Automated Classification of Bitmap Images Using Decision Trees

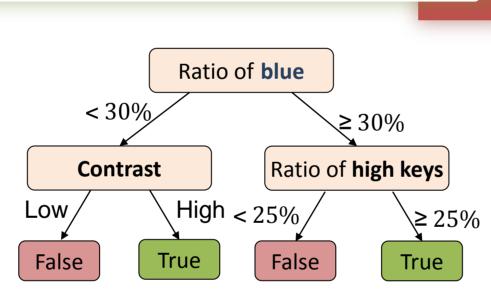
Pavel Surynek

Faculty of Mathematics and Physics Charles University in Prague Czech Republic

Graduate School of Maritime Sciences **Kobe University** Japan

Ivana Lukšová

Faculty of Mathematics and Physics Charles University in Prague Czech Republic


Bitmap Classification

- the task is to automatically classify bitmap images into predefined classes
 - finite set of bitmap images $\mathcal J$
 - finite set of classification classes ${\mathcal K}$
- for each $t \in \mathcal{K}$ a **characterization** d(t) of the class t in the natural language is given (example: "image depicting landscape")
- the correct classification of the set of images $\mathcal J$ is defined with respect to a **fixed user** using a function *c*:
 - $c: \mathcal{J} \to 2^{\mathcal{K}}$ such that $\forall l \in \mathcal{J} \ \forall t \in c(l) \ d(t)$ characterizes l well
- we need to learn $c': \mathcal{J} \to 2^{\mathcal{H}}$ such that it gives the same answer as **c** on as many as possible images
 - c is not known explicitly
 - the condition cannot be checked for all the images
 - training/testing sets are used

Decision Trees

- the concept of decision tree is used as underlying technology
- it is crucial to propose a set of good characterizing attributes and attribute extraction techniques
 - different classification classes have different important characteristics example: straight lines are characteristic for images of buildings

drawings

Classification Classes

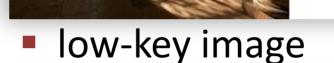
Selected Attributes

attributes based on color information Cyan = (0,1,1) Magenta = (1,0,1) - White = (1,1,1) Black = (0,0,0)-Green = (0,1,0)

Red = (1,0,0)

important for landscapes and macro

attributes based on histogram

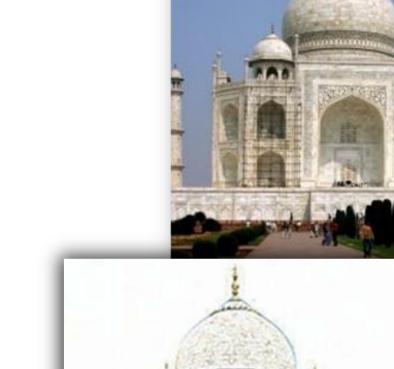

low, mid, and high keys

Yellow = (1,1,0)

color palette

number of colors

- important for distinguishing
- photographs and drawings



- high-key image

objects

local contrast

- attributes based on edge information
 - occurrence of straight lines
- occurrence of right angles
- important for buildings
- three stage transformation of the image
 - (i) edge detection at bitmap level
 - (ii) Hough transformation for obtaining lines expressed analytically: $\rho = x^* \cos(\theta) + y^* \sin(\theta)$
 - (iii) segmentation of lines

Experimental Evaluation

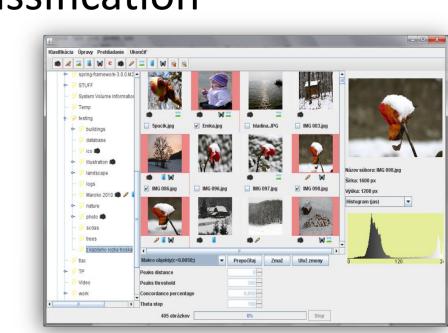
photography

Number of Images	Correctly Classified	Success Ratio
155	154	99.35%
297	243	81.82%
405	300	74.07%
	155 297	Images Classified 155 154 297 243

color palette

buildings				
	Number of Images	Correctly Classified	Success Ratio	
Learning Set	104	104	100.00%	
Set A	297	232	78.11%	
Set B	405	350	86.42%	

number of right angles


- drawings Correctly **Success Ratio** Classified 100.00% 104 Learning Set 84.51% 251 Set A 81.73% Set B
 - number of local maxima in
- histogram macro objects **Number of** Correctly **Success Ratio** Classified Images 98,89% 118 Learning Set
- 87.20% Set A 72.84% Set B

local contrast

- modular and extensible method for image classification
 - set of classification classes $\mathcal K$ can be extended
 - accuracy can increased by extending the set of attributes
- software tool has been implemented
- future work
 - run a classification system on-line
 - allow users to give natural language descriptions

