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Problem of motion on a graph
 Abstraction for tasks of motion of multiple (autonomous or 

passive) entities in a certain environment (real or virtual).
 Entities have given an initial and a goal arrangement in the 

environment.

 We need to plan movements of entities in time,  so that 
entities reach the goal arrangement while physical limitations 
are respected.

 Physical limitations are:
 Entities must not collide with each other.

 Entities must not collide with obstacles in the environment..

 There are two basic abstractions of the task:
 The problem of pebble motion on a graph.

 The problem of path-planning for multiple robots.
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Problem of pebble motion on a graph (1)
Wilson, 1974; Kornhauser et al., 1984

 A popular moving puzzle, that can be abstracted
as the problem of pebble motion on a graph is
known as Lloyd’s fifteen.
 Entities are represented by pebbles labeled

by numbers.

 The environment is modeled as an undirected graph where 
vertices represent locations in the environment and edges
represent possibility of going to the neighboring location.

 Formal definition of the task of pebble motion on a graph:
 It is a quadruple Π = (G, P, SP

0, SP
+), where:

 G=(V,E) is an undirected graph,
 P = {p1,p2,...,pμ}, where μ<|V| is a set of pebbles,
 SP

0: P V is a uniquely invertible function determining the initial 
arrangement of pebbles in vertices of G, and

 SP
+: P V is a uniquely invertible function determining the goal 

arrangement of pebbles in vertices of G.
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Problem of pebble motion on a graph (2)
Wilson, 1974; Kornhauser et al., 1984

 Time is discrete in the model. Time steps and their ordering is 
isomorphic to the structure of natural numbers.

 The dynamicity of the task is as follows:
 A pebble occupying a vertex at time step i can move into a 

neighboring vertex (the move is finished at time step i+1) if the 
target vertex is unoccupied at time step i and no other pebble is 
moving simultaneously into the same target vertex

 For the given Π = (G, P, SP
0, SP

+), we need to find:

 A sequence of moves for every pebble such that dynamicity 
constraint is satisfied and every pebble reaches its goal vertex.
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pebble motion on a graph with P={1,2,3}
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Is there any real-life motivation?
 Container rearrangement

(entity = container)

 Heavy traffic
(entity = automobile (in jam))

 Data transfer
(entity = data packet)

 Generalized lifts
(entity = lift) 
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Is the motion task easy or hard?
 Basic variant of the task is easy to solve:

 There exists an algorithm with worst case time complexity of 
O(|V|3) that generates solutions of the makespan O(|V|3) for any 
instance of pebble motion on G=(V,E) (Kornhauser et al., 1984).

 If we want a solution that is as short as possible the 
complexity increases:

 The optimization variant of the problem of pebble motion on a 
graph is NP-hard (Ratner a Warmuth, 1986).

 We focused on generating and improving sub-optimal
solutions:

 Restriction on bi-connected graphs – the task is almost always 
solvable.
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The case with bi-connected graph
 Instances over bi-connected graph are practically most important.

 Almost all the goal arrangements of pebbles are reachable from any initial 
arrangement.

 We allow only a single unoccupied vertex (this represents the most 
difficult case).

 An undirected graph G=(V,E) is bi-connected if|V|≥3 and vV the
graph G=(V-{v},E’) where E’={{x,y}E | x,y ≠ v} is connected.

 The important property: Every bi-connected graph can be 
constructed from a cycle by adding handles.
→ handle decomposition

initial cycle

1st handle

2nd handle

3rd handle
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Algorithm BIBOX-θ (1)
Surynek, 2009

 Algorithm BIBOX-θ solves tasks of pebble motion on a graph.

 The input graph is supposed to be bi-connected.

 The algorithm is exploits handle decomposition of the input graph.

 Just one vertex is supposed to be unoccupied.

 If this is not the case, dummy pebbles are added to the graph. They are 
eventually filtered out of the final solution.

 Algorithms produces a solution of any instance over G=(V,E) in the 
worst case time of O(|V|4), however practically better than 
(Kornhauser et al., 1984).

 The basic ability it to move a
pebble into a selected vertex:

 Transfer of the unoccupied vertex,

 rotations along handles.
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Algorithm BIBOX-θ (2)
 Using the ability of moving a selected pebble into a selected vertex 

more complex movements can be done:
 Stacking pebble into a handle:

 The process of stacking
 Consider the last handle

 Move the pebble into the
grey vertex.

 A rotation of the handle
is made using the green
unoccupied vertex.
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Algorithm BIBOX-θ (3)
 Initial cycle and the first handle(so called θ-like graph) 

represent a special case.
 The process of stacking does not work

here.

 The resulting (even) permutation of
pebbles is composed of rotations
along 3-cycles (without further details).
 Bottleneck of the algorithm – known constructions of solutions to 

3-cycle rotations use too many moves.

 We exploit a database containing pre-computed optimal solutions 
to 3-cycle rotations instead (a form of pattern database)

 The overall sub-optimal solution is composed of optimal solutions 
to 3-cycle rotations.
 → Sub-optimal solution of relatively high quality.
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The major drawback of the described process
 If the initial graph is not fully occupied by pebbles at the 

beginning.
 Dummy pebbles are added, modified instance is solved.

 Movements of dummy pebbles are filtered out eventually.

 Several types of redundancies in generated solutions were 
discovered using visualization software GraphRec (Koupý, 2010):
 (i) Inverse moves 

 A move that  reverts the directly preceding move.

 (ii) Redundant moves
 A sequence of moves that relocates a pebble into the same vertex (notice 

possible interference).

 (iii) Long sequence of moves
 A sequence of moves that relocates a pebble into some vertex while there 

exists a shorter sequence doing the same (notice possible interference).
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(i) Inverse moves

 Pebble 1 has performed a pair of inverse moves.

 Let us have a sequence of moves Ф

 A simple algorithm can eliminate inverse moves from Ф in the 
worst case time of O(|Ф|2)

 Removal of a single pair of inverse moves can result into 
occurrence of a new pair of inverse moves.
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(ii) Redundant moves

 Pebble 1 has performed a sequence of redundant moves.
 It has returned to the starting vertex without interfering with other 

pebbles.

 A simple algorithm can eliminate redundant moves from Ф in the worst 
case time of O(|Ф|4).

 New redundant sequences can appear as well.
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(iii) Long sequence of moves

 Pebble 1 has performed long sequence of moves.
 It is possible to go along a shorter path without interfering with other 

pebbles.

 A simple algorithm can eliminate long sequences from Ф in the worst 
case time of O(|Ф|4+|Ф|3|V|2).

 Again, new long sequences of moves can appear.
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Experimental evaluation (1)
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 Random bi-connected graph:
 Addition of handles of random lengths to the currently constructed graph.

 Initial and goal arrangement of pebbles are random permutations.
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 Grid 8x8:
 The initial and goal arrangement of pebble is

a random permutation again.
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Concluding remarks

 Visualization software GraphRec has been used to acquire 
knowledge about solutions of instances of pebble motion 
problem.

 Acquired knowledge has been used to identify redundancies 
and to develop algorithms to eliminate them.

 The experimental evaluation showed that the proposed 
elimination of redundancies can improve solutions 
significantly.

 Especially if there are many unoccupied vertices
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