Relocation Tasks and A Hierarchical Subclass

Charles University in Prague Czech Republic

Pavel Surynek

Kobe University Japan

Relocation Problem

- \odot Abstraction for relocation of objects
- **Components** of a relocation task:
 - G=(V,E) an undirected graph modeling the environment
 - $Y = \{y_1, y_2, ..., y_m\}$ with $m \in \mathbb{N}$ a set of **entities**
 - \circ T={t₁, t₂, ..., t_n} with n∈ℕ a set of **entity types** \circ each entity has assigned a type by τ :Y→T
 - \bigcirc Allowance constraint α⊆{1,2,...,|Y|}ⁿ
 - compatible numbers of entities of various types allowed to reside together in a vertex
 - \circ **example**: 1 entity of type t_1 or two 1 entity of type t_2 with 1 entity of type t_2 can stay together in a vertex
 - \bigcirc **Mobility** constraint β⊆{1,2,...,|Y|}ⁿ
 - o compatible numbers of entities **movable together**

Example of Hierarchical Relocation Task

 At each discrete time-step entities are arranged in vertices of G

 $\circ \lambda_0$:Y \rightarrow V initial arrangement

 $\circ \lambda_+$:Y \rightarrow V **goal** arrangement

 \circ If $\beta = \{[1,0,...,0]; [1,1,0,...,0]; ... [1,1,...,1]\}$ (leading ones) \Rightarrow hierarchical subclass

• Example:

$\alpha = \{[0,0]; [1,0]; [0,1]; [1,1]\}$

Empty vertex; one robot in a vertex; one box in a vertex; and one robot and one box in a vertex are allowed.

$\beta = \{ [1,0]; [1,1] \}$

d

е

Robots can move freely while boxes can be moved by robots only.

Relation to Cooperative Path-Finding

Employ polynomial time/space algorithms for cooperative path-finding (CPF)

 \circ can be used to solve hierarchical subclass

 $\,\circ\,$ CPF as a special case of relocation task

 \circ only one type of entities (called agents)

 \circ constraints are trivial $\alpha = \{[1]\}\ \text{and}\ \beta = \{[1]\}\$

 \circ Example:

Set of **agents** = $\{1,2,3\}$ plan for **agent A** = $[v_1, v_4, v_7, v_8, v_9, v_9, v_9]$ plan for **agent B** = $[v_2, v_2, v_1, v_4, v_7, v_8, v_8]$ plan for **agent C** = $[v_3, v_3, v_3, v_2, v_1, v_4, v_7]$ Time step: 1 2 3 4 5 6 7 makespan = 7

Tractability of Hierarchical Sub-class

• Solve hierarchy by levels place entities of the top type first continue with entities of lower types finally place entities of the **bottom type** \circ equivalent to cooperative path finding (CPF) • Moving entity along edge on level h \circ requires at most |V| moves of entities on level *h*-1 vertex in front of the entity must be freed o supporting entities on level h-1 must be prepared \circ extra time of $|V|^2$ is needed to find paths in G \circ T(h)≤|V|T(h-1)+|V|² and T(1)=1 \circ We obtain that: T(h)=O(|V|^h)

Conclusions and Related Works

 Many real-life problems can be modeled as relocation task

 Hierarchical structure of the presented class is very typical in relocation problem

 Tractability of hierarchical class has been shown