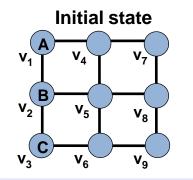
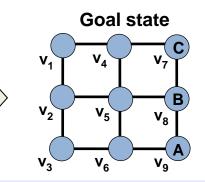
A SAT-Based Approach to Cooperative Path-Finding Using All-Different Constraints

Charles University in Prague Czech Republic

Pavel Surynek

Kobe University Japan




Cooperative Path-finding (CPF)

○ plan movements of agents in **space** and **time**

- **time** discrete \Rightarrow time steps
- **space** abstract \Rightarrow graph G=(V,E)
- o requirements
 - all agents reach a given goal vertex
 - agents do not collide with each other

(move only to vacant vertices)

Set of **agents** = {1,2,3}

plan for **agent A** = [v_1 , v_4 , v_7 , v_8 , v_9 , v_9 , v_9] plan for **agent B** = [v_2 , v_2 , v_1 , v_4 , v_7 , v_8 , v_8] plan for **agent C** = [v_3 , v_3 , v_3 , v_2 , v_1 , v_4 , v_7] Time step: 1 2 3 4 5 6 7 makespan = 7

Current Techniques / Our Approach

fast, completelong makespan

- **)** relatively fast
- 🗙 incomplete

polynomial time sub-optimal

+

SAT Solver

+ encoding of CPF

optimization strategy

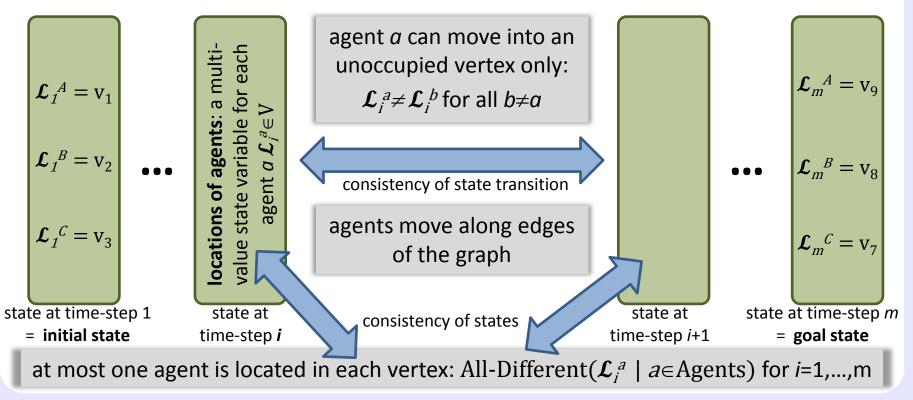
╋

search based sub-optimal

search based optimal

X slow

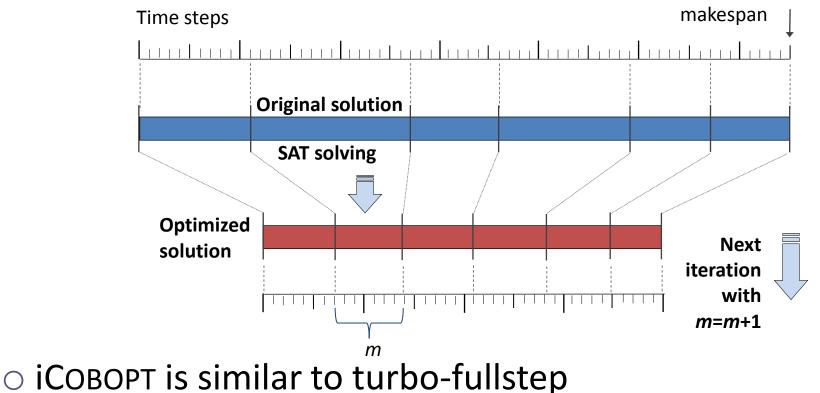
optimal makespan


Our new approach – iСоворт

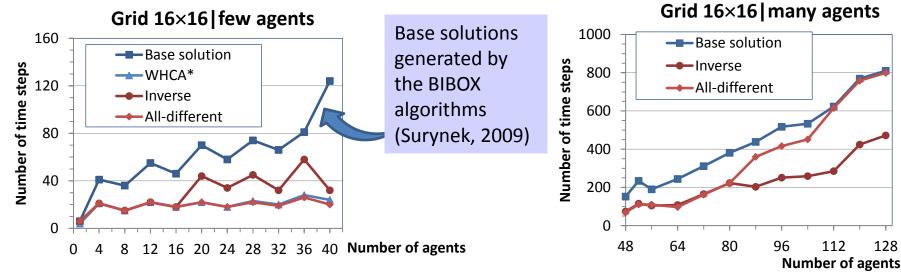
○ (quickly) find sub-optimal solution

- replace sub-sequences with makespan-optimal sub-solutions
- repeat the process

SAT Encoding of CPF


- encoding for the fixed makespan m
- o encode state at each time-step
 - multi-value state variables \Rightarrow bit-vectors

Pavel Surynek, 2012


Optimization Strategy - iCOBOPT

 for a fixed makespan *m* find the longest sub-sequence of the original solution that can be replaced with corresponding optimal sub-solution of makespan *m*

Experimental Results and Comparison

setup: G=(V,E) = 4-connected grid random initial and goal arrangement of agents

Number of agents	4-connected grid 16x16			
	Optimal makespan	SATPLAN Runtime (s)	SASE Runtime (s)	
1	4	0.68	1.66	
4	21	195.5	17.98	
8	15	1396.07	128.87	
16	N/A	Out of memory	Timeout	

Number of agents	4-connected grid 16x16			
	Computed makespan	INVERSE Runtime (s)	ALL-DIFF Runtime (s)	
1	6/6	0.074	0.070	
4	21/21	319.785	45.367	
8	15/15	152.625	62.955	
16	18/18	1833.080	910.391	

Pavel Surynek, 2012

Conclusions and Related Works

- Good performance on graphs with dense population agents
- Sometimes optimal solution can be found
- Encoding, sub-optimal algorithm, and optimization strategy can be improved independently

References

Balyo, B., Barták, R., Surynek, P. 2012. *On Improving Plan Quality via Local Enhancements*, SoCS 2012, AAAI Press.

Surynek, P., 2012. *Towards Optimal Cooperative Path Planning in Hard Setups through Satisfiability Solving*. PRICAI 2012, Springer, to appear.

Surynek, P., 2009. A Novel Approach to Path Planning for Multiple Robots in *Bi-connected Graphs*. ICRA 2009, IEEE Press.