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Abstract. A novel approach to cooperative path-planning is presented. A SAT 

solver is used not to solve the whole instance but for optimizing the makespan 

of a sub-optimal solution. This approach is trying to exploit the ability of state-

of-the-art SAT solvers to give a solution to relatively small instance quickly. A 

sub-optimal solution to the instance is obtained by some existent method first. It 

is then submitted to the optimization process which decomposes it into small 

subsequences for which optimal solutions are found by a SAT solver. The new 

shorter solution is subsequently obtained as concatenation of optimal sub-

solutions. The process is iterated until a fixed point is reached. This is the first 

method to produce near optimal solutions for densely populated environments; 

it can be also applied to domain-independent planning supposed that sub-

optimal planner is available. 

1 Introduction and Context1 

Cooperative path-planning recently attracted considerable interest of the AI communi-
ty. This interest is motivated by the broad range of areas where cooperative path-
planning can be applied (robotics, computer entertainment, traffic optimization, etc.) 
as well as by challenging aspects which it offers. The task consists in finding spatial 
temporal paths for agents which want to reach certain destinations without colliding 
with each other. One of the most important breakthrough in solving the task is repre-
sented by the WHCA* algorithm [8] which decouples the search for cooperative plan 
into searches for plans for individual agents. Recently, an optimal decoupled method 
appeared [10]. The common drawback of decoupled approach is that it is applicable 
only on instances with small occupancy of the environment by agents. 
 The opposite of the spectrum of solving algorithms is represented by complete sub-
optimal methods [4, 11]. These algorithms are able to provide solution irrespectively 
of the portion of space occupied by agents. Especially good performance is reported 
for highly occupied instances. On the other side, too long solutions are usually gener-
ated for sparsely populated environments. Other methods are trying to exploit the 
structure of environment [7] or the structure of current arrangement of agents [12]. 
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Again these methods require relatively unoccupied environment and in some cases 
they are not complete. 
 Here we are trying to contribute to a not yet addressed case with high occupancy 
and the requirement on solution to have short makespan. Our approach is basically 
complete. We use SAT solving technology in a novel and unique way to address this 
case. First a sub-optimal solution is generated by some of the existent fast algorithms. 
The sub-optimal solution is then decomposed into small sub-sequences that are re-
placed by optimal sub-solutions generated by a SAT solver. The process is iterated 
until the makespan converges. This decomposition of the original problem allowed us 
to exploit the strongest aspect of SAT solvers – that is, their ability to satisfy relative-
ly small yet complex enough SAT instance very quickly. 
 The rest of the paper describes cooperative path planning formally first. Then our 
special domain dependent SAT encoding and the optimization methods are intro-
duced. An experimental comparison with several existent techniques is presented 
finally. 

2 Cooperative Path Planning Formally 

Arbitrary undirected graph can be used to model the environment. Let         

be such a graph where   is a finite set of vertices and     
 
  is a set of edges. 

 The placement of agents in the environment is modeled by assigning them vertices 

of the graph. Let                be a finite set of agents. Then, an arrangement 

of agents in vertices of graph   will be fully described by a location function 

     ; the interpretation is that an agent     is located in a vertex     . At 

most one agent can be located in each vertex; that is   is uniquely invertible. A gen-

eralized inverse of   denoted as             will provide us an agent located 

in a given vertex or   if the vertex is empty. 
 

Definition 1 (COOPERATIVE PATH PLANNING). An instance of cooperative path-

planning problem is a quadruple                     where location functions 

   and    define the initial and the goal arrangement of a set of agents   in   respec-

tively. □ 

 

 The dynamicity of the model supposes a discrete time divided into time steps. An 

arrangement    at the  -th time step can be transformed by a transition action which 

instantaneously moves agents in the non-colliding way to form a new arrangement 

    . The resulting arrangement      must satisfy the following validity conditions: 

(i)       either               or                   holds 

(agents move along edges or not move at all), 

(ii)                          
        

(agents move to vacant vertices only), and 

(iii)                               

(no two agents enter the same target/unique invertibility of resulting ar-

rangement). 

 The task in cooperative path planning is to transform    using above valid transi-

tions to   .  
 



Definition 2 (SOLUTION, MAKESPAN). A solution of a makespan   to a cooperative 

path planning instance               is a sequence of arrangements    
                where       and      is a result of valid transformation of    

for every            . □ 
 

 If it is a question whether there is a solution of   of the makespan at most a given 

bound we are speaking about the bounded variant. Notice that due to no-ops intro-

duced in valid transitions it is equivalent to finding a solution of the makespan equal 

to the given bound.  

3 SAT Encoding of the Bounded Variant 

Our goal was to devise a SAT encoding of bounded cooperative path planning suita-

ble for relatively densely populated environments. At the same time we needed to 

keep the encoding compact. We followed the classical Graphplan inspired encodings 

[2, 3] as for we also encode each time step. 

Using Multi-valued State Variables 

We were primarily inspired by SATPLAN [3] and SASE [2] encodings in our design. 

But unlike these generic encodings we were working with the specific domain so we 

could facilitate the domain knowledge in the design of the instance encoding. We a 

priori know what the candidates for multi-valued state variables are in our domain – 

basically, these are represented by location function and its inverse. Using techniques 

proposed by Rintanen [6] each state variable can be encoded by logarithmic number 

of propositional variables with respect to the number its values. Another considerable 

aspect is how to encode transition actions together with validity conditions. 

 Representing arrangement of agents by inverse locations (that is, there is a state 

variable for each vertex) allowed us to encode transitions efficiently. There are two 

primitive actions for each edge adjacent to the given vertex plus one no-op action. 

Half of the primitive actions corresponding to a vertex are for incoming agents while 

the other half is for outgoing agents. If the outgoing primitive action is selected it is 

necessary to propagate the selection as corresponding selection of incoming primitive 

action in the target vertex. Representing the selection of the primitive action as a 

multi-values state variable automatically ensures that conditions (i) and (iii) are en-

coded. Moreover, we do not need any mutex constraints in the encoding. Notice also, 

that the degree of vertices in   is typically low for real-life environments, thus action 

selection in the vertex can be captured by few propositional variables. 

 Let                     be a cooperative instance and     be a makespan 

bound. Our encoding has layers numbered        . Suppose that neighboring verti-

ces of a given vertex are ordered in the fixed order. That is,      we have function 

                               and its inverse   
  . 

 

Definition 3 (LAYER ENCODING). The  -th regular layer consists of the following 

integer interval state variables: 

   
              for all     such that 

   
    iff          

   
                     for all     such that 



  
       iff no-op was selected in  ; 

  
         iff an outgoing primitive action with  

     the target     was selected in  ; 

  
                iff an incoming primitive action with     as the 

source was selected in  . 

and constraints: 

   
          

    
  for all     (no-op case); 

     
              

          
    

      
               

 where     
     

   for all     (outgoing agent case); 

           
              

         

   where     
     

          for all     (incoming agent case). □ 
 

 State variables   
  for     represent inverse location function at the time step  . 

Analogically, state variables   
  for     represent transition actions selected in 

vertices at time step  . Constraints merely encode the validity conditions. 
 The last encoding layer is irregular as it has location state variables only. To finish 
the encoding of bounded cooperative instance we need to encode the initial and the 
goal arrangement straightforwardly as follows: 

     
      iff   

        , 

     
      iff   

       , 

     
      iff   

        , 

     
      iff   

       . 

 Transformation of the encoding from the above integer representation to the propo-

sitional one is also straightforward. To reduce size of clauses we should use standard 

Tseitin’s hierarchical encoding with auxiliary variables. 

 

Proposition 1 (ENCODING SIZE).  A regular layer of the propositional encoding of the 

bounded cooperative instance requires 

                                                (1) 

propositional variables for representing state variables, 

                                           (2) 

auxiliary propositional variables from Tseitin’s translation 

                                                            (3) 

clauses for representing constraints, and 

                       ,                (4) 

                       
                            (5) 

clauses for excluding unused location and transition action states respectively. ■ 

 

Proof. We just need to observe that           cases (preconditions) need to be 

distinguished for each vertex     and for each of these cases a corresponding effect 

needs to be enforced. The cases with outgoing agent need each           auxiliary 

propositional variables which come from Tseitin’s encoding and               
                          clauses (1 equality between transition action and a 

constant + 2 equalities between inverse location and a constant, and 1 equality be-

tween two inverse locations). The cases with incoming agent do not require any aux-

iliary variable and only                   clauses are needed (1 equality between 

transition action and a constant). Finally, the single no-op case requires           



auxiliary variables and            clauses (1 equality between two inverse locations). 

From this overview expressions (1)-(5) are straightforward. ■ 

 

 Most of clauses generated in our encoding have arity of                     

for some     or            . The comparison with the graph-plan based encoding 

used in SATPLAN is shown in Table 1. Our domain-specific encoding is clearly small-

er while the difference is growing as the number of agents increases. 

 
Table 1. Comparison of encoding sizes. The smallest number of layers for which SATPLAN was 
unable to detect unreachability of the goal using mutex reasoning is indicated as goal level – it 
is used as the makespan bound. 
 

|Agents| in 
4-connected 

grid 8x8 

Goal 
level 

SATPLAN 
encoding 

Our domain specific 
encoding 

|Variables| |Clauses| |Variables| |Clauses| 

4 8 5864 55330 9432 55008 

8 8 10022 165660 11968 70400 

12 8 14471 356410 11968 68352 

16 10 30157 1169198 18490 112580 

24 10 43451 2473813 18490 107360 

32 14 99398 8530312 32116 200768 

4 COBOPT: A New Approach to (Path) Planning 

Our novel cooperative path planning technique called COBOPT exploits SAT solving 
technology [1] not to produce a solution but to optimize it with respect to the 
makespan. To be able to use SAT solvers in this way we need to obtain some (sub-
optimal) solution to the cooperative instance first. Let this initial solution be called 
base solution. As we mentioned, many solving techniques for cooperative path plan-
ning are available at the present time [7], [8] (WHCA*); [11] (BIBOX); [4] (PUSH-
SWAP); [10] - OD+ID; [12] (MAPP). Any of them can be used to produce base solution 
within our framework. Our approach is completely generic in this sense. Notice how-
ever, that particular solving technique is always designed for a specific class of the 
problem while outside this class it may provide worse performance. The typical 
weakness is for example that decoupled techniques (WHCA*, MAPP) admit that not all 
the agents need to reach their destination [8, 12]. 
 In our initial experiments, we found that it is becoming dramatically more difficult 
for SAT solvers to solve bounded cooperative instance as the bound is growing. To be 
more concrete, a SAT solver usually struggles with the instance consisting of the 
graph containing     vertices,    agents, and the bound of    for several minutes if 
the presented SAT encoding is used. In case of the SATPLAN encoding the situation is 
even worse – the solver even struggles with generating the formula for minutes. This 
finding renders possibility of using SAT solvers to solve a cooperative instance of 
considerable size in the SATPLAN style [2, 3] as infeasible at the current state-of-the-
art since it may require hundreds of time steps. But using a SAT solver in the 
SATPLAN style has one undisputable advantage if we manage to get a solution from it 
– it is makespan optimal. 



 After producing a base solution, this is submitted to a SAT based optimization 
process. A maximum bound    for encoding cooperative instances is specified. Then 
sub-sequences in the base solution are replaced with computed optimal sub-solution. 
Suppose that we are currently optimizing at time step  . It is computed what is the 
largest      such that the time step    can be reached from the time step   with no 
more than    steps. Then sub-solution of the base solution from the time step   to     
is replaced by the optimal one obtained from the SAT solver. The process then con-
tinues with optimization at time step    until the whole base solution is processed.  
 
Algorithm 1. COBOPT: SAT-based cooperative path planning solution optimization – basic 
scheme based on binary search.  
 

function COBOPT-Optimize-Cooperative-Plan          : solution 

1:        
2: do 
3:          
4:  let                     
5:      ;        
6:  while     do 
7:       Find-Last-Reachable-Arrangement              
8:           Compute-Optimal-Solution           
9:        
10: while             

11: return     
 

function Find-Last-Reachable-Arrangement           
  : integer 

1:  let                    
2:             
3:  while       do 
4:             
5:                  
6:   if Check-Reachability            then 
7:      Encode            
8:    if Solve-SAT     then     
9:    else     
10:  else 
11:       
12: return   
 

function Check-Reachability            : boolean 

1:  let               
2:  for each     do 
3:   if                      then return       
4:  return       
 

 
Figure 1. Illustration of the optimization process. A single iteration is shown – these are re-
peated until a fixed point is reached. 
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 The optimization process can be iterated by taking new solution as the base one 
until a fixed point is reached. The binary search is exploited to find    and the optimal 
sub-solution in order to reduce the number of SAT solver invocations – see Algorithm 
1 which summarizes basic COBOPT optimization method formally. Notice that some 
extra care is needed to obtain optimal sub-solution at the end of the base solution 
sequence.  
 The process of optimization is illustrated in Figure 1. Notice that separation points 
in the base solution are selected on the greedy basis – optimization always continues 
on the first not yet processed time step. We also considered optimizing placement of 
separation point by dynamic programming techniques. This approach generates 
slightly better base solution decomposition. However it is at the great expense in 
overall runtime as many more invocation of the SAT solver are necessary. 

5 Experimental Evaluation 

We implemented the proposed COBOPT optimization method in C++ to conduct an 

experimental evaluation. A competitive comparison against 3 existent methods was 

made – WHCA*, SATPLAN, and BIBOX. WHCA* was chosen as reference method as it 

is considered to be standard decoupled method for cooperative path planning and its 

properties and performance are well known. 

 
Table 2. Optimal solutions obtained by SATPLAN. No more agents can be solved by SATPLAN 

within the time limit of 7200s. 
 

|Agents| 

4-connected grid 8x8 4-connected grid 16x16 

Optimal 
makespan 

Runtime (s) 
Optimal 

makespan 
Runtime (s) 

1 5 0.0 4 0.68 

4 6 0.15 21 195.5 

8 8 19.85 15 1396.07 
 

 As no implementation of WHCA* was available we re-implemented it in C++ by 
ourselves.  SATPLAN is the most similar method to our approach and very importantly 
it produces optimal solutions – we used implementation provided by the authors. 
Finally, BIBOX was selected as major method for producing base solutions in hard 
setups. 
 Our choice was not discouraged by the wrong statement of Standley and Korf [10] 

who consider it together with the method of Ryan [7] to have memory and time re-

quirements that limit their applicability. According to our findings, these algorithms 

have important theoretical guarantees and good practical performance. Particularly, 

BIBOX has polynomial time complexity (solutions to all the benchmarks presented 

here were generated within less than 0.1 seconds) and generates good quality sub-

optimal solutions irrespectively how many agents are contained in the instance – 

together with the algorithm PUSH-SWAP by Luna and Berkis [4] it is the only algo-

rithm able to generate base solution for hard setups. Authors provide working imple-

mentation of BIBOX which we exploited within our experiments. COBOPT using 

BIBOX as a base solver will be referred to as COBOPT(BIBOX). As a SAT solver within 

our method, MINISAT 2.2 [1] was used. 



  

 

 
Figure 2. Makespan optimization in the 4-connected grid 8×8. A comparison with the optimal 
SATPLAN and near optimal WHCA* is shown. 

  

 Standard benchmark setups for cooperative path planning which consists of a 4-

connected grid graph and randomly arranged initial and goal locations for agents were 

used. Various parameters of the COBOPT(BIBOX) and other methods were observed in 

the dependence of the increasing number of agents in the instance. Two setups were 

used: grids of size 8×8 and 16×16 with number of agents ranging from 1 to 54 and 1 

to 128 respectively. The timeout of 240s and 120s per SAT solver invocation was 

used for these setups respectively. Makespan bounds of 8 and 6 were used respective-

ly. Additionally there was an overall timeout of 7200s (2 hours) after which the opti-

mization process was terminated. 

 

 
Figure 3. Runtime measurements per optimization iteration in 8×8 grid. The base solution can 
be produced in less than 0.1s. 
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 Due to the bigger size of SAT encodings for the 16×16 grid the optimization meth-

od uses less aggressive setup with respect to the SAT solver. Using WHCA* we ob-

served that setups with up to approximately 20% of occupied vertices are in fact easy 

as only very limited cooperation among agents is necessary. This observation ruled 

out from our consideration the method OD+ID as it is reported to be efficient only in 

the setups with less than 10% of occupied vertices. Here we are interested primarily in 

setups with occupancy in the range 20% - 50% which is increasingly harder as coop-

eration between agents gradually increases.  

 

Table 3. MINISAT statistics (8×8 grid). Each invocation of MINISAT within COBOPT optimiza-

tion has the timeout of 240s. 
 

|Agents|in 
4-connected 

grid 8x8 

Number of MINISAT results in final iteration 

SAT 
instances 

UNSAT  
instances 

INDET 
instances 

4 13 2 0 

8 44 4 0 

12 79 5 0 

16 96 15 0 

24 253 28 0 

32 194 27 2 

 

  To learn what the optimal makespan for tested instances is we tried SATPLAN 

(Table 2). Unfortunately SATPLAN was able to generate solution only to instances 

with small number of agents. The reason is primarily inefficiency of domain-

independent SAT encoding (Table 1). 

  

 

 
Figure 4. Makespan optimization in the 4-connected grid 16×16. 
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 In the following experiments we exploited the decoupled WHCA* method. Expecta-

bly it is able to generate near optimal solutions (Figure 2, Figure 4) since near optimal 

path is tried to be found for each agent separately. However, this method is principal-

ly unable to solve instances where non-trivial cooperation among agents is necessary. 

WHCA* was used to classify instances on easy and hard – the easy ones are those 

solvable by WHCA*. 

 Contrary to SATPLAN and WHCA* COBOPT is more suc-

cessful; it is able to provide solution to every instance to 

which base solving method can do so – in case of the BIBOX 

algorithm these are all the instances in our test suite. 

 In case of the 8×8 grid COBOPT(BIBOX) generates very 

near optimal solutions for easy setups (same as SATPLAN; 

same as or better than WHCA*) - Figure 2. Nevertheless, the 

most interesting behavior is exhibited in the hard region 

where compression up to the ratio of  

 
 with respect to the makespan of base solution 

can be achieved. Although it is not known if optimum was actually reached, this is a 

big qualitative leap from the base solution and it demonstrates efficiency of the 

COBOPT optimization process. 

 Supposed that certain simplification is accepted then we can calculate expected 

lower bound for the optimal makespan in the 4-connected grid environment. Let us 

suppose that if an agent is blocked on its path by another agent, it will either wait or 

go into unblocked neighborhood all with the same probability of  

 
. This behavior 

deflects the agent from its original path and some extra steps are then necessary to 

continue in the right direction. It is supposed that original path continues to vertices in 

the neighborhood of blocked vertex with the same probability of  

 
. Under these as-

sumptions we obtain that the expected number of extra steps is  
 
   

 
        

  
 per 

two original steps. Simply it means that two original steps require almost two extra 

steps. We will adopt quite strong assumption and round it up to exactly two extra 

steps which consequently implies that the agent actually does not reduce its distance 

from the destination. 
 

 
Figure 5. Runtime measurements in the 16×16 grid. 

 

Proposition 2 (EXPECTED MAKESPAN).The expected make-span required to travel 

distance     in a 4-connected grid with occupancy ratio   under our assumptions 

is: 

     
            

       
. ■ 
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Proof. The following recurrence holds under assumptions stated above:      
         

  
                  where we can put       . From this we 

quickly obtain the required explicit form. ■ 
 

 According to above calculations COBOPT(BIBOX) generates near optimal solutions 

that differs from the expected optimum by less than 25% in setups with up to occu-

pancy of 60% in the grid 8×8. Expectably in the grid 16×16 the situation is not so 

optimistic, solutions differ here from the expected optimum by factor of 3.0 to 6.0 in 

hard setups with occupancy up to 50%. This worse performance is mainly because of 

the size of the grid which prevented us from using more aggressive optimization. 

 The number of iterations until the fixed point was reached ranged from 1 to 20 with 

median of 7 in case of 8×8 grid and from 2 to 31 with median of 11 for the grid 

16×16. The number of SAT solver invocations is reported in Table 3. It is clear that in 

our approach the SAT solver is invoked many times with relatively easy instances. 

 Runtime1 is reported in Figure 3 and Figure 5. Despite hundreds of SAT solver 

invocations the overall runtime is kept in acceptable bounds. Fortunately, the COBOPT 

method is very friendly to multithreaded implementation. Hence the scalability of the 

method is extremely good (provided that computational resources are available). 

Moreover, if the method for producing base solutions is fast enough  then COBOPT 

represents the anytime method in fact – at any time step the solving process can be 

terminated and feasible (sub-optimal) solution is returned. 

 To get insight what happen when a solver is used for optimization we investigated 

distribution of the number of actions executed in parallel – Figure 6. Base solutions 

seem to suffer from locked agents which are forced to wait until their path is freed. In 

optimized solutions, as many as possible agents are actively moving towards goals – 

it is possible to observe that agents utilize almost all the available unoccupied space. 
 

 
Figure 6. Distribution of parallelism in the grid 16×16. Almost all the free space is used for 
moving in the optimized solution. 

6   Discussion, Conclusions, and Future Works 

The new SAT based solving method for cooperative path planning called COBOPT 

has been presented. To be able to use a SAT solver for cooperative path-planning we 

                                                           
1 All the runtime measurements were done on a machine with the 6 core CPU Intel Xeon 2.0GHz and 

12GiB RAM under Linux kernel 2.6.24-19. All the 6 cores of the CPU were exploited in parallel. 
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also developed a new SAT encoding for cooperative instances. The encoding utilizes 

properties of cooperative planning in order to reduce its size and increase efficiency. 

 The COBOPT method was shown that it is able to generate near optimal or good 

quality solutions in setups with high occupancy of the environment by agents. It is 

the first method capable of doing so. In our experiments we solved 4-connected grid 

instances of size up to 16×16 with up to 50% space occupied by agents with high 

quality makespans. One of the positive aspects of the new approach is also the fact 

that it can be easily parallelized for multi-core architectures which supports better 

scalability. 

 The COBOPT method has also quite strong implications for classical planning. Pro-

vided that efficient makespan sub-optimal planner is available, COBOPT can be imme-

diately used to optimize its output (SASE and SATPLAN encodings are ready). A pos-

sible future improvement is to reduce the size of the domain dependent encoding for 

sparsely populated instances. The application of binary search for solvable instance 

may be also revised as other types of search may be more efficient. 
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