
Towards Optimal Cooperative Path Planning

in Hard Setups through Satisfiability Solving

Pavel Surynek
1,2

1 Charles University in Prague, Faculty of Mathematics and Physics

Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic

2 Kobe University, Graduate School of Maritime Sciences, Intelligent Informatics Laboratory

5-1-1 Fukae-minamimachi, Higashinada-ku, Kobe 658-0022, Japan

pavel.surynek@mff.cuni.cz

Abstract. A novel approach to cooperative path-planning is presented. A SAT

solver is used not to solve the whole instance but for optimizing the makespan

of a sub-optimal solution. This approach is trying to exploit the ability of state-

of-the-art SAT solvers to give a solution to relatively small instance quickly. A

sub-optimal solution to the instance is obtained by some existent method first. It

is then submitted to the optimization process which decomposes it into small

subsequences for which optimal solutions are found by a SAT solver. The new

shorter solution is subsequently obtained as concatenation of optimal sub-

solutions. The process is iterated until a fixed point is reached. This is the first

method to produce near optimal solutions for densely populated environments;

it can be also applied to domain-independent planning supposed that sub-

optimal planner is available.

1 Introduction and Context1

Cooperative path-planning recently attracted considerable interest of the AI communi-
ty. This interest is motivated by the broad range of areas where cooperative path-
planning can be applied (robotics, computer entertainment, traffic optimization, etc.)
as well as by challenging aspects which it offers. The task consists in finding spatial
temporal paths for agents which want to reach certain destinations without colliding
with each other. One of the most important breakthrough in solving the task is repre-
sented by the WHCA* algorithm [8] which decouples the search for cooperative plan
into searches for plans for individual agents. Recently, an optimal decoupled method
appeared [10]. The common drawback of decoupled approach is that it is applicable
only on instances with small occupancy of the environment by agents.
 The opposite of the spectrum of solving algorithms is represented by complete sub-
optimal methods [4, 11]. These algorithms are able to provide solution irrespectively
of the portion of space occupied by agents. Especially good performance is reported
for highly occupied instances. On the other side, too long solutions are usually gener-
ated for sparsely populated environments. Other methods are trying to exploit the
structure of environment [7] or the structure of current arrangement of agents [12].

This work is supported by the by the Japan Society for the Promotion of Science (contract no.

P11743) and by the Czech Science Foundation (contract no. GAP103/10/1287).

mailto:pavel.surynek@mff.cuni.cz

Again these methods require relatively unoccupied environment and in some cases
they are not complete.
 Here we are trying to contribute to a not yet addressed case with high occupancy
and the requirement on solution to have short makespan. Our approach is basically
complete. We use SAT solving technology in a novel and unique way to address this
case. First a sub-optimal solution is generated by some of the existent fast algorithms.
The sub-optimal solution is then decomposed into small sub-sequences that are re-
placed by optimal sub-solutions generated by a SAT solver. The process is iterated
until the makespan converges. This decomposition of the original problem allowed us
to exploit the strongest aspect of SAT solvers – that is, their ability to satisfy relative-
ly small yet complex enough SAT instance very quickly.
 The rest of the paper describes cooperative path planning formally first. Then our
special domain dependent SAT encoding and the optimization methods are intro-
duced. An experimental comparison with several existent techniques is presented
finally.

2 Cooperative Path Planning Formally

Arbitrary undirected graph can be used to model the environment. Let

be such a graph where is a finite set of vertices and

 is a set of edges.

 The placement of agents in the environment is modeled by assigning them vertices

of the graph. Let be a finite set of agents. Then, an arrangement

of agents in vertices of graph will be fully described by a location function

 ; the interpretation is that an agent is located in a vertex . At

most one agent can be located in each vertex; that is is uniquely invertible. A gen-

eralized inverse of denoted as will provide us an agent located

in a given vertex or if the vertex is empty.

Definition 1 (COOPERATIVE PATH PLANNING). An instance of cooperative path-

planning problem is a quadruple where location functions

 and define the initial and the goal arrangement of a set of agents in respec-

tively. □

 The dynamicity of the model supposes a discrete time divided into time steps. An

arrangement at the -th time step can be transformed by a transition action which

instantaneously moves agents in the non-colliding way to form a new arrangement

 . The resulting arrangement must satisfy the following validity conditions:

(i) either or holds

(agents move along edges or not move at all),

(ii)

(agents move to vacant vertices only), and

(iii)

(no two agents enter the same target/unique invertibility of resulting ar-

rangement).

 The task in cooperative path planning is to transform using above valid transi-

tions to .

Definition 2 (SOLUTION, MAKESPAN). A solution of a makespan to a cooperative

path planning instance is a sequence of arrangements
 where and is a result of valid transformation of

for every . □

 If it is a question whether there is a solution of of the makespan at most a given

bound we are speaking about the bounded variant. Notice that due to no-ops intro-

duced in valid transitions it is equivalent to finding a solution of the makespan equal

to the given bound.

3 SAT Encoding of the Bounded Variant

Our goal was to devise a SAT encoding of bounded cooperative path planning suita-

ble for relatively densely populated environments. At the same time we needed to

keep the encoding compact. We followed the classical Graphplan inspired encodings

[2, 3] as for we also encode each time step.

Using Multi-valued State Variables

We were primarily inspired by SATPLAN [3] and SASE [2] encodings in our design.

But unlike these generic encodings we were working with the specific domain so we

could facilitate the domain knowledge in the design of the instance encoding. We a

priori know what the candidates for multi-valued state variables are in our domain –

basically, these are represented by location function and its inverse. Using techniques

proposed by Rintanen [6] each state variable can be encoded by logarithmic number

of propositional variables with respect to the number its values. Another considerable

aspect is how to encode transition actions together with validity conditions.

 Representing arrangement of agents by inverse locations (that is, there is a state

variable for each vertex) allowed us to encode transitions efficiently. There are two

primitive actions for each edge adjacent to the given vertex plus one no-op action.

Half of the primitive actions corresponding to a vertex are for incoming agents while

the other half is for outgoing agents. If the outgoing primitive action is selected it is

necessary to propagate the selection as corresponding selection of incoming primitive

action in the target vertex. Representing the selection of the primitive action as a

multi-values state variable automatically ensures that conditions (i) and (iii) are en-

coded. Moreover, we do not need any mutex constraints in the encoding. Notice also,

that the degree of vertices in is typically low for real-life environments, thus action

selection in the vertex can be captured by few propositional variables.

 Let be a cooperative instance and be a makespan

bound. Our encoding has layers numbered . Suppose that neighboring verti-

ces of a given vertex are ordered in the fixed order. That is, we have function

 and its inverse
 .

Definition 3 (LAYER ENCODING). The -th regular layer consists of the following

integer interval state variables:


 for all such that

 iff


 for all such that

 iff no-op was selected in ;

 iff an outgoing primitive action with

 the target was selected in ;

 iff an incoming primitive action with as the

source was selected in .

and constraints:



 for all (no-op case);



 where

 for all (outgoing agent case);



 where

 for all (incoming agent case). □

 State variables
 for represent inverse location function at the time step .

Analogically, state variables
 for represent transition actions selected in

vertices at time step . Constraints merely encode the validity conditions.
 The last encoding layer is irregular as it has location state variables only. To finish
the encoding of bounded cooperative instance we need to encode the initial and the
goal arrangement straightforwardly as follows:

 iff

 ,

 iff

 ,

 iff

 ,

 iff

 .

 Transformation of the encoding from the above integer representation to the propo-

sitional one is also straightforward. To reduce size of clauses we should use standard

Tseitin’s hierarchical encoding with auxiliary variables.

Proposition 1 (ENCODING SIZE). A regular layer of the propositional encoding of the

bounded cooperative instance requires

 (1)

propositional variables for representing state variables,

 (2)

auxiliary propositional variables from Tseitin’s translation

 (3)

clauses for representing constraints, and

 , (4)

 (5)

clauses for excluding unused location and transition action states respectively. ■

Proof. We just need to observe that cases (preconditions) need to be

distinguished for each vertex and for each of these cases a corresponding effect

needs to be enforced. The cases with outgoing agent need each auxiliary

propositional variables which come from Tseitin’s encoding and
 clauses (1 equality between transition action and a

constant + 2 equalities between inverse location and a constant, and 1 equality be-

tween two inverse locations). The cases with incoming agent do not require any aux-

iliary variable and only clauses are needed (1 equality between

transition action and a constant). Finally, the single no-op case requires

auxiliary variables and clauses (1 equality between two inverse locations).

From this overview expressions (1)-(5) are straightforward. ■

 Most of clauses generated in our encoding have arity of

for some or . The comparison with the graph-plan based encoding

used in SATPLAN is shown in Table 1. Our domain-specific encoding is clearly small-

er while the difference is growing as the number of agents increases.

Table 1. Comparison of encoding sizes. The smallest number of layers for which SATPLAN was
unable to detect unreachability of the goal using mutex reasoning is indicated as goal level – it
is used as the makespan bound.

|Agents| in
4-connected

grid 8x8

Goal
level

SATPLAN
encoding

Our domain specific
encoding

|Variables| |Clauses| |Variables| |Clauses|

4 8 5864 55330 9432 55008

8 8 10022 165660 11968 70400

12 8 14471 356410 11968 68352

16 10 30157 1169198 18490 112580

24 10 43451 2473813 18490 107360

32 14 99398 8530312 32116 200768

4 COBOPT: A New Approach to (Path) Planning

Our novel cooperative path planning technique called COBOPT exploits SAT solving
technology [1] not to produce a solution but to optimize it with respect to the
makespan. To be able to use SAT solvers in this way we need to obtain some (sub-
optimal) solution to the cooperative instance first. Let this initial solution be called
base solution. As we mentioned, many solving techniques for cooperative path plan-
ning are available at the present time [7], [8] (WHCA*); [11] (BIBOX); [4] (PUSH-
SWAP); [10] - OD+ID; [12] (MAPP). Any of them can be used to produce base solution
within our framework. Our approach is completely generic in this sense. Notice how-
ever, that particular solving technique is always designed for a specific class of the
problem while outside this class it may provide worse performance. The typical
weakness is for example that decoupled techniques (WHCA*, MAPP) admit that not all
the agents need to reach their destination [8, 12].
 In our initial experiments, we found that it is becoming dramatically more difficult
for SAT solvers to solve bounded cooperative instance as the bound is growing. To be
more concrete, a SAT solver usually struggles with the instance consisting of the
graph containing vertices, agents, and the bound of for several minutes if
the presented SAT encoding is used. In case of the SATPLAN encoding the situation is
even worse – the solver even struggles with generating the formula for minutes. This
finding renders possibility of using SAT solvers to solve a cooperative instance of
considerable size in the SATPLAN style [2, 3] as infeasible at the current state-of-the-
art since it may require hundreds of time steps. But using a SAT solver in the
SATPLAN style has one undisputable advantage if we manage to get a solution from it
– it is makespan optimal.

 After producing a base solution, this is submitted to a SAT based optimization
process. A maximum bound for encoding cooperative instances is specified. Then
sub-sequences in the base solution are replaced with computed optimal sub-solution.
Suppose that we are currently optimizing at time step . It is computed what is the
largest such that the time step can be reached from the time step with no
more than steps. Then sub-solution of the base solution from the time step to
is replaced by the optimal one obtained from the SAT solver. The process then con-
tinues with optimization at time step until the whole base solution is processed.

Algorithm 1. COBOPT: SAT-based cooperative path planning solution optimization – basic
scheme based on binary search.

function COBOPT-Optimize-Cooperative-Plan : solution

1:
2: do
3:
4: let
5: ;
6: while do
7: Find-Last-Reachable-Arrangement
8: Compute-Optimal-Solution
9:
10: while

11: return

function Find-Last-Reachable-Arrangement
 : integer

1: let
2:
3: while do
4:
5:
6: if Check-Reachability then
7: Encode
8: if Solve-SAT then
9: else
10: else
11:
12: return

function Check-Reachability : boolean

1: let
2: for each do
3: if then return
4: return

Figure 1. Illustration of the optimization process. A single iteration is shown – these are re-
peated until a fixed point is reached.

Base solution

Time steps

Optimized
solution

SAT solving

Next

iteration

makespan

 The optimization process can be iterated by taking new solution as the base one
until a fixed point is reached. The binary search is exploited to find and the optimal
sub-solution in order to reduce the number of SAT solver invocations – see Algorithm
1 which summarizes basic COBOPT optimization method formally. Notice that some
extra care is needed to obtain optimal sub-solution at the end of the base solution
sequence.
 The process of optimization is illustrated in Figure 1. Notice that separation points
in the base solution are selected on the greedy basis – optimization always continues
on the first not yet processed time step. We also considered optimizing placement of
separation point by dynamic programming techniques. This approach generates
slightly better base solution decomposition. However it is at the great expense in
overall runtime as many more invocation of the SAT solver are necessary.

5 Experimental Evaluation

We implemented the proposed COBOPT optimization method in C++ to conduct an

experimental evaluation. A competitive comparison against 3 existent methods was

made – WHCA*, SATPLAN, and BIBOX. WHCA* was chosen as reference method as it

is considered to be standard decoupled method for cooperative path planning and its

properties and performance are well known.

Table 2. Optimal solutions obtained by SATPLAN. No more agents can be solved by SATPLAN

within the time limit of 7200s.

|Agents|

4-connected grid 8x8 4-connected grid 16x16

Optimal
makespan

Runtime (s)
Optimal

makespan
Runtime (s)

1 5 0.0 4 0.68

4 6 0.15 21 195.5

8 8 19.85 15 1396.07

 As no implementation of WHCA* was available we re-implemented it in C++ by
ourselves. SATPLAN is the most similar method to our approach and very importantly
it produces optimal solutions – we used implementation provided by the authors.
Finally, BIBOX was selected as major method for producing base solutions in hard
setups.
 Our choice was not discouraged by the wrong statement of Standley and Korf [10]

who consider it together with the method of Ryan [7] to have memory and time re-

quirements that limit their applicability. According to our findings, these algorithms

have important theoretical guarantees and good practical performance. Particularly,

BIBOX has polynomial time complexity (solutions to all the benchmarks presented

here were generated within less than 0.1 seconds) and generates good quality sub-

optimal solutions irrespectively how many agents are contained in the instance –

together with the algorithm PUSH-SWAP by Luna and Berkis [4] it is the only algo-

rithm able to generate base solution for hard setups. Authors provide working imple-

mentation of BIBOX which we exploited within our experiments. COBOPT using

BIBOX as a base solver will be referred to as COBOPT(BIBOX). As a SAT solver within

our method, MINISAT 2.2 [1] was used.

Figure 2. Makespan optimization in the 4-connected grid 8×8. A comparison with the optimal
SATPLAN and near optimal WHCA* is shown.

 Standard benchmark setups for cooperative path planning which consists of a 4-

connected grid graph and randomly arranged initial and goal locations for agents were

used. Various parameters of the COBOPT(BIBOX) and other methods were observed in

the dependence of the increasing number of agents in the instance. Two setups were

used: grids of size 8×8 and 16×16 with number of agents ranging from 1 to 54 and 1

to 128 respectively. The timeout of 240s and 120s per SAT solver invocation was

used for these setups respectively. Makespan bounds of 8 and 6 were used respective-

ly. Additionally there was an overall timeout of 7200s (2 hours) after which the opti-

mization process was terminated.

Figure 3. Runtime measurements per optimization iteration in 8×8 grid. The base solution can
be produced in less than 0.1s.

0

8

16

24

32

40

0 2 4 6 8 10 12 14 16

M
ak

es
p

an

COBOPT(BIBOX) Makespan Optimization
Grid 8x8 (easy setup)

Original (BIBOX)

Optimized|1st iter.

Optimized|2nd iter.

Optimized|final iter.

WHCA*(16)

SATPLAN|optimal

0

160

320

480

640

18 22 26 30 34 38 42 46 50 54

M
ak

es
p

an

COBOPT (BIBOX) Makespan Optimization
Grid 8x8 (hard setup) Original (BIBOX)

Optimized|1st iter.

Optimized|2nd iter.

Optimized|final iter.

0

1800

3600

5400

7200

9000

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 R
u

n
ti

m
e

(s
ec

o
n

d
s)

COBOPT(BIBOX) Optimization Runtime
Grid 8x8 (all setups) Base solution

1st iteration
2nd iteration
3rd iteration
final iteration

|Agents|

|Agents|

|Agents|

 Due to the bigger size of SAT encodings for the 16×16 grid the optimization meth-

od uses less aggressive setup with respect to the SAT solver. Using WHCA* we ob-

served that setups with up to approximately 20% of occupied vertices are in fact easy

as only very limited cooperation among agents is necessary. This observation ruled

out from our consideration the method OD+ID as it is reported to be efficient only in

the setups with less than 10% of occupied vertices. Here we are interested primarily in

setups with occupancy in the range 20% - 50% which is increasingly harder as coop-

eration between agents gradually increases.

Table 3. MINISAT statistics (8×8 grid). Each invocation of MINISAT within COBOPT optimiza-

tion has the timeout of 240s.

|Agents|in
4-connected

grid 8x8

Number of MINISAT results in final iteration

SAT
instances

UNSAT
instances

INDET
instances

4 13 2 0

8 44 4 0

12 79 5 0

16 96 15 0

24 253 28 0

32 194 27 2

 To learn what the optimal makespan for tested instances is we tried SATPLAN

(Table 2). Unfortunately SATPLAN was able to generate solution only to instances

with small number of agents. The reason is primarily inefficiency of domain-

independent SAT encoding (Table 1).

Figure 4. Makespan optimization in the 4-connected grid 16×16.

0

40

80

120

160

0 8 16 24 32 40

M
ak

es
p

an

COBOPT(BIBOX) Makespan Optimization
Grid 16x16 (easy setup) Original (BIBOX)

Optimized|1st iter.

Optimized|2nd iter.

Optimized|final iter.

WHCA*(16)

SATPLAN|optimal

0

200

400

600

800

1000

48 56 64 72 80 88 96 104 112 120 128

M
ak

es
p

an

COBOPT(BIBOX) Makespan Optimization
Grid 16x16 (hard setup) Original (BIBOX)

Optimized|1st iter.

Optimized|2nd iter.

Optimized|final iter.

|Agents|

|Agents|

 In the following experiments we exploited the decoupled WHCA* method. Expecta-

bly it is able to generate near optimal solutions (Figure 2, Figure 4) since near optimal

path is tried to be found for each agent separately. However, this method is principal-

ly unable to solve instances where non-trivial cooperation among agents is necessary.

WHCA* was used to classify instances on easy and hard – the easy ones are those

solvable by WHCA*.

 Contrary to SATPLAN and WHCA* COBOPT is more suc-

cessful; it is able to provide solution to every instance to

which base solving method can do so – in case of the BIBOX

algorithm these are all the instances in our test suite.

 In case of the 8×8 grid COBOPT(BIBOX) generates very

near optimal solutions for easy setups (same as SATPLAN;

same as or better than WHCA*) - Figure 2. Nevertheless, the

most interesting behavior is exhibited in the hard region

where compression up to the ratio of

 with respect to the makespan of base solution

can be achieved. Although it is not known if optimum was actually reached, this is a

big qualitative leap from the base solution and it demonstrates efficiency of the

COBOPT optimization process.

 Supposed that certain simplification is accepted then we can calculate expected

lower bound for the optimal makespan in the 4-connected grid environment. Let us

suppose that if an agent is blocked on its path by another agent, it will either wait or

go into unblocked neighborhood all with the same probability of

. This behavior

deflects the agent from its original path and some extra steps are then necessary to

continue in the right direction. It is supposed that original path continues to vertices in

the neighborhood of blocked vertex with the same probability of

. Under these as-

sumptions we obtain that the expected number of extra steps is

 per

two original steps. Simply it means that two original steps require almost two extra

steps. We will adopt quite strong assumption and round it up to exactly two extra

steps which consequently implies that the agent actually does not reduce its distance

from the destination.

Figure 5. Runtime measurements in the 16×16 grid.

Proposition 2 (EXPECTED MAKESPAN).The expected make-span required to travel

distance in a 4-connected grid with occupancy ratio under our assumptions

is:

. ■

0

1800

3600

5400

7200

9000

0 16 32 48 64 80 96 112 128

R
u

n
ti

m
e

(s
ec

o
n

d
s)

COBOPT(BIBOX) Optimization Runtime
Grid 16x16 (all setups)

Base solution
1st iteration
2nd iteration
3rd iteration
final iteration

Expected number of extra steps to
reach vertex in target neighborhood

|Agents|

Proof. The following recurrence holds under assumptions stated above:

 where we can put . From this we

quickly obtain the required explicit form. ■

 According to above calculations COBOPT(BIBOX) generates near optimal solutions

that differs from the expected optimum by less than 25% in setups with up to occu-

pancy of 60% in the grid 8×8. Expectably in the grid 16×16 the situation is not so

optimistic, solutions differ here from the expected optimum by factor of 3.0 to 6.0 in

hard setups with occupancy up to 50%. This worse performance is mainly because of

the size of the grid which prevented us from using more aggressive optimization.

 The number of iterations until the fixed point was reached ranged from 1 to 20 with

median of 7 in case of 8×8 grid and from 2 to 31 with median of 11 for the grid

16×16. The number of SAT solver invocations is reported in Table 3. It is clear that in

our approach the SAT solver is invoked many times with relatively easy instances.

 Runtime1 is reported in Figure 3 and Figure 5. Despite hundreds of SAT solver

invocations the overall runtime is kept in acceptable bounds. Fortunately, the COBOPT

method is very friendly to multithreaded implementation. Hence the scalability of the

method is extremely good (provided that computational resources are available).

Moreover, if the method for producing base solutions is fast enough then COBOPT

represents the anytime method in fact – at any time step the solving process can be

terminated and feasible (sub-optimal) solution is returned.

 To get insight what happen when a solver is used for optimization we investigated

distribution of the number of actions executed in parallel – Figure 6. Base solutions

seem to suffer from locked agents which are forced to wait until their path is freed. In

optimized solutions, as many as possible agents are actively moving towards goals –

it is possible to observe that agents utilize almost all the available unoccupied space.

Figure 6. Distribution of parallelism in the grid 16×16. Almost all the free space is used for
moving in the optimized solution.

6 Discussion, Conclusions, and Future Works

The new SAT based solving method for cooperative path planning called COBOPT

has been presented. To be able to use a SAT solver for cooperative path-planning we

1 All the runtime measurements were done on a machine with the 6 core CPU Intel Xeon 2.0GHz and

12GiB RAM under Linux kernel 2.6.24-19. All the 6 cores of the CPU were exploited in parallel.

1

2…

4…
8…

0

100

200

0
16

32
48

64
80

N
u

m
b

er
 o

f
m

o
ve

s

Parallelism

Original Paralellism
Grid 16x16

1

32

56
1…

0

10

20

30

40

0
16

32
48

64
80

N
u

m
b

er
 o

f
m

o
ve

s

Parallelism

Optimized Paralellism
Grid 16x16

|Agents| |Agents|

also developed a new SAT encoding for cooperative instances. The encoding utilizes

properties of cooperative planning in order to reduce its size and increase efficiency.

 The COBOPT method was shown that it is able to generate near optimal or good

quality solutions in setups with high occupancy of the environment by agents. It is

the first method capable of doing so. In our experiments we solved 4-connected grid

instances of size up to 16×16 with up to 50% space occupied by agents with high

quality makespans. One of the positive aspects of the new approach is also the fact

that it can be easily parallelized for multi-core architectures which supports better

scalability.

 The COBOPT method has also quite strong implications for classical planning. Pro-

vided that efficient makespan sub-optimal planner is available, COBOPT can be imme-

diately used to optimize its output (SASE and SATPLAN encodings are ready). A pos-

sible future improvement is to reduce the size of the domain dependent encoding for

sparsely populated instances. The application of binary search for solvable instance

may be also revised as other types of search may be more efficient.

References

1. Eén, N., Sörensson, N. An Extensible SAT-solver. Proceedings of Theory and Applications

of Satisfiability Testing (SAT 2003), pp. 502-518, LNCS 2919, Springer, 2004.

2. Huang, R., Chen, Y., Zhang, W. A Novel Transition Based Encoding Scheme for Planning

as Satisfiability. Proceedings AAAI 2010, AAAI Press, 2010.

3. Kautz, H., Selman, B. Unifying SAT-based and Graph-based Planning. Proceedings of the

16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 318-325,

Morgan Kaufmann, 1999.

4. Luna, R., Berkis, K., E. Push-and-Swap: Fast Cooperative Path-Finding with Complete-

ness Guarantees. Proceedings of the 22nd International Joint Conference on Artificial In-

telligence (IJCAI 2011), pp. 294-300, IJCAI/AAAI Press, 2011.

5. Ratner, D., Warmuth, M. K. Finding a Shortest Solution for the N × N Extension of the

15-PUZZLE Is Intractable. Proceedings of AAAI 1986, pp. 168-172, Morgan Kaufmann,

1986.

6. Rintanen, J. Compact Representation of Sets of Binary Constraints. Proceedings of the

17th European Conference on Artificial Intelligence (ECAI 2006), pp. 143-147, IOS Press,

2006.

7. Ryan, M. R. K. Exploiting Subgraph Structure in Multi-Robot Path Planning. Journal of

Artificial Intelligence Research (JAIR), Volume 31, pp. 497-542, AAA Press, 2008.

8. Silver, D. Cooperative Pathfinding. Proceedings of the 1st Artificial Intelligence and

Interactive Digital Entertainment Conference (AIIDE 2005), pp. 117-122, AAAI Press,

2005.

9. Standley, T. S. Finding Optimal Solutions to Cooperative Pathfinding Problems. Proceed-

ings of the 24th Conference on Artificial Intelligence (AAAI 2010), AAAI Press, 2010.

10. Standley, T. S., Korf, R. E. Complete Algorithms for Cooperative Pathfinding Problems.

Proceedings of IJCAI 2011, 668-673, IJCAI/AAAI Press, 2011.

11. Surynek, P. A Novel Approach to Path Planning for Multiple Robots in Bi-connected

Graphs. Proceedings of the International Conference on Robotics and Automation (ICRA

2009), pp. 3613-3619, IEEE Press, 2009.

12. Wang, K. C., Botea, A. MAPP: a Scalable Multi-Agent Path Planning Algorithm with

Tractability and Completeness Guarantees. JAIR, Volume 42, pp. 55-90, AAAI Press,

2011.

