

A NOVEL APPROACH TO PATH Planning for Multiple Robots in Bi-connected Graphs

Pavel Surynek

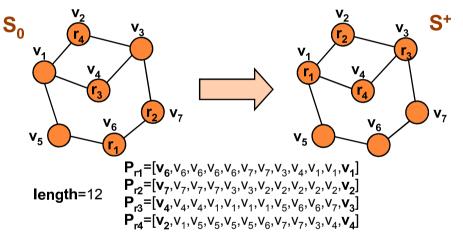
Charles University in Prague Faculty of Mathematics and Physics The Czech Republic

PATH PLANNING FOR MULTIPLE ROBOTS

- Input: Graph G=(V,E) and a set of robots $R=\{r_1,r_2,...,r_{\mu}\}$, where $\mu < |V|$
 - **each robot** is placed **in a vertex** (at most one robot in a vertex)
 - a **robot can move into an unoccupied** vertex through an edge (no other robot is allowed to enter the vertex)
 - initial positions of robots ... simple function $S_0: R \rightarrow V$
 - goal positions of robots ... simple function $S^+: R \rightarrow V$
- Task: Find a sequence of allowed moves for robots such that all the robots reach their goal positions starting from the given initial positions

Example of Multi-robot Path Planning

Initial positions of robots given by S₀
Goal positions of robots given by S⁺



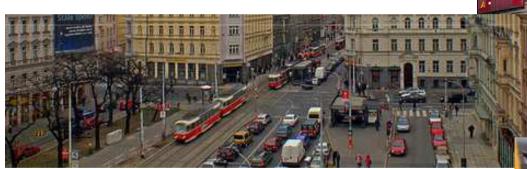
• A solution of length **12** is shown

- $\mathbf{P_r}$ is a sequence of positions of the robot \mathbf{r} in all the discrete time steps
- Notice the **parallelism** within the solution
- Short solutions are preferred (shortest NP-complete)

ICRA 2009

MOTIVATION FOR THE PROBLEM

- Rearrangement of agents in tight space
- Automated control of heavy traffic



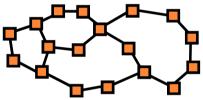
- Data transfer with limited size of the cache memory
- Generalized lifts in future city-size buildings

ICRA 2009

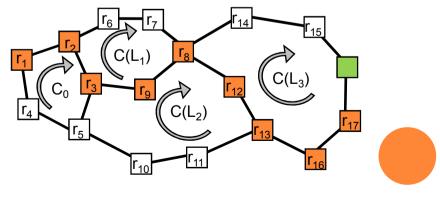
BIBOX: AN ALGORITHM FOR BI-CONNECTED GRAPHS

• An undirected graph G=(V,E) is **bi-connected** if and only if $|V| \ge 3$ and $\forall v \in V$ the graph $G=(V-\{v\},E')$ where $E'=\{\{x,y\}\in E \mid x,y \neq v\}$ is connected

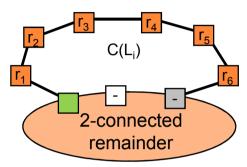
• **Property:** Every bi-connected graph can be constructed from a cycle by consecutive adding of loops



- The **loop decomposition** can be obtained in worst case time of **O(|V|+|E|)**
- The knowledge of loop decomposition allows us:
 - to move an unoccupied vertex to an arbitrary position
 - to **move a robot** to an arbitrary position



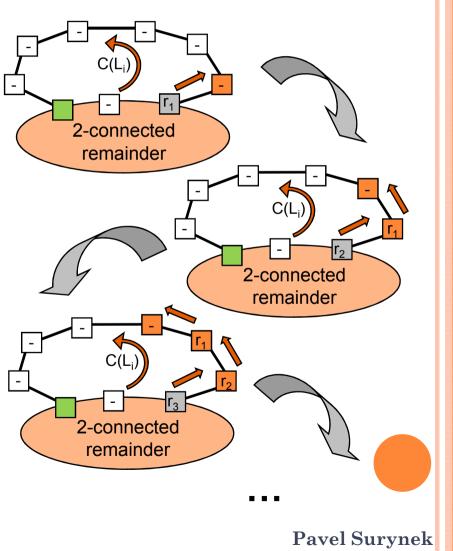
BIBOX: PLACING ROBOTS IN A REGULAR LOOP (\neq ORIGINAL CYCLE)



- Robots are placed in stack like manner into the loop
 - The next robot is moved into the **gray** connection vertex
 - Two cases

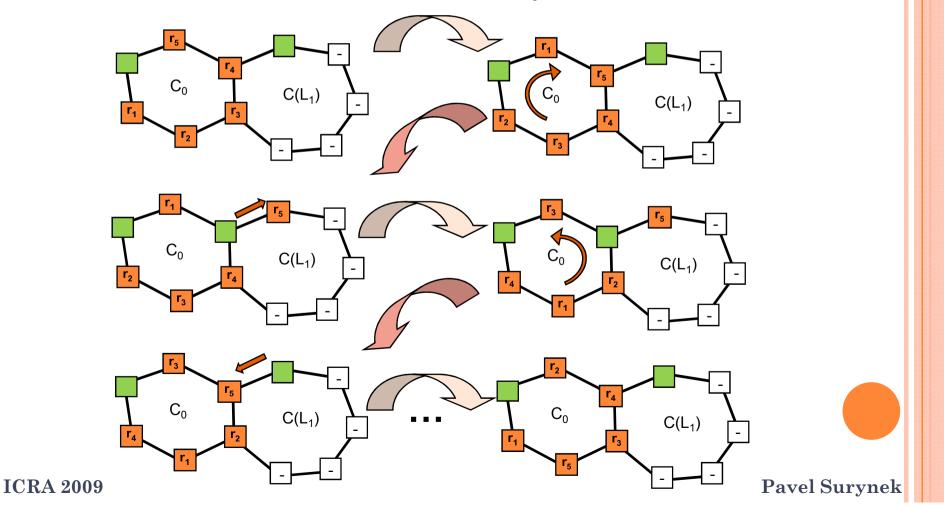
ICRA 2009

- o the robot is somewhere in the loop → must be rotated out of the loop first
 o the robot is outside the loop
- Then the robot is rotated into the loop (using **green** unoccupied vertex)
- The final rotation places all the robots to their goal positions



BIBOX: PLACING ROBOTS WITHIN THE ORIGINAL CYCLE

• Exchanging robots r_5 and r_2 - using exchanges of robots every permutation of robots within C_0 can be reached



BIBOX: COMPLEXITY AND REMARKS

- Worst case time complexity of the BIBOX is O(|V|³)
- The length of the generated solution is $O(|V|^3)$
- **Two unoccupied** vertices are required only in the last phase in the original cycle
- The special requirement that unoccupied vertices are finally in the original cycle can be treated
 - modify the goal arrangement of robots given by ${\bf S^+}$ to contain free vertices in the original cycle
 - move free vertices along two disjoint paths into the original cycle
- Having more than one unoccupied vertex parallel moves can be done
 - consecutive moves produced by the BIBOX algorithm are checked for **independence**

Pavel Surynek

• if **independent** → performed in **parallel**

ICRA 2009

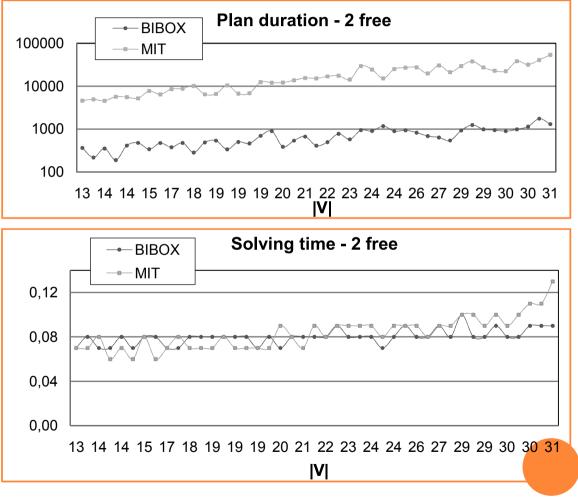
THE **BIBOX** ALGORITHM AND ITS COMPETITORS

- An algorithm of Kornhauser, Miller, Spirakis (FOCS 1984) we call it the **MIT** algorithm
 - Works on bi-connected graphs with at least **one unoccupied**
 - Based on a property of **3-transitivity** of bi-connected graphs (any three robots can be moved to any three vertices)
 - Worst case time complexity of O(|V|³) same as BIBOX however the constant is higher
 - The length of the generated solution is also $O(|V|^3)$
- **Domain independent planners** participating in the IPC (International Planning Competition)
 - **SGPlan 5** and **LPG-td** proved to be best from the winners of the IPC on the multi-robot path planning problem
- The testing problems
 - several randomly generated multi-robot path planning problems
 - random bi-connected graph / random permutation of robots
 - loops of random length of 1...8 distributed uniformly

ICRA 2009

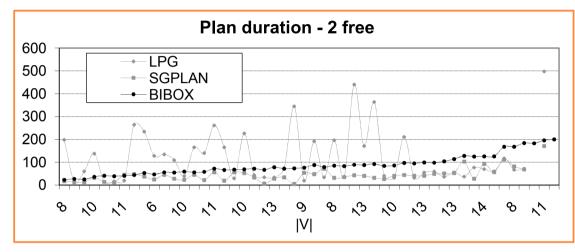
EXPERIMENTAL COMPARISON OF **BIBOX** WITH **MIT**

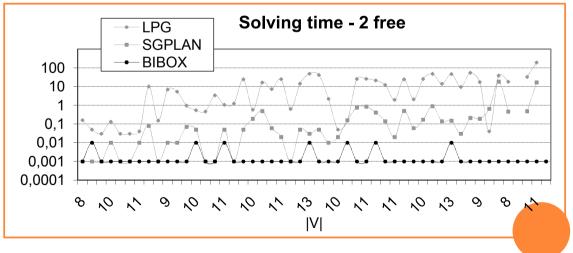
- Both algorithms implemented in C++
- Length of solutions and solving time are compared
- Random graphs of the size up to
 30 vertices
- The **BIBOX** algorithm produces approximately order of magnitude **shorter solutions** than MIT
- The BIBOX algorithm is **faster on larger problems** (this trend seems to continue)



EXPERIMENTAL COMPARISON OF **BIBOX** WITH PLANNERS **SGPLAN** AND **LPG**

- The code provided by authors of SGPlan and LPG was used
- SGPlan generates shortest possible solution
- Only small random graphs of the size up to **15 vertices** were used
- The planners produce **shorter solutions** – especially SGPlan
- However, it terms of **runtime** the planners are **completely uncompetitive**

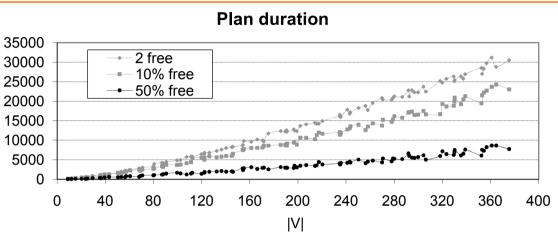


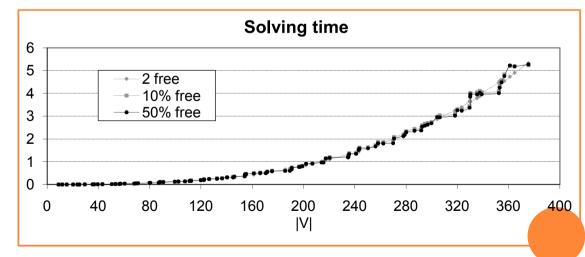


ICRA 2009

EXPERIMENTS WITH **BIBOX** ON **LARGE PROBLEMS**

- Graphs with up to 400 vertices were used
- Three setups
 - 2 vertices unoccupied
 - 10% vertices unoccupied
 - 50% vertices unoccupied
- Simple parallelism was tested
- Unoccupied vertices treated as dummy robots – removed in the final solution
- All the problems solved within 6 seconds





SUMMARY AND CONCLUSIONS

- A novel algorithm called **BIBOX** for multi-robot path planning in **bi-connected graphs** with at least **two unoccupied** vertices has been proposed
- Experiments proved that **BIBOX** is better several alternative state-of-the-art approaches
 - The **BIBOX** significantly **outperformed** two selected state-of-the-art **planners** (according to IPC) in terms of runtime
 - It produces order of magnitude **better solutions** than another domain dependent state-of-the-art algorithm (**MIT**) in slightly better runtime

• Future work:

• Adapt the last phase to suffice with only one vertex – use a pattern database

Pavel Surynek

• Increase parallelism – use a method of critical path

ICRA 2009