# An Alternative Eager Encoding of the All-Different Constraint over Bit-Vectors



#### Pavel Surynek

Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

Graduate School of Maritime Sciences, Kobe University, Japan

## All-Different over Bit-Vectors

- All-Different constraint
  - a finite set of variables with finite domain
- each variable should be assigned a value from its domain
- all the assigned values should be distinct
- Special case with bit-vectors
  - the involved variables are bit-vectors of fixed length  $l \in \mathbb{N}$
  - domains consist of subsets of possible bit assignments



- All-Different(B<sup>1</sup>,B<sup>2</sup>,B<sup>3</sup>)
- bit-vectors B<sup>1</sup>,B<sup>2</sup>, and B<sup>3</sup>
  - length = 3
  - different domains



Use in the SAT solving technology

### **The Standard Model**

- All-Different(B<sup>1</sup>,B<sup>2</sup>, ..., B<sup>n</sup>)  $\equiv \bigwedge_{i,j=1;i< j}^n B^i \neq B^j$ 
  - pair-wise differences are encoded
  - a single difference between two bit-vectors



Auxiliary variables are needed to translate the formula into CNF efficiently

# **Theoretical Comparison**

- Standard model
- I·n visible propositional variables, I·n(n+1)/2 auxiliary
- **1+l·n(n+1)** clauses
- Alternative model
  - 2l·n visible, 2n log₂n bijection, n²+l(n-1) auxiliary
- $-n^2(1+I+\Gamma \log_2 n^{-1}) + I \cdot (I+1)(n-1)$  clauses

#### **Model Size Evaluation**

| #bit-vectors<br>(16-bits) | Standard   |          | Alternative |          |
|---------------------------|------------|----------|-------------|----------|
|                           | #Variables | #Clauses | #Variables  | #Clauses |
| 64                        | 67584      | 133056   | 9968        | 176943   |
| 128                       | 266240     | 536448   | 28400       | 690031   |
| 256                       | 1056768    | 2154240  | 90096       | 2756591  |

#### **Runtime Evaluation**

- Setup
- 32 bit-vectors of length I, domain random interval of size up to 34, single all-different constraint



## A New Alternative Model

- Introduce certain kind of anti-symmetry into the model
  - allow a SAT solver to quickly discover unsatisfiability
- Map the original bit-vectors to a linearly ordered set of auxiliary bit-vectors
- A<sup>1</sup>,A<sup>2</sup>, ...,A<sup>n</sup> linearly ordered bit-vectors of length /
- $\alpha^1$ ,  $\alpha^2$ , ...,  $\alpha^n$  auxiliary bit-vectors of length  $\lceil \log_2 n \rceil$ 
  - $\alpha^i$  determines what  $A^j$  the original  $B^i$  is mapped to
- $\beta^1$ ,  $\beta^2$ , ...,  $\beta^n$  auxiliary, length  $\lceil \log_2 n \rceil$ 
  - ensure that at most one original bit-vector is mapped to a single ordered bit-vector
- Bijection constraint  $\equiv \Lambda^n_{i,k=1} \alpha^k = i \Rightarrow (B^k = A^i \wedge \beta^i = k)$
- **Linear order** constraint  $\equiv \Lambda^{n-1}_{i=1}$  A<sup>i</sup> < A<sup>i+1</sup>



#### Conclusions

- Pros and cons of the alternative model
  - fewer variables
  - more constraints
- better for discovering unsatisfiability in the hard case
- big overhead in the easy case
- Observation
- prominent solver sensitivity
- Future works
  - lazy integration with the SMT solver
  - evaluation in applications