tasks of pebble motion on a graph.

 The input graph is supposed to be bi-connected.

 The algorithm is exploits handle decomposition of the input graph.

 Just one vertex is supposed to be unoccupied.

 If this is not the case, dummy pebbles are added to the graph. They are
eventually filtered out of the final solution.

 Algorithms produces a solution of any instance over G=(V,E) in the
worst case time of O(|V|4), however practically better than
(Kornhauser et al., 1984).

 The basic ability it to move a
pebble into a selected vertex:

 Transfer of the unoccupied vertex,

 rotations along handles.

p2

p4

p5

p1

p3

p6 p7

p8

p9
p12

p10
p11

p13

p14 p15

p16

p17

C0

C(L1)

C(L2)

C(L3)

Pavel Surynek, Petr KoupýECAI - STeDy 2010

Algorithm BIBOX-θ (2)
 Using the ability of moving a selected pebble into a selected vertex

more complex movements can be done:
 Stacking pebble into a handle:

 The process of stacking
 Consider the last handle

 Move the pebble into the
grey vertex.

 A rotation of the handle
is made using the green
unoccupied vertex.

 ...

C(Li)

p3 p4
p5

p1

p2

bi-connected
remainder

p6

?- -

? ?
?

?

?

bi-connected
remainder

? p1

-

-
--

-

-

-

C(Li)

? ?

?

?

bi-connected
remainder

?

p1

p2

-
--

-

-

-

C(Li)

?

?

?

bi-connected
remainder|

?

p2

p3

p1

-
-

-

-

C(Li)

-

…

Pavel Surynek, Petr KoupýECAI - STeDy 2010

Algorithm BIBOX-θ (3)
 Initial cycle and the first handle(so called θ-like graph)

represent a special case.
 The process of stacking does not work

here.

 The resulting (even) permutation of
pebbles is composed of rotations
along 3-cycles (without further details).
 Bottleneck of the algorithm – known constructions of solutions to

3-cycle rotations use too many moves.

 We exploit a database containing pre-computed optimal solutions
to 3-cycle rotations instead (a form of pattern database)

 The overall sub-optimal solution is composed of optimal solutions
to 3-cycle rotations.
 → Sub-optimal solution of relatively high quality.

p3

p5

p1

p2

p4

C0 C(L1)

-
p6 p7

p8

p9p10

Pavel Surynek, Petr KoupýECAI - STeDy 2010

The major drawback of the described process
 If the initial graph is not fully occupied by pebbles at the

beginning.
 Dummy pebbles are added, modified instance is solved.

 Movements of dummy pebbles are filtered out eventually.

 Several types of redundancies in generated solutions were
discovered using visualization software GraphRec (Koupý, 2010):
 (i) Inverse moves

 A move that reverts the directly preceding move.

 (ii) Redundant moves
 A sequence of moves that relocates a pebble into the same vertex (notice

possible interference).

 (iii) Long sequence of moves
 A sequence of moves that relocates a pebble into some vertex while there

exists a shorter sequence doing the same (notice possible interference).

Pavel Surynek, Petr KoupýECAI - STeDy 2010

(i) Inverse moves

 Pebble 1 has performed a pair of inverse moves.

 Let us have a sequence of moves Ф

 A simple algorithm can eliminate inverse moves from Ф in the
worst case time of O(|Ф|2)

 Removal of a single pair of inverse moves can result into
occurrence of a new pair of inverse moves.

Pavel Surynek, Petr KoupýECAI - STeDy 2010

v1

v2

v3

v5

v4

v8

v7

2

v6 v9

1

3

v1

v2

v3

v5

v4

v8

v7

1

2

3
v6 v9

v1

v2

v3

v5

v4

v8

v7

2

v6 v9

1

3

(ii) Redundant moves

 Pebble 1 has performed a sequence of redundant moves.
 It has returned to the starting vertex without interfering with other

pebbles.

 A simple algorithm can eliminate redundant moves from Ф in the worst
case time of O(|Ф|4).

 New redundant sequences can appear as well.

Pavel Surynek, Petr KoupýECAI - STeDy 2010

v1

v2

v3

v5

v4

v8

v7

1 2

3

v6 v9

v1

v2

v3

v5

v4

v8

v7

2

v6 v9

1

3

v1

v2

v3

v5

v4

v8

v7

2

v6 v9

1

3

v1

v2

v3

v5

v4

v8

v7

2

v6 v9

1

3

v1

v2

v3

v5

v4

v8

v7

v6 v9

1

3 2

(iii) Long sequence of moves

 Pebble 1 has performed long sequence of moves.
 It is possible to go along a shorter path without interfering with other

pebbles.

 A simple algorithm can eliminate long sequences from Ф in the worst
case time of O(|Ф|4+|Ф|3|V|2).

 Again, new long sequences of moves can appear.

Pavel Surynek, Petr KoupýECAI - STeDy 2010

v3 v6 v9

v1

v2 v5

v4

v8

v7

2

1

3

v1

v2

v3

v5

v4

v8

v7

v6 v9

1

32

v1

v2

v3

v5

v4

v8

v7

1

2
v6 v9

3

v1

v2

v3

v5

v4

v8

v7

v6 v9

1

32

v1

v2

v3

v5

v4

v8

v7

v6 v9

1

32

Experimental evaluation (1)

Pavel Surynek, Petr Koupý

1

10

100

1000

10000

2 10 18 26 34 42 50 58 66 74 82

N
u

m
b

e
r

o
f

m
o

ve
s

(l
o

ga
ri

th
m

ic
 s

ca
le

)

Solution size – random bi-connected

Original BIBOX-θ
Inverse

Redundant
Long

Number of unoccupied vertices

ECAI - STeDy 2010

 Random bi-connected graph:
 Addition of handles of random lengths to the currently constructed graph.

 Initial and goal arrangement of pebbles are random permutations.

1

10

100

1000

10000

2 10 18 26 34 42 50 58

N
u

m
b

e
r

o
f

m
o

ve
s

(l
o

ga
ri

th
m

ic
 s

ca
le

)

Solution size - grid 8x8

Experimental evaluation (2)

Pavel Surynek, Petr Koupý

Number of unoccupied vertices

ECAI - STeDy 2010

 Grid 8x8:
 The initial and goal arrangement of pebble is

a random permutation again.

Original BIBOX-θ
Inverse

Redundant
Long

Concluding remarks

 Visualization software GraphRec has been used to acquire
knowledge about solutions of instances of pebble motion
problem.

 Acquired knowledge has been used to identify redundancies
and to develop algorithms to eliminate them.

 The experimental evaluation showed that the proposed
elimination of redundancies can improve solutions
significantly.

 Especially if there are many unoccupied vertices

ECAI - STeDy 2010 Pavel Surynek, Petr Koupý

