

Improving Solutions of Problems of Motion on Graphs by Redundancy Elimination

Pavel Surynek and Petr Koupý

Faculty of Mathematics and Physics Charles University in Prague, Czech Republic

Problem of motion on a graph

- Abstraction for tasks of motion of multiple (autonomous or passive) entities in a certain environment (real or virtual).
 - Entities have given an initial and a goal arrangement in the environment.
 - We need to plan movements of entities in time, so that entities reach the goal arrangement while physical limitations are respected.

Physical limitations are:

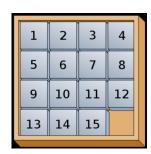
- > Entities must **not collide with each other**.
- Entities must not collide with obstacles in the environment...
- There are two basic **abstractions** of the task:
 - The problem of *pebble motion on a graph*.
 - The problem of *path-planning for multiple robots*.

ECAI - STeDy 2010

Problem of **pebble motion on a graph** (1)

Wilson, 1974; Kornhauser et al., 1984

A popular moving puzzle, that can be abstracted as the problem of pebble motion on a graph is known as Lloyd's fifteen.



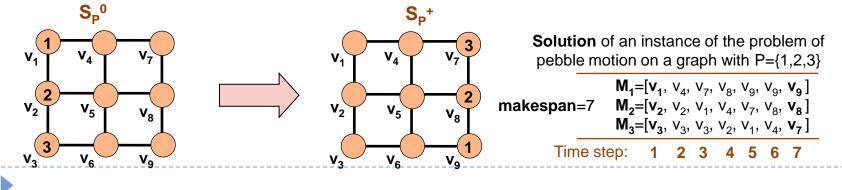
- Entities are represented by pebbles labeled by numbers.
- The environment is modeled as an undirected graph where vertices represent locations in the environment and edges represent possibility of going to the neighboring location.
- **Formal definition** of the task of pebble motion on a graph:
 - It is a quadruple $\Pi = (G, P, S_P^0, S_P^+)$, where:
 - G=(V,E) is an undirected graph,
 - $P = \{p_1, p_2, ..., p_\mu\}$, where $\mu < |V|$ is a **set of pebbles**,
 - S_P⁰: P →V is a uniquely invertible function determining the initial arrangement of pebbles in vertices of G, and
 - S_{p}^{+} : P \rightarrow V is a uniquely invertible function determining the **goal** arrangement of pebbles in vertices of G.

Problem of **pebble motion on a graph** (2)

Wilson, 1974; Kornhauser et al., 1984

ECAI - STeDy 2010

- Time is discrete in the model. Time steps and their ordering is isomorphic to the structure of natural numbers.
- The dynamicity of the task is as follows:
 - A pebble occupying a vertex at time step *i* can move into a neighboring vertex (the move is finished at time step *i+1*) if the target vertex is **unoccupied** at time step *i* and **no other pebble** is moving simultaneously into the same target vertex
- For the given $\Pi = (G, P, S_P^0, S_P^+)$, we need to find:
 - A sequence of moves for every pebble such that dynamicity constraint is satisfied and every pebble reaches its goal vertex.



Is there any real-life **motivation**?

- Container rearrangement (entity = container)
- Heavy traffic
 (entity = automobile (in jam))
- Data transfer
 (entity = data packet)
- Generalized lifts
 (entity = lift)

Pavel Surynek, Petr Koupý

ECAI - STeDy 2010

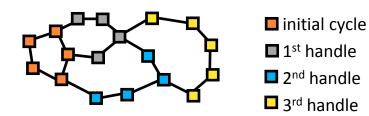
Is the motion task easy or hard?

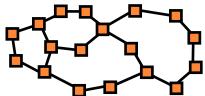
- Basic variant of the task is easy to solve:
 - There exists an algorithm with worst case time complexity of O(|V|³) that generates solutions of the makespan O(|V|³) for any instance of pebble motion on G=(V,E) (Kornhauser et al., 1984).
- If we want a solution that is as short as possible the complexity increases:
 - The optimization variant of the problem of pebble motion on a graph is NP-hard (Ratner a Warmuth, 1986).
- We focused on generating and improving sub-optimal solutions:
 - Restriction on **bi-connected graphs** the task is almost always solvable.

ECAI - STeDy 2010

The case with **bi-connected graph**

- Instances over bi-connected graph are practically most important.
 - Almost all the goal arrangements of pebbles are reachable from any initial arrangement.
- We allow only a single unoccupied vertex (this represents the most difficult case).
- An undirected graph G=(V,E) is bi-connected if |V|≥3 and ∀v∈V the graph G=(V-{v},E') where E'={{x,y}∈E | x,y ≠ v} is connected.
- The important property: Every bi-connected graph can be constructed from a cycle by adding handles.
 - \rightarrow handle decomposition





ECAI - STeDy 2010

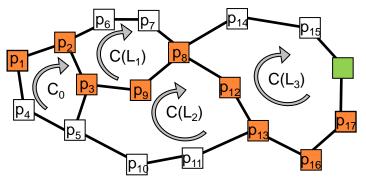
Algorithm **BIBOX-0**(1)

Surynek, 2009

Algorithm BIBOX-θ solves tasks of pebble motion on a graph.

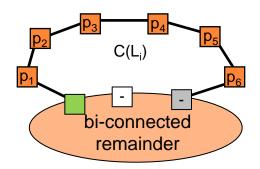
- The input graph is supposed to be **bi-connected**.
 - The algorithm is exploits handle decomposition of the input graph.
- Just one vertex is supposed to be unoccupied.
 - If this is not the case, dummy pebbles are added to the graph. They are eventually filtered out of the final solution.
- Algorithms produces a solution of any instance over G=(V,E) in the worst case time of O(|V|⁴), however practically better than (Kornhauser et al., 1984).
- The basic ability it to move a pebble into a selected vertex:
 - Transfer of the unoccupied vertex,
 - rotations along handles.

ECAI - STeDy 2010



Algorithm **BIBOX-0**(2)

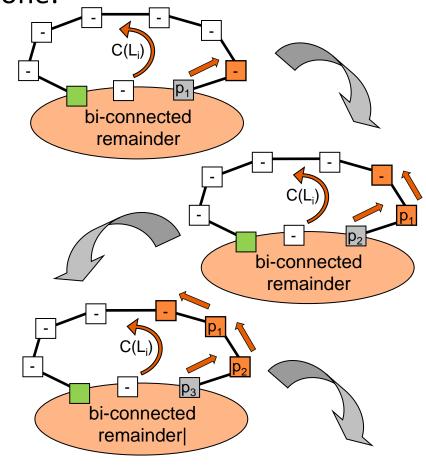
- Using the ability of moving a selected pebble into a selected vertex more complex movements can be done:
 - Stacking pebble into a handle:



- The process of stacking
 - Consider the last handle
 - Move the pebble into the grey vertex.
 - A rotation of the handle is made using the green unoccupied vertex.

...

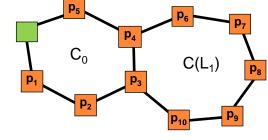
ECAI - STeDy 2010



ECAI - STeDy 2010

Algorithm BIBOX-θ (3) Initial cycle and the first handle(so called θ-like graph)

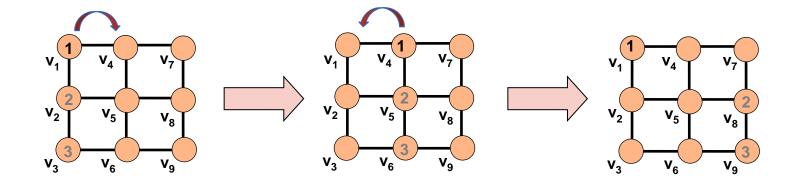
- represent a special case.
- The process of stacking does not work here.
- The resulting (even) permutation of pebbles is composed of rotations along 3-cycles (without further details).
 - Bottleneck of the algorithm known constructions of solutions to 3-cycle rotations use too many moves.
 - We exploit a database containing pre-computed optimal solutions to 3-cycle rotations instead (a form of pattern database)
 - The overall sub-optimal solution is composed of optimal solutions to 3-cycle rotations.
 - \rightarrow **Sub-optimal** solution of relatively high quality.



The major drawback of the described process

- If the initial graph is not fully occupied by pebbles at the beginning.
 - **Dummy pebbles are added**, modified instance is solved.
 - Movements of dummy pebbles are filtered out eventually.
- Several types of redundancies in generated solutions were discovered using visualization software GraphRec (Koupý, 2010):
 - (i) Inverse moves
 - A move that reverts the directly preceding move.
 - (ii) Redundant moves
 - A sequence of moves that relocates a pebble into the same vertex (notice possible interference).
 - (iii) Long sequence of moves
 - A sequence of moves that relocates a pebble into some vertex while there exists a shorter sequence doing the same (notice possible interference).

(i) Inverse moves

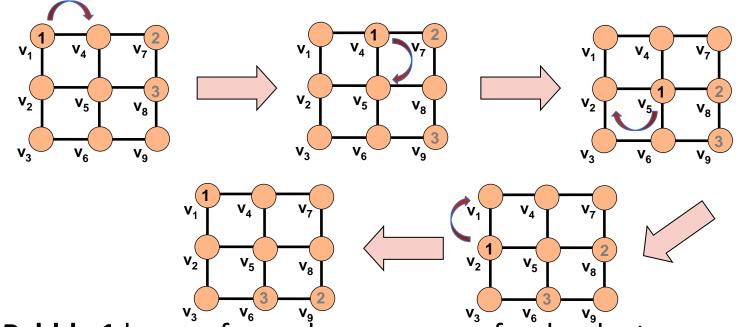


• **Pebble 1** has performed a pair of **inverse** moves.

- Let us have a sequence of moves Φ
- A simple algorithm can eliminate inverse moves from Φ in the worst case time of O(|Φ|²)
- Removal of a single pair of inverse moves can result into occurrence of a new pair of inverse moves.

ECAI - STeDy 2010

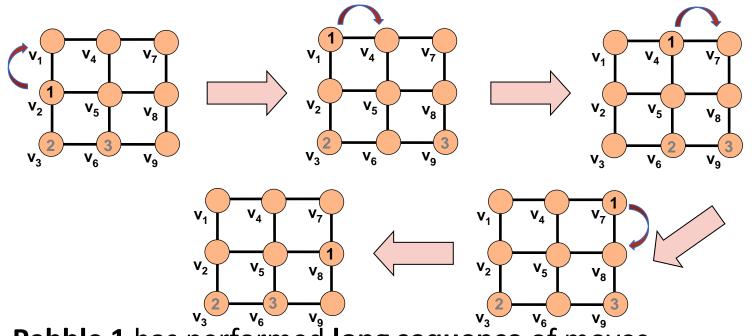
(ii) Redundant moves



- Pebble 1 has performed a sequence of redundant moves.
 - It has returned to the starting vertex without interfering with other pebbles.
 - A simple algorithm can eliminate redundant moves from Φ in the worst case time of $O(|\Phi|^4)$.
 - New redundant sequences can appear as well.

ECAI - STeDy 2010

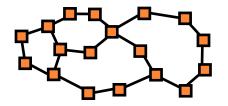
(iii) Long sequence of moves



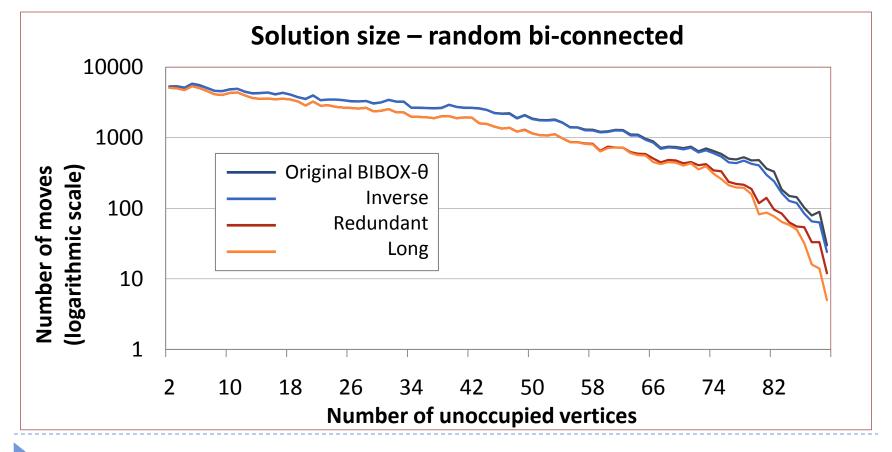
- Pebble 1 has performed long sequence of moves.
 - It is possible to go along a shorter path without interfering with other pebbles.
 - A simple algorithm can eliminate long sequences from Φ in the worst case time of O(|Φ|⁴+|Φ|³|V|²).
 - Again, new long sequences of moves can appear.

ECAI - STeDy 2010

Experimental evaluation (1)



- **Random bi-connected** graph:
 - Addition of handles of random lengths to the currently constructed graph.
 - Initial and goal arrangement of pebbles are random permutations.

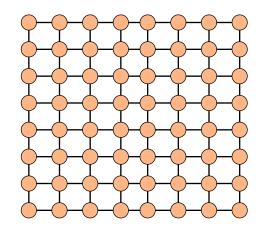


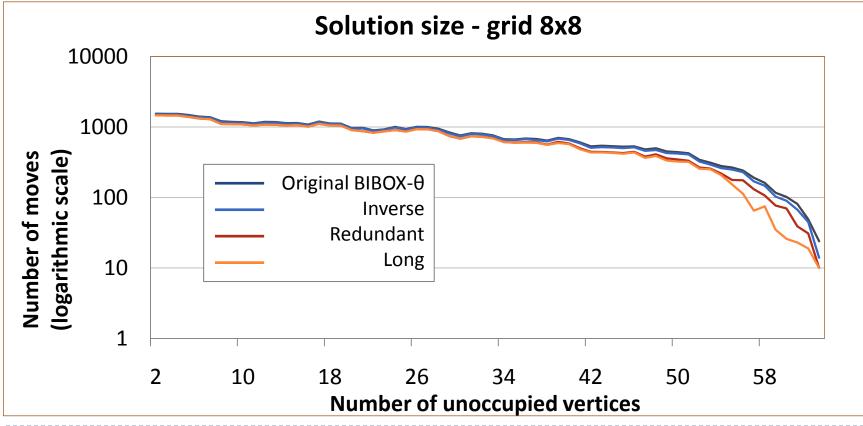
Pavel Surynek, Petr Koupý

Experimental evaluation (2)

Grid 8x8:

The initial and goal arrangement of pebble is a random permutation again.





ECAI - STeDy 2010

Pavel Surynek, Petr Koupý

- Visualization software GraphRec has been used to acquire knowledge about solutions of instances of pebble motion problem.
- Acquired knowledge has been used to identify redundancies and to develop algorithms to eliminate them.
- The experimental evaluation showed that the proposed elimination of redundancies can improve solutions significantly.
 - Especially if there are many unoccupied vertices

ECAI - STeDy 2010