

Towards Optimal Cooperative Path Planning in Hard Setups through Satisfiability Solving Pavel Surynek

Charles University in Prague, Czech Republic and Kobe University, Japan

Problem of Cooperative Path-planning (CPP)

- Abstraction for tasks of motion of multiple (autonomous or passive) entities in a certain environment (real or virtual).
 - Entities are given an **initial** and a **goal** arrangement in the environment.
 - We need to plan movements of entities in time, so that entities reach the goal arrangement while physical limitations are observed.

Physical limitations are:

PRICAI 2012

- Entities must not collide with each other.
- Entities must **not collide with obstacles** in the environment.

Pavel Surynek

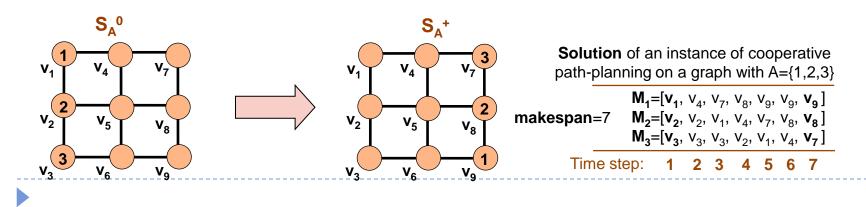
CPP – Formal definition (1)

Wilson, 1974; Kornhauser et al., 1984; Ryan, 2008

- The environment is modeled as an undirected graph where vertices represent locations in the environment occupied by agents and edges enable agents to go to the neighboring location.
- **Formal definition** of the task of CPP
 - It is a quadruple $\Pi = (G, A, S_A^0, S_A^+)$, where:
 - G=(V,E) is an undirected graph,
 - A = { $a_1, a_2, ..., a_\mu$ }, where $\mu < |V|$ is a set of agents,
 - S_A⁰: A →V is a uniquely invertible function determining the initial arrangement of agents in vertices of G, and
 - S_A⁺: A →V is a uniquely invertible function determining the goal arrangement of agents in vertices of G.

CPP – Formal Definition (2)

Wilson, 1974; Kornhauser et al., 1984; Ryan, 2008

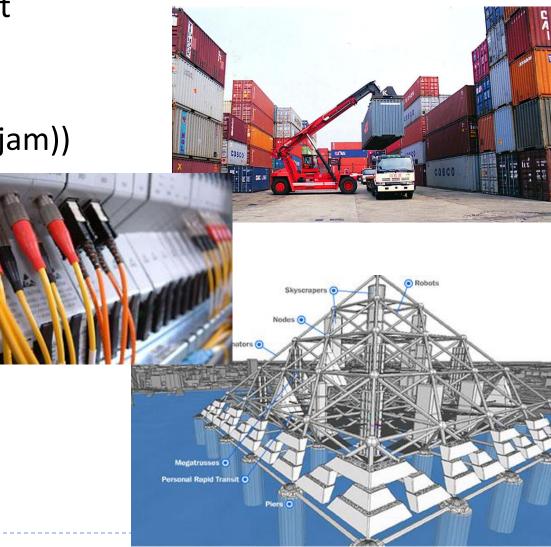

PRICAI 2012

The dynamicity of the task is as follows:

An agent occupying a vertex at time step *i* can move into a neighboring vertex (the move is finished at time step *i+1*) if the target vertex is **unoccupied** at time step *i* and **no other agent** is moving simultaneously into the same target vertex

For the given $\Pi = (G, A, S_A^0, S_A^+)$, we need to find:

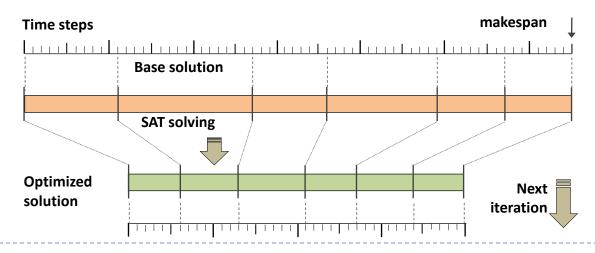
A sequence of moves for every agent such that dynamicity constraint is satisfied and every agent reaches its goal vertex.


Pavel Surynek

Motivation

- Container rearrangement (entity = container)
- Heavy traffic
 (entity = automobile (in jam))
- Data transfer
 (entity = data packet)
- Generalized lifts
 (entity = lift)

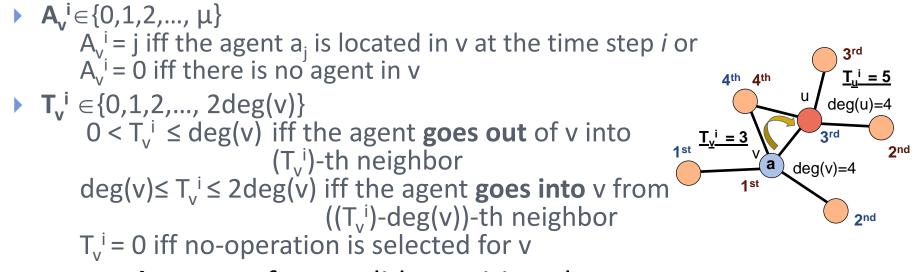
PRICAI 2012



Pavel Surynek

COBOPT – CPP as Propositional Satisfiability

- Construct a propositional formula such that
 - satisfiable iff there exists a solution to CPP of a given makespan
- Suppose we are provided with makespan suboptimal solution (base solution – can be generated in polynomial time [ICRA 2009, ICTAI 2009])
 - find a makespan optimal replacement of the given sub-sequence of the base solution



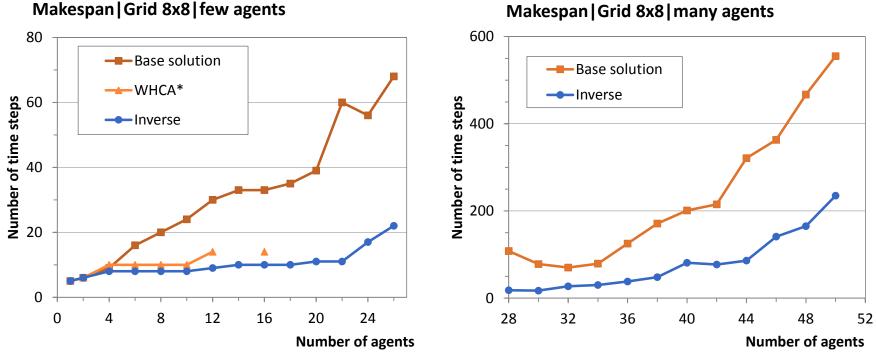
Inverse Encoding of CPP

- Makespan m, initial state and goal state are given
 - encode states of the planning world at time steps 1,2,...,m
 - step 1 equals to the initial state
 - step m equals to the goal state

PRICAI 2012

- State variables: "what agent is located in the given vertex"
- Step i consists of the following integer variables for each v∈V:

+ constraints to enforce valid transitions between states


Encoding Size Comparison

- Experimental setup:
 - 4-connected grid of size 8x8
 - random initial and goal arrangement of agents

A in the 4-connected grid 8×8	Number of layers	SATPLAN encoding		SASE encoding		INVERSE encoding	
		Variables	Clauses	Variables	Clauses	Variables	Clauses
4	8	5.864	55.330	11.386	53.143	5.400	38.800
8	8	10.022	165.660	19.097	105.724	5.920	48.224
12	8	14.471	356.410	26.857	168.875	5.920	46.176
16	10	30.157	1.169.198	51.662	372.140	8.122	76.192
24	10	43.451	2.473.813	73.101	588.886	8.122	71.072
32	14	99.398	8.530.312	157.083	1.385.010	12.396	137.120

Makespan Comparison – grid 8x8

- Compared against WHCA*
 - WHCA* is decoupled
 - often produces near makespan optimal solution

Makespan | Grid 8x8 | many agents

Concluding Remarks

- Improving sub-optimal solutions of CPP by modeling the problem as propositional satisfiability.
- COBOPT: short subsequences of a sub-optimal solution are replaced by the makespan optimal ones.
- Novel SAT encoding inverse encoding
 - fewer variables and clauses than domain independent encodings SASE and SATPLAN
- Our related works:
 - [SoCS 2012] a generalization of COBOPT for domain-independent planning, iCOBOPT – improved variant of COBOPT
 - [ICTAI 2012] an alternative encoding based on all-different constraints

[ECAI 2012] – a new encoding style of the all-different constraint
 PRICAI 2012