

CHARLES UNIVERSITY IN PRAGUE

FACULTY OF MATHEMATICS AND PHYSICS

DOCTORAL DISSERTATION

RNDr. PAVEL SURYNEK

CONSTRAINT PROGRAMMING IN PLANNING

ADVISER: DOC. RNDr. ROMAN BART¡K, Ph.D.

DEPARTMENT OF THEORETICAL COMPUTER SCIENCE AND
MATHEMATICAL LOGIC

PRAGUE 2008

ii

ACKNOWLEDGEMENT

I would like to thank my supervisor Doc. RNDr. Roman BartÁk, Ph.D. for his systematic

guidance, collaboration, and support. I also would like to thank many anonymous reviewers

for providing me a valuable feedback on my research. Finally let me say thank to everyone

who supported me during my Ph.D. studies.

 I declare that this thesis was composed by myself and all presented results are my own

unless otherwise stated.

 Pavel Surynek

iii

TABLE OF CONTENTS

Abstract viii

1 Introduction 1

 1.1 The Thesis in the Context of Artificial Intelligence 2

 1.2 Contributions .. 3

 1.3 Overview by Chapters .. 4

2 Classical Planning and Constraint Programming 5

 2.1 Classical Planning... 5

 2.1.1 Motivating Example .. 6

 2.2 Extensions Related to Classical Planning... 9

 2.3 Planning in Practice .. 10

 2.4 Representation of Planning Problems... 11

 2.4.1 Classical Representation ... 11

 2.4.2 Representation Using State Variables ... 17

 2.5 Complexity of Planning Problems.. 20

 2.6 Overview of Planning Techniques.. 20

 2.7 Planning Using Planning Graphs.. 22

 2.7.1 Planning Graphs .. 23

 2.7.2 GraphPlan Algorithm .. 28

 2.8 Constraint Programming... 33

 2.8.1 Constraint Satisfaction Problems .. 34

 2.8.2 Solving Techniques ... 35

 2.8.3 Consistency Techniques.. 36

 2.8.4 Arc-consistency... 37

 2.8.5 Algorithm AC-3 .. 38

 2.8.6 Global Constraints and Problem Modeling................................. 40

 2.8.7 Problem Modeling... 40

3 Contributions to Planning Using Planning Graphs 42

 3.1 Problem of Finding Supporting Actions... 42

 3.2 Basic Constraint Model: Arc-consistency .. 45

 3.2.1 Variants of Constraint Propagation ... 49

 3.2.2 Experimental Evaluation ... 55

iv

 3.2.3 Overall Analysis of Results... 63

 3.2.4 Discussion and Related Works.. 63

 3.3 Advanced Constraint Model: Global Constraints................................. 65

 3.3.1 Projection Consistency.. 65

 3.3.2 Preprocessing Step: Clique Decomposition 66

 3.3.3 Counting Derived from Clique Decomposition 68

 3.3.4 Experimental Evaluation ... 76

 3.3.5 Conclusion and Discussion ... 78

 3.4 Tractable Class of Problem of Finding Supports.................................. 78

 3.4.1 Tractability .. 79

 3.4.2 Experimental Evaluation ... 89

 3.4.3 Discussion of Results .. 92

 3.5 Difficult Planning Problems ... 92

 3.5.1 Experiments... 93

 3.6 Summary and Conclusion... 96

4 Contributions to Boolean Satisfiability 98

 4.1 SAT Reformulation Using Clique Decomposition............................... 100

 4.1.1 Inference of Conflicting Literals ... 101

 4.1.2 Clique Decomposition and Literal Contribution Counting 104

 4.1.3 Output of the Reformulation Process .. 106

 4.2 Experimental Results .. 107

 4.2.1 Difficult SAT Instances Selected for Experiments 108

 4.2.2 Effect of Problem Reformulation.. 109

 4.3 Related Works .. 111

 4.4 Summary and Conclusion... 112

5 Conclusions and Future Works 113

Bibliography 115

A Difficult Planning Problems 131

B Removable Medium 136

v

List of Algorithms

2.1 GRAPHPLAN - PLAN EXTRACTION ... 29

2.2 GRAPHPLAN ... 32

2.3 AC-3 .. 38

3.1 SOLVING METHOD FOR BASIC CONSTRAINT MODEL OF PROBLEM OF SUPPORTS 47

3.2 CONSTRAINT PROPAGATION - VARIANT A ... 50

3.3 CONSTRAINT PROPAGATION - VARIANT B ... 51

3.4 CONSTRAINT PROPAGATION - VARIANT C ... 52

3.5 GREEDY CLIQUE COVER ALGORITHM.. 67

3.6 PROJECTION CONSISTENCY PROPAGATION ALGORITHM 71

3.7 CONSTRAINT PROPAGATION - PROJECTION CONSISTENCY 76

3.8 CONSTRAINT PROPAGATION - STRONG PROJECTION CONSISTENCY........................ 83

List of Figures

2.1 EXAMPLE OF A SIMPLE PLANNING ENVIRONMENT IN WHICH

 THE PLANNING TASK TAKES PLACE... 6

2.2 EXAMPLE OF A GOAL FOR THE SIMPLE PLANNING

 ENVIRONMENT FROM FIGURE 2.1 .. 7

2.3 EXAMPLE OF A TIME-STEP-OPTIMAL PLAN FOR THE PLANNING PROBLEM 8

2.4 STRUCTURE OF PLANNING GRAPH .. 27

2.5 ARC-CONSISTENCY OF A BINARY CONSTRAINT.. 37

3.1 PROBLEM OF FINDING SUPPORTS FOR A SUB-GOAL .. 43

3.2 REDUCTION OF BOOLEAN SATISFIABILITY

 TO THE PROBLEM OF FINDING SUPPORTS ... 45

3.3 COMPARISON OF OVERALL SOLVING TIMES (LOGARITHMIC SCALE) -

 (STD, VAR-A, VAR-B, VAR-C) ... 59

3.4 COMPARISON OF PLAN EXTRACTION PHASES TIMES (LOGARITHMIC SCALE) -

 (STD, VAR-A, VAR-B, VAR-C) ... 60

3.5 COMPARISON OF NUMBER OF CONSTRAINT CHECKS - (STD, VAR-A, VAR-B, VAR-C).. 61

3.6 COMPARISON OF NUMBER OF BACKTRACKS - (STD, VAR-A, VAR-B, VAR-C) 62

3.7 COMPARISON OF IMPROVEMENTS WITH RESPECT TO VARIANT A -

 (STD, VAR-B, VAR-C) .. 62

3.8 ILLUSTRATION OF MUTEX GRAPH AND CLIQUE DECOMPOSITION........................... 67

3.9 ILLUSTRATION OF PROJECTION CONSISTENCY ... 74

3.10 COMPARISON OF OVERALL SOLVING TIMES (LOGARITHMIC SCALE) -

 (STD, VAR-A, VAR-B, VAR-C, PRJ) ... 77

vi

3.11 A DIAGRAM OF MERGED POSITIVE EFFECTS OF THE CLIQUE DECOMPOSITION 87

3.12 CLIQUE INTERSECTION GRAPH ... 88

3.13 COMPARISON OF OVERALL SOLVING TIMES (LOGARITHMIC SCALE) -

 (STD, VAR-C, PRJ, TRACT).. 90

3.14 COMPARISON OF PLAN EXTRACTION PHASE TIMES (LOGARITHMIC SCALE) -

 (STD, VAR-C, PRJ, TRACT).. 90

3.15 COMPARISON OF NUMBER OF BACKTRACKS (LOGARITHMIC SCALE) -

 (STD, VAR-C, PRJ, TRACT).. 91

3.16 COMPARISON OF IMPROVEMENTS WITH RESPECT TO

 STANDARD GRAPHPLAN - (VAR-C, PRJ, TRACT) ... 91

4.1 GRAPH OF TRIVIAL CONFLICTS AND INTERMEDIATE GRAPH OF CONFLICTS............ 103

4.2 FINAL GRAPH OF CONFLICTS .. 107

List of Tables

2.1 COMPLEXITY OF PLANNING GRAPH ... 26

2.2 COMPLEXITY OF AC-3 .. 40

3.1 COMPLEXITY OF PROPAGATION IN BASIC CONSTRAINT MODEL............................. 54

3.2 STATISTICAL CHARACTERISTICS COLLECTED DURING

 EXPERIMENTAL EVALUATION... 57

3.3 CHARACTERISTICS OF SOLUTION CONCURRENT PLANS FOR

 DOCK WORKER ROBOTS PROBLEMS .. 58

3.4 CHARACTERISTICS OF SOLUTION CONCURRENT PLANS FOR

 TOWERS OF HANOI PROBLEMS .. 58

3.5 CHARACTERISTICS OF SOLUTION CONCURRENT PLANS FOR

 REFUELING PLANES PROBLEMS .. 59

3.6 PERFORMANCE COMPARISON OF PLANNERS ON DIFFICULT PROBLEMS - PART I 94

3.7 PERFORMANCE COMPARISON OF PLANNERS ON DIFFICULT PROBLEMS - PART II 95

4.1 EXPERIMENTAL COMPARISON OF SAT SOLVERS - PART I....................................... 109

4.2 EXPERIMENTAL COMPARISON OF SAT SOLVERS - PART II...................................... 110

B.1 CONTENT OF THE ATTACHED REMOVABLE MEDIUM .. 136

vii

List of Examples

2.1 EXAMPLE OF LANGUAGE, STATE, AND GOAL ... 12

2.2 EXAMPLE OF ACTIONS... 13

2.3 EXAMPLE OF APPLICATION OF AN ACTION .. 14

2.4 EXAMPLE OF PLANNING OPERATORS AND SUBSTITUTIONS 16

2.5 EXAMPLE OF LANGUAGE, STATE, AND GOAL IN STATE

 VARIABLE REPRESENTATION.. 18

2.6 EXAMPLE OF PLANNING OPERATOR IN STATE

 VARIABLE REPRESENTATION.. 19

2.7 EXAMPLE OF A CONSTRAINT SATISFACTION PROBLEM... 34

viii

ABSTRACT

This thesis deals with planning problems and Boolean satisfiability problems that represent

major challenges for artificial intelligence.

 Planning problems are stated as finding a sequence of actions that reaches certain goal.

One of the most successful techniques for solving planning problems is a concept of plan-

ning graphs and the related GraphPlan algorithm. In the thesis we identified a weak point

of the original GraphPlan algorithm which is the search for actions that support certain

goal. We proposed to model this problem as a constraint satisfaction problem and we solve

it by maintaining arc-consistency. Several propagation variants for maintaining arc-consis-

tency in the model are proposed. The model and its solving process were integrated into the

general GraphPlan-based planning algorithm. The performed experimental evaluation

showed improvements in order of magnitude in several measured characteristics (overall

solving time, number of backtracks) compared to the standard version of the GraphPlan

algorithm.

 Next we proposed a stronger consistency technique for pruning the search space during

solving the problem of finding supports. It is called projection consistency and it is based

on disentangling the structure of the problem formulation. If the problem of finding sup-

porting actions is interpreted as a graph then this graph is typically well structured - it con-

sists of a small number of relatively large complete sub-graphs. We exploit this structural

information to rule out actions from further consideration using a special reasoning. This

process reduces the search space significantly. The performed experimental evaluation

showed again significant improvements compared to the previous method based on arc-

consistency.

 Finally, we proposed a special class of the problem of finding supporting actions that

can be solved in polynomial time. Thus if the problem satisfies certain conditions it be-

comes easy to solve (it belongs to the class of tractable problems). We also proposed heu-

ristics that guide the solving process and simplify the problem to become tractable in early

stage of the process. Experimental evaluation showed that the method based on preference

of this class of problems performs best of all the developed methods. Moreover, some of

the planning problems were solved without backtracking. The experiments also showed that

this method is competitive with state-of-the-art planners on certain problems.

 The contribution of this thesis to solving Boolean satisfiability problems consists in

developing a special preprocessing method again based on disentangling the structural in-

formation encoded in the problem. The developed method is called clique consistency - it is

an adaptation of projection consistency for the area of Boolean satisfiability. The preproc-

ix

essing method either decides the problem or passes the simplified problem to the general

solving system. The performed experiments showed that the clique consistency technique

can improve the solving process of difficult classes of Boolean satisfaction problems sig-

nificantly in comparison with several state-of-the-art SAT solvers.

1

CHAPTER 1

INTRODUCTION

This thesis is a presentation of the research results achieved during my Ph.D. studies at

Charles University in Prague. The primary topic of this thesis is an application of constraint

programming in artificial intelligence planning. An application of constraint programming

techniques to improve solving of planning problems is the main goal of the thesis.

 Planning problems represent an intensively studied research area of artificial intelli-

gence. Due to their complexity, which is far beyond tractability, solving planning problems

is an area still requiring innovations. Another important motivation for developing more

powerful solving techniques for planning problems is their practical importance. The areas

of application of planning technology range from industrial planning of manufacturing op-

erations to planning of actions for autonomous planetary exploration agents.

 From a wider point view, the research effort was not concentrated on planning prob-

lems only but also on improving search for a solution of a certain problem generally. There-

fore, results achieved in the area of solving satisfiability problems are also presented in the

thesis (a satisfiability problem is a task of finding a valuation of variables that satisfies a

given logical formula). The satisfiability problems represent a challenge for research in

artificial intelligence. They are also used as the main benchmark suit for measuring quali-

ties of improvements in search techniques since large collections of benchmark problems

are available. Again, the motivation for improving techniques for solving satisfiability

problems is not only theoretical. Real life applications where satisfiability problems must

be solved account for example automated software testing or microprocessor verification.

 The pivotal concept of both major topics of this thesis (planning problems and satisfi-

ability problems) is search for solution. The search for solution can be regarded as an ex-

haustive testing (systematic or non-systematic) of possible candidates for solution. For to-

day’s computational hardware the search seems to be the only option to solve the difficult

problems - namely the problems that are NP-complete or even more difficult (Cook, 1971).

In the thesis we are trying to improve the search for specific problems by specialized tech-

niques. As a result we are able to test more candidates for solution and to solve harder prob-

lems.

CHAPTER 1. INTRODUCTION 2

1.1 The Thesis in the Context of Artificial Intelligence

Let us adopt a simplified intuitive statement that one of the engineering goals of artificial

intelligence is to build an intelligent agent that reasons and behaves rationally when it is

solving problems (Russell and Norvig, 2003). The rational reasoning and behavior is de-

fined as the reasoning and behavior typical for humans when they are solving problems.

 Two types of problems are studied in the thesis - planning problems (Allen et al.,

1991; Ghallab et al., 2004) and satisfiability problems (Davis and Putnam, 1960; Cook,

1971). Solving of these problems produces something that can be interpreted as rational

reasoning and behavior. For example, acting according to plan which solves a certain plan-

ning problem looks like a rational behavior. From this point of view, the topics studied in

this thesis contribute to building of such an intelligent agent. And hence contribute to one

of the goals of artificial intelligence as a science.

 Planning problems are tasks of determining a sequence of actions that reach a certain

goal. A planning problem takes place in some kind of an abstraction from the real world.

This abstraction represents a simplification of the real world which for example abstracts

from the continuous character of the reality - that is typically implemented by the instanta-

neous character of actions. The actions itself are local transformations of the planning

world.

 Satisfiability problem is a problem of deciding whether a given Boolean formula has a

satisfying valuation of its variables. Thus the solution of such problem is either the answer

yes (possibly accompanied with the satisfying valuation) or the answer no.

 The main source of inspirations for improvements in solving planning problems and

satisfiability problems was another area of artificial intelligence - constraint programming

(Dechter, 2003). In particular, constraint programming methodology provides a concept of

so called consistency techniques (or propagation/filtering techniques). Intuitively said, a

consistency technique can be used to predict the impact of decisions made during the search

on future evolution of the search process. Thus the consistency technique reduces the num-

ber of candidates for solution that need to be tested (a series of decisions that does not lead

to the solution is identified early).

 There are two main approaches how ideas from constraint programming can be applied

in another area of problem solving. One approach is to take an existing technique from con-

straint programming and apply it directly to solve a problem of our choice. Another ap-

proach is to regard constraint programming as an inspiration only and develop specialized

techniques for specific problems. We used both approached in the thesis. However, the lat-

ter approach when we developed a specialized technique inspired by constraint program-

ming proved to be more efficient.

CHAPTER 1. INTRODUCTION 3

1.2 Contributions

The contribution of this thesis to above topics of artificial intelligence consists in develop-

ing of new concepts inspired by constraint programming. The proposed concepts improve

the solving process of planning problems and Boolean satisfaction problems in certain

cases.

 We focused on improving the solving technique for planning problems over so called

planning graphs. Planning graphs and the related algorithm GraphPlan represent one of the

most successful concepts for working with so called concurrent plans - plans that allow

more than one action to be performed in a single time-step. Although the GraphPlan algo-

rithm is considered no longer to be state-of-the-art its building blocks are still used in state-

of-the-art planners (for example formulation of problems using planning graphs is still

used). We identified some weak points of the GraphPlan algorithm. Namely, the process

how supporting actions for a certain goal are searched is very inefficient within the original

algorithm (the problem itself is NP-complete). We improved this process by formulating

the problem as a constraint satisfaction problem and solved it using maintaining a certain

type of local consistency (arc-consistency - Mackworth, 1977).

 The relatively successful application of local consistency was an inspiration to develop

a more global and more specialized type of consistency for the problem. The new type of

consistency is based on disentangling the structure of the problem hidden in its formulation.

We visualized the problem as a graph. This uncovered that the graphical structure of the

problem of finding supporting actions is far from random. The graph is typically formed by

a small number of large complete sub-graphs (plus some additional edges). The consistency

that utilizes this structure for solving the problem of supports is described in the thesis. This

new technique is called projection consistency.

 The concept of projection consistency was further improved. We found that it can be

used to define a special class of the problem of finding supporting actions that can be

solved in polynomial time. A special variant of the solving process for the problem of find-

ing supports within the GraphPlan algorithm was proposed. The solving process utilizes the

class of problems solvable in polynomial time. The experimental evaluation unexpectedly

showed that this enhancement of GraphPlan algorithm becomes competitive with today’s

state-of-the-art planners on certain problems (this was unexpected because of a not well

optimized testing implementation compared to fine tuned implementations of

state-of-the-art planners).

 Finally, we applied the experiences gained during experimentation with planning prob-

lems in solving Boolean satisfaction problems. We proposed a special preprocessing of

satisfiability problems which helps the general solver to decide the problem. It is again

based on disentangling the structure of the formulation of the problem - again the problem

is interpreted as a graph. Contrary to problems of finding supporting actions the graphical

representation of satisfiability problems is unstructured and must be processed further to

CHAPTER 1. INTRODUCTION 4

make the structures visible. The method for preprocessing satisfiability problems was called

clique consistency since it is again based on complete sub-graph structures.

 All the results presented in the thesis were published in reviewed international confer-

ences CP (Principles and Practice of Constraint Programming), FLAIRS (Florida Artificial

Intelligence Research Society International Conference), IICAI (Indian International Con-

ference on Artificial Intelligence), and SARA (Symposium on Abstraction, Reformulation,

and Approximation), in the international workshop CSCLP (Annual ERCIM Workshop on

Constraint Solving and Constraint Programming), and in the book Recent Advances in

Constraints 2007 (selected papers from CSCLP).

1.3 Overview by Chapters

Chapter 2: Classical Planning and Constraint Programming. This chapter is devoted to

the general preliminaries for classical planning and constraint programming technology.

Formalisms for expressing planning problems and the basic concepts of constraint pro-

gramming are described in this chapter. ズ

Chapter 3: Contributions to Planning Using Planning Graphs. Having the preliminaries

from the previous chapter, constraint models for solving the problem of finding supporting

actions and related consistency techniques are developed here. Arc-consistency and projec-

tion consistency methods are analyzed here theoretically as well as experimentally on the

number of planning problems. A special class of the problem of finding supporting actions

that can be solved in polynomial time is defined in this chapter. The chapter describes origi-

nal work. ズ

Chapter 4: Contributions to Boolean Satisfiability. This chapter is devoted to studying

Boolean satisfaction problems. A special preprocessing method for Boolean satisfaction

problems and experimental comparison with state-of-the-art solvers is given in this chapter.

The whole chapter describes original work. ズ

Chapter 5: Conclusions and Future Work. This chapter is devoted to the summary of the

contributions of the thesis and to the discussion the possible future development. ズ

Appendix A: Difficult planning problems. Several difficult planning problems that were

used for competitive comparison in chapter 3 are described in detail in this appendix. ズ

Appendix B: Attached removable medium. This appendix describes the contents of the

attached removable medium. ズ

5

CHAPTER 2

CLASSICAL PLANNING AND

CONSTRAINT PROGRAMMING

This chapter is devoted to the basic preliminaries for classical planning and constraint pro-

gramming technology. This chapter should be regarded as the introduction to existing con-

cepts upon which the main parts of the thesis builds.

2.1 Classical Planning

Planning problems (Allen et al., 1991; Ghallab et al., 2004) rank among the most challeng-

ing classes of problems arising in artificial intelligence. The planning problem is stated as a

task of determining a sequence of actions for a certain agent (or a group of agents) whose

execution achieves a given goal from a given initial state. This sequence of actions is called

a plan in this context. For simplicity, it is assumed that the planning task takes place in a

fully observable, static and deterministic environment that represents an abstraction from

the real world. A fully observable environment is such that a reasoning mechanism has the

complete information about the state of the environment. A static environment is such an

environment that can be changed only by the activity of an agent we plan for. In other

words, the environment is not changed by any out of control external activities. Finally, a

deterministic environment is such an environment in which the results of the agent’s activ-

ity can be anticipated completely.

 Even using such a level of abstraction the planning problems remain computationally

extremely difficult. The task of finding a plan is generally intractable (EXPSPACE-com-

plete) or even undecidable depending on the expressivity of tools for describing the prob-

lems (Ghallab et al., 2004; Erol et al., 1996). This theoretical difficulty of planning prob-

lems may evoke that we are unable to solve these problems automatically using computers

of today’s architecture. However, even relatively large complex planning problems can be

CHAPTER 2. CLASSICAL PLANNING 6

solved in practice by today’s automated solvers. This success is achieved by incorporating

efficient and intelligent algorithmic techniques into the automated solver.

 By solving planning problems we typically mean the task of finding optimal plans. The

step-optimal planning produces the shortest possible plans that reach the given goal.

2.1.1 Motivating Example

For a quick introduction into planning problems, consider an example depicted in figure 2.1

where we have two locations equipped with cranes and connected by a road. Next, there is

a truck and several boxes stacked in piles. The cranes can manipulate boxes arbitrarily us-

ing their manipulating hand and the truck can move between locations possibly carrying

some boxes (at most two). The description of the state of the planning environment must

comprise what boxes are at what location, which box is laid on top of another box, whether

a crane is holding some box etc. That is, we need to know what are the relations among the

objects and agents in the environment.

Figure 2.1. EXAMPLE OF A SIMPLE PLANNING ENVIRONMENT IN WHICH THE PLANNING TASK TAKES

PLACE. The environment consists of two locations with several boxes stacked in piles. The locations

are connected by a road. Each location is equipped with a crane. There is a truck which can carry at

most two boxes - one box on itself and one on its trailer. The cranes can manipulate boxes (possible

actions are for instance take a box, put a box) and the truck can carry boxes from one location to

another location (the corresponding action is move a truck). The actions are instantaneous, that is,

we abstract from continuous execution of an action. Furthermore, we abstract from other properties

such as exact positions of the objects in the environment.

 On the other hand, it is possible to abstract from exact positions of boxes within the

location without affecting the ability to reason about the problem with respect to the given

goal. The similar abstraction can be done in regard of actions. Since only the information

about sequencing of take a box (with specifying what a box) and put the box (with specify-

ing on what a box) actions is relevant when reasoning about the goal, it is possible to ab-

3
2
1

A B

4

5

X Y

Z

CHAPTER 2. CLASSICAL PLANNING 7

stract from exact controlling of the robot motion as a continuous event. An action is an in-

stantaneous procedure. That is when an action is applied we immediately obtain the results.

 The whole planning environment is fully observable for a reasoning procedure. That is,

the reasoning procedure sees the whole picture of the environment as for example shown in

figure 2.1 (knows what relations among objects and agents are currently satisfied). The only

change of the environment can be made through acting of agents (cranes and truck in the

figure 2.1 are the agents that can change the environment). The agents act through allowed

actions. The result of agent’s actions can be fully anticipated (the result of a move action is

always the movement of the truck to the specified location).

Figure 2.2. EXAMPLE OF A GOAL FOR THE SIMPLE PLANNING ENVIRONMENT FROM FIGURE 2.1. The

boxes originally stacked in a single pile at the right location are required to be split in two piles at

the right location. The similar condition is required for boxes originally stacked at the right location;

these are required to be stacked at the left location. The depicted goal does not care about the final

position of the truck.

 The planning problem is a task of finding a sequence of actions that transforms the

given initial state of the planning environment into the state satisfying a goal. The goal can

be regarded as a description of a set of states of the environment that we consider as satis-

factory for meeting our intention. See for instance figure 2.2 where the goal state of the

planning environment with cranes and truck is depicted. The goal shown in the figure re-

quires that boxes originally stacked in a single pile at the left location are now stacked in

two piles at the right location. The similar condition is required for the boxes originally

stacked at the right location; these are required to be at the left location. Nevertheless, the

goal specifies nothing about the final position of the truck since we do not care about that.

In other words, every state of the planning environment with boxes positioned according to

the requirements of the goal and with arbitrary position of the truck satisfies the goal.

A B

4
5

3

2
1

The final position of the
truck can be arbitrary

X Y

Z

CHAPTER 2. CLASSICAL PLANNING 8

Figure 2.3. EXAMPLE OF A TIME-STEP OPTIMAL PLAN FOR THE PLANNING PROBLEM. The plan solves

the planning problem with the initial state from figure 2.1 and with the goal from figure 2.2. When

an action is executed in a state of the environment, the result is another state changed accordingly.

The problem is solved if we obtain a sequence of actions that reaches some state satisfying the

given goal. The plan shown here is step-optimal (20 steps are necessary). That is, no shorter plan in

terms of steps exists.

Initial state of the environment

B

Plan for reaching the goal
1. take(crane_A, box_1, pile_X)
 take(crane_B, box_5, pile_Z)
2. load(truck, crane_A, box_1)
 put(crane_B, box_5, pile_Y)
3. move(truck, site_A, site_B)
 take(crane_B, box_4, pile_Z)
 take(crane_A, box_2, pile_X)
4. load(truck, crane_B, box_4)
 put(crane_A, box_2, pile_X)
5. take(crane_B, box_5, pile_Y)
 take(crane_A, box_2, pile_X)
6. put(crane_B, box_5, pile_Z)
7. put(crane_A, box_2, pile_X)
 unload(truck, crane_B, box_1)
8. move(truck, site_B, site_A)
 put(crane_B, box_1, pile_Y)
 take(crane_A, box_2, pile_X)
9. load(truck, crane_A, box_2)
 take(crane_B, box_1, pile_Y)
10. move(truck, site_A, site_B)
 put(crane_B, box_1, pile_Y)
 take(crane_A, box_3, pile_X)
11. put(crane_A, box_3, pile_X)
 unload(truck, crane_B, box_2)
12. move(truck, site_B, site_A)
 put(crane_B, box_2, pile_Y)
 take(crane_A, box_3, pile_X)
13. load(truck, crane_A, box_3)
 take(crane_B, box_5, pile_Z)
14. put(crane_B, box_5, pile_Y)
 unload(truck, crane_A, box_4)
15. move(truck, site_A, site_B)
 take(crane_B, box_5, pile_Y)
16. load(truck, crane_B, box_5)
 put(crane_A, box_4, pile_X)
17. take(crane_A, box_4, pile_X)
 unload(truck, crane_B, box_3)
18. move(truck, site_B, site_A)
 put(crane_A, box_4, pile_X)
 put(crane_B, box_3, pile_Z)
19. take(crane_B, box_2, pile_Y)
 unload(truck, crane_A, box_5)
20. put(crane_A, box_5, pile_X)
 put(crane_B, box_2, pile_Z)

A B

4
5

3
2
1

X Y

Z

A B

4

3
2

X Y

Z

1 5

A B

4

3
2

X Y

Z

5

1

A B

4
5

3
2

1

Œ

Final state of the environment

Description of the goal

Final state
satisfies the goal

Y

Z

X

A B

4
5

3
2

1 Y X

Z

CHAPTER 2. CLASSICAL PLANNING 9

 Altogether, the planning problem consists of three components. First, we are given an

initial state of the planning environment (as for example shown in figure 2.1). Second, we

are given a goal (as shown in figure 2.2). Finally, we have a set of allowed actions through

which the planning environment can be changed (for example take a box, put the box, etc.).

The task is to find a sequence of actions from the given set that transforms the given initial

state of the planning environment into a state that meets the requirements of the given goal.

The sequence of actions that achieves the goal is called a plan. An example of the plan is

shown in figure 2.3.

 When an action is applied on a state of the planning environment, the result is another

state changed accordingly. Similarly it is possible to apply a sequence of actions on a state,

which is done by applying actions one by one on the current state provided we start with the

original state. It is also possible to apply a set of non-interfering actions to a state simulta-

neously (actions that do not influence each other’s results). The evolution of the initial state

of the environment through several middle states to the final state is shown in figure 2.3. At

each step a set of actions can be applied simultaneously (or in arbitrary order one by one).

If the resulting final state satisfies the goal, the corresponding sequence of actions is solu-

tion - a plan for the given problem. Moreover, the plan shown in figure 2.3 is step-optimal

(exactly 20 steps are necessary to solve the problem). That is, no plan of fewer steps exists.

 To appreciate the difficulty of the task of finding a step-optimal plan the reader may

try to find another step-optimal plan or to prove that the plan shown in the figure is really a

step-optimal plan.

 The problem and its solution we have just intuitively introduced are often called clas-

sical planning (Ghallab et al., 2004). By this we mean a problem in which it is reasoned

about instantaneous actions and their sequencing in a deterministic environment only. We

do not care about durations of the actions, uncertainty and so on in this classical approach.

However, there exist several extended concepts of planning where the aspects such as time

play an important role.

2.2 Extensions Related to Classical Planning

There were several attempts to make the reasoning about plans more realistic and more

effective for particular situations. Let us briefly summarize them in this section.

 Temporal planning represents an extension of classical planning which tries to handle

time more realistically and more effectively. Contrary to instantaneous character of actions

in classical planning, actions are considered to have durations in temporal planning. The

most influential concepts from this area are presented in (Vilain and Kautz, 1986), (Allen,

1983), (Dechter et al., 1989), and (El-Kholy and Richards, 1996; Liatsos and Richards,

1999).

CHAPTER 2. CLASSICAL PLANNING 10

 Planning with resources (Bacchus and Ady, 2001) is another technique for capturing

properties of the real planning world. Planning with resources is trying to effectively handle

sets of entities appearing in the planning environment which behave equally and which can

be consumed or borrowed (Ghallab et al., 2004). A resource can be for example fuel, a set

of transporters or machines etc. Equality of resources means that resources of the same

type are interchangeable.

 Another paradigm of planning incorporates uncertainty into the reasoning about plans.

This is motivated by practice since in practice not all planning environments are fully ob-

servable or fully deterministic (Kaelbling et al., 1998). Uncertainty in planning is often

modeled using Markov decision processes (Kaelbling et al., 1995).

 Recently so called probabilistic planning is becoming widely studied (as it is evi-

denced by the Probabilistic planning track in the IPC - International Planning Competition

(Gerevini et al., 2006)). An effect of the action on the planning environment is a random

variable of a given distribution in the probabilistic planning (Blum and Langford, 2000;

Little et al., 2005; Little and ThiÉbaux, 2006).

 Hierarchical task network planning uses a different view of the problem (Erol et al.,

1994a, 1994b, 1996; Ghallab et al., 2004). The problem of hierarchical planning consists in

finding decompositions of compound tasks into simpler tasks which eventually leads to a

sequence of actions. This conceptual approach is often used in practice.

2.3 Planning in Practice

Planning techniques are necessary when autonomous behavior of some agent is necessary.

The most prominent example of this kind is distance space and planetary exploration. Is-

sues concerning planning for space exploration are studied in (JÓnsson et al., 2000; Frank et

al., 2001; Frank and JÓnsson, 2003).

 Particularly, Deep Space 1 was a project where advanced planning techniques were

extensively used. The Deep Space 1 was a space exploration device designed to observe a

Borrelli comet. It was equipped with an autonomous system for making decisions regarding

navigation, exploration, monitoring, fault-diagnosis, and re-planning (Nayak et al., 1998;

Muscettola et al., 1998).

 Another example of successful space exploration project that used advanced planning

technology was the Mars planet exploration by Spirit and Opportunity rovers (Ai-Chang et

al., 2004). Spirit and Opportunity were six-wheeled rovers designed to make surface explo-

rations on the planet Mars.

 Both examples from space exploration share a common attribute that a complete

autonomous behavior of the agent is required since human remote control is not applicable

because of the distance.

CHAPTER 2. CLASSICAL PLANNING 11

 The complete autonomous behavior of an agent that does not need human control is

also a goal for military specialists. Currently unmanned combat air vehicle and other de-

vices are under development (Boeing, 2003a, 2003b).

 Space exploration and military operations are not the only areas where advanced plan-

ning techniques are used or are intended to be used. Recently a successful competition

DARPA Grand Challenge (DARPA, 2007a, 2007b) showed that artificial intelligence can

be used to drive cars autonomously (Thrun et al., 2006).

 Planning techniques are also successfully used in industry for solving and optimizing

difficult manufacturing or logistic processes (Nau et al., 1995; MuÑoz-Avila et al., 2001).

 A more detailed survey of artificial intelligence techniques for practical applications is

given in (Kumar, 2005).

2.4 Representation of Planning Problems

A formal description of planning problems in classical representation is given in this sec-

tion. Two representations of planning problems are introduced - a classical representation

and a representation using state variables (Ghallab et al., 2004).

2.4.1 Classical Representation

To describe a planning problem in a certain planning environment we use a language L

with finitely many predicate, variable, and constant symbols in classical representation. The

language L is associated with the planning environment and it is possibly different for dif-

ferent environments. The finite set of predicate symbols of the language L is denoted as

LP , the finite set of symbols for variables is denoted as LV , and the finite set of constants is

denoted as LC .

 Constants from the set LC represent objects appearing in the planning environment.

Predicate symbols from the set LP are used to express relations among objects. The variable

symbols are auxiliary constructs. They are used in construction of so called planning opera-

tors which are some kind of a generic action. The language has no function symbols. The

following definitions assume a fixed language L (that is, we are in a fixed planning envi-

ronment).

Definition 2.1 (TERM, ATOM, AND LITERAL). A term t is either a variable symbol or a

constant symbol (that is L Lt C VŒ ̌). An atomic formula is a construct of the form

1 2(, , ,)np t t t@ , where p is a predicate symbol (Lp PŒ) and it is a term for every

1,2, ,i n? @ ; the number n is called an arity of the predicate symbol. Atomic formulas are

called atoms in short. A literal is an atom or the negation of an atom. ゴ

CHAPTER 2. CLASSICAL PLANNING 12

Definition 2.2 (GROUND TERM, ATOM, AND LITERAL). A term t is ground if it is a con-

stant symbol (that is Lt CŒ). An atom 1 2(, , ,)np t t t@ is ground if it is a ground term for

every 1,2, ,i n? @ . A ground literal is a ground atom or the negation of a ground atom. ゴ

Definition 2.3 (STATE, GOAL, AND GOAL SATISFACTION). A state is a finite set of ground

atoms. A goal is a finite set of ground literals. Let g be a goal then g - denotes a set of

positive literals of g and g / denotes a set of negative literals of g . The goal g is satisfied

in the state s if g s g s- /Ø ® ̨ ?¸. ゴ

 States provide a formal description of a situation in the planning environment - it is a

snapshot of the planning environment at a certain moment. The goal is a formal description

of a situation of the planning environment which we want to establish. There are no vari-

ables in states and goals (all these constructs must be ground).

 An example of a language, states and goals for description of a planning environment

from figure 2.1 is shown in the following example.

Example 2.1. EXAMPLE OF LANGUAGE, STATE, AND GOAL. The planning environment is

taken from figures 2.1 and 2.2. Predicate symbols are listed together with their arities. In the

goal there is no negative literal since it is not necessary for the goal specified by the figure.

Notice again that we do not care about the final position of the truck.

CL={truck, locationA, locationB, craneA, craneB, stackX,

stackY, stackZ, box1, box2, box3, box4, box5, zero, one, two,

nothing}

PL={at/2, on/2, onTop/2, atBottom/2, loaded/2, holding/2,

capacity/2, reachable/2}

Example of a state: {at(truck, locationA), capacity(truck, two),

atBottom(box3, stackX), atBottom(box4, stackZ),

atBottom(nothing, stackY), on(box1, box2), on(box2, box3), on(box5, box4), onTop(box1,

stackX), onTop(box5, stackZ), holding(craneA, nothing), holding(craneB, nothing),

reachable(stackX, craneA), reachable(stackY, craneB), reachable(stackZ, craneB)}.

Example of a goal: {atBottom(box1, stackY), atBottom(box4, stackX), atBottom(box3,

stackZ), on(box5, box4), on(box2, box3), onTop(box1, stackY), onTop(box2, stackZ),

onTop(box5, stackX), holding(craneA, nothing), holding(craneB, nothing)}

 The states of the planning environment are changed by actions. Actions formally de-

fine possible transitions between the states. The description of an action comprises a condi-

tion that must be satisfied before an action can be applied and the eventual change of the

A B

4
5

3
2
1

X Y

Z

A state
A B

4
5

3
2

1 Y X

Z

A goal

CHAPTER 2. CLASSICAL PLANNING 13

planning environment if the action can be applied. An action applied to a state results into a

new state.

Definition 2.4 (ACTION, APPLICABILITY, AND ACTION APPLICATION). An action a is a

triple ((), (),p a e a- ())e a/ , where ()p a is called a precondition of the action, ()e a- is a

positive effect of the action, and ()e a/ is a negative effect of the action. All the three com-

ponents of an action are finite sets of ground atoms. An action a is applicable to the state

s if ()p a sØ . The result of the application of the applicable action a to the state s is a

new state that will be denoted as (,)s ac , where (,) (()) ()s a s e a e ac / -? / ̌ . ゴ

 The condition when an action can be applied to a state is represented by its precondi-

tion. The eventual change of the state is described by action’s positive and negative effects.

Positive effects are the ground atoms added to the state and negative effects are the ground

atoms deleted from the state. It is required that () ()e a e a/ -̨ ?¸ for any action a .

 The following example shows actions for the planning environment from figure 2.1.

Example 2.2. EXAMPLE OF ACTIONS. Actions that take a box by a crane and load the truck

with a box using a crane is described below as a triple consisting of precondition, positive

effects, and negative effects.

An action for taking box1 on top of stackX by craneA.

(p(take_box1_stackX_craneA), e+(take_box1_stackX_craneA),

e-(take_box1_stackX_craneA))=

 (

 {reachable(stackX, craneA), holding(craneA, nothing), onTop(box1, stackX),

 on(box1, box2)};

 {holding(craneA, box1), onTop(box2, stackX)};

 {holding(craneA, nothing), onTop(box1, stackX), on(box1,box2)}

)

An action for loading the empty truck with box1 by craneA at locationA.

(p(load_truck_box1_craneA_locationA), e+(load_truck_box1_craneA_locationA),

e-(load_truck_box1_craneA_locationA))=

 (

 {holding(craneA, box1), at(truck, locationA), capacity(truck, two)};

 {loaded(truck, box1), capacity(truck, one), holding(craneA, nothing)};

 {holding(craneA, box1), capacity(truck, two)}

)

 The next example shows the process of application of the action to a state. Again the

environment from figure 2.1 is used in the example.

CHAPTER 2. CLASSICAL PLANNING 14

Example 2.3. EXAMPLE OF APPLICATION OF AN ACTION. A process of application of an ac-

tion is shown with action take from the example 2.2. First the applicability is checked. Then

a new state is produced.

The action take_box1_stackX_craneA from the example 2.2 is applicable to the state s from

the example 2.1 since

p(take_box1_stackX_craneA)={reachable(stackX, craneA), holding(craneA, nothing), on-

Top(box1, stackX), on(box1, box2)}

is a proper subset of

s = {at(truck, locationA), capacity(truck, two), atBottom(box3, stackX), atBottom(box4,

stackZ), atBottom(nothing, stackY), on(box1, box2), on(box2, box3), on(box5, box4),

onTop(box1, stackX), onTop(box5, stackZ), holding(craneA, nothing), holding(craneB,

nothing), reachable(stackX, craneA), reachable(stackY, craneB), reachable(stackZ, cra-

neB)}.

The result of the application of the take_box1_stackX_craneA action on the state s is the

following new state q

q = {at(truck, locationA), capacity(truck, two), atBottom(box3, stackX), atBottom(box4,

stackZ), atBottom(nothing, stackY), on(box1, box2), on(box2, box3), on(box5, box4),

onTop(box1, stackX), onTop(box5, stackZ), holding(craneA, nothing), holding(craneB,

nothing), holding(craneA, box1), onTop(box2, stackX), reachable(stackX, craneA), reach-

able(stackY, craneB), reachable(stackZ, craneB)}.

 In classical planning the set of actions is described using a construct called a planning

operator. The planning operator represents some kind of a parameterized action. The reason

for having operators can be seen again in the environment from example 2.1. We need an

action for every combination of the objects for which the action is relevant (for example the

operation which takes a box by a crane needs to be represented by a take action for every

pair of a box and a crane). To define planning operators we need an auxiliary definition of

substitution of variables for terms.

Definition 2.5 (SUBSTITUTION OF VARIABLES BY TERMS). A substitution of variables by

terms s is a partial function assigning terms to the variables. That is : L L LV C Vs › ̌ . A

substitution is often described using enumeration of assignments for individual variables in

the form 1 1 2 2{ , , , }n nv t v t v ts ? @ where i L i L Lv V t V CŒ ® Œ ̌ for every 1,2, ,i n? @ and

i jv v” for every , 1,2, ,i j n i j? ® ”@ . The substitution s is called a ground substitution if

it substitutes variables for constants, that is i Lt CŒ for every 1,2, ,i n? @ . ゴ

CHAPTER 2. CLASSICAL PLANNING 15

 The following notation is usually used for substitutions. For a variable Lu VŒ and a

substitution s the notation us stands for () iu ts ? if iu v? for some {1,2, , }i nŒ @ other-

wise ()u us ? (the substitution identifier written at the end of a construct denotes the appli-

cation of the substitution on the construct). For a constant Lc CŒ and a substation s the

notation cs stands for ()c cs ? . The application of the substitution on atoms is defined as

follows. Let 1 2(, , ,)np t t t@ be an atom then 1 2(, , ,)np t t t s@ is defined as 1 2(, , ,)np t t ts s s@ .

Similarly if we have a finite set 1 2{ , , , }mp p p@ where ip is an atom for every 1,2, ,i n? @

then 1 2{ , , , }mp p p s@ is defined as 1 2{ , , , }mp p ps s s@ .

 Having the notion of substitutions of variables for terms we are ready to introduce

planning operators.

Definition 2.6 (OPERATOR, OPERATOR APPLICABILITY, OPERATOR APPLICATION). A

planning operator o is a triple ((),p o (), ())e o e o- / , where ()p o is called a precondition of

the planning operator, ()e o- is a positive effect of the planning operator, and ()e o/ is a

negative effect of the planning operator. All the three components of an operator are finite

sets of atoms (contrary to action we allow non-ground atoms here). An operator o is appli-

cable to the state s if there exists a substitution s from variables to ground terms (con-

stants) such that ((), (), ())p o e o e o s- / is an action (that is all the three components ()p o s ,

()e o s- , and ()e o s/ are sets of ground atoms) and ()p o ss Ø . The result of the application

of the applicable operator o with the substitution s to the state s is a new state that will be

denoted as (, ,)s oc s , where (, ,) (()) ()s o s e o e oc s s s/ -? / ̌ . ゴ

 Planning operators are used for more compact representation of actions since through

substitutions it is possible to capture many combinations of objects for which the operation

is relevant.

 Example 2.4 shows planning operators and corresponding substitutions for the plan-

ning environment from figure 2.1.

 There are also assumed so called no-op actions which represent no operations. Their

usage is explained in the context of planning graphs. For every ground atom t we assume a

no-op action (, ,tnoop t t? ¸) . That is, a no-op action preserves the given ground atom.

 All the ingredients are now ready to define the planning problem formally. The plan-

ning problem is a task of transforming a given initial state into a state satisfying the goal

supposed that only the planning operators from the set of allowed planning operators are

used (the set of allowed planning operators determines the set of allowed actions).

Definition 2.7 (PLANNING PROBLEM). A planning problem P is a triple 0(, ,)s g O , where

0s is an initial state, g is a goal and O is a finite set of allowed planning operators. ゴ

CHAPTER 2. CLASSICAL PLANNING 16

 The solution of a planning problem is a sequence of actions (ground operators) such

that when they are sequentially applied starting in the initial state the state resulting at the

end satisfies the given goal. The formal definition is as follows.

Example 2.4. EXAMPLE OF PLANNING OPERATORS AND SUBSTITUTIONS. The operators repre-

sent parameterized version of actions from example 2.2. Variables are written using capitals.

The substitutions applied on the operators results into actions from example 2.2.

A planning operator for taking a box on top of a stack by a crane.

(p(take), e+(take), e-(take))=

 (

 {reachable(STACK, CRANE), holding(CRANE, nothing), onTop(BOX1, STACK),

 on(BOX1, BOX2)};

 {holding(CRANE, BOX1), onTop(BOX2, STACK)};

 {holding(CRANE, nothing), onTop(BOX1, STACK), on(BOX1,BOX2)}

)

Substitution し1={CRANE/craneA, BOX1/box1, BOX2/box2, STACK/stackX}

take/し1 = take_box1_stackX_craneA

An action for loading an empty truck with a box by a crane at a location.

(p(load), e+(load), e-(load))=

 (

 {holding(CRANE, BOX), at(TRUCK, LOCATION), capacity(TRUCK, two)};

 {loaded(TRUCK, BOX), capacity(TRUCK, one), holding(CRANE, nothing)};

 {holding(CRANE, BOX), capacity(TRUCK, two)}

)

Substitution し2={CRANE/craneA, BOX/box1, LOCATION/locationA, TRUCK/truck}

take/し2 = load_truck_box1_craneA_locationA

Definition 2.8 (APPLICATION OF A SEQUENCE OF ACTIONS, SOLUTION). We inductively

define application of a sequence of actions 1 2(, , ,)na a ah ? @ to a state 0s in the following

way: 1a must be applicable to 0s , let us inductively denote the result of application of the

action ia to the state 1is / as is for all 1,2, ,i n? @ ; the condition that ia is applicable to the

state 1is / for all 2,3, ,i n? @ must hold. The result of application of the sequence of actions

h to the state 0s is the state ns . Sequence 1 2(, , ,)na a az ? @ is a solution of the planning

problem 0(, ,)P s g O? if the sequence z is applicable to the initial state 0s and the goal g

is satisfied in the result of application of the sequence z and ia is a ground instance of

some operator from O for every 1,2, ,i n? @ . ゴ

CHAPTER 2. CLASSICAL PLANNING 17

2.4.2 Representation Using State Variables

There exists another important representation of classical planning problems which is based

on the functional view of the planning environment and planning operators (Ghallab et al.,

2004). Consider for instance the atom at(TRUCK, LOCATION) representing position of a

truck in the planning environment from figure 2.1. It never happens (supposing that the set

of planning operators is correctly formed) that more than one at(TRUCK, LOCATION) at-

oms occur in a state for a single truck (truck can never be at more than one location at

once). That is, the relation at(TRUCK, LOCATION) is a representation a function that as-

signs just one location to a single truck at a moment. This property is very common for the

objects from the real world. The position of the truck is a state variable in this context.

 The language S of the state variable representation consists of finitely many symbols

for state variables denoted as SF , finitely many symbols for constants denoted as SC , and

finitely many symbols for variables denoted as SV . Again the set of constants SC represents

a set of objects appearing in the planning environment. Variables from the set SV are used

for expressing planning operators in the state variable representation. There are no function

symbols in the language of state variable representation. Elements of S SV Č are called

terms. The following definitions suppose a fixed language S .

Definition 2.9 (STATE VARIABLE). A state variable is a construct of the form

1 2(, , ,)nf t t t@ where Sf FŒ is a function variable symbol and it is a term for every

1,2, ,i n? @ ; the number n determines the arity of the state variable. If every it for

1,2, ,i n? @ is a ground term then 1 2(, , ,)nf t t t@ is a ground state variable. Each ground

state variable 1 2(, , ,)nf t t t@ has assigned a domain
1 2(, , ,)nf t t t SD CØ

@
 of values. ゴ

Definition 2.10 (STATE, GOAL, AND GOAL SATISFACTION IN STATE VARIABLE REPRE-

SENTATION). Let X be a set of all ground state variables over the language S . A state in

the state variable representation is a set of assignments { | }xx d x X? Œ where

() x xx X d D$ Œ Œ . Let Y be a subset of state variables (we do not require the state vari-

ables to be ground). A goal in state variable representation is a set of assignments

{ | }yy d y Y? Œ where () y Sy Y d C$ Œ Œ . The goal g is satisfied in the state g if there ex-

ists a substitution s of variables for terms such that g ss Ø (where the application of a

substitution s on the set of assignments is defined as follows { |yy d?

} { | }yy Y y d y Ys sŒ ? ? Œ where () y yy Y d D s$ Œ Œ). ゴ

 The meaning of states and goals is the same as in the classical representation. The state

represents a snapshot of the planning environment at a certain moment while the goal de-

scribes a condition on a state we want to achieve.

 The following example shows language, state and goal in state variable representation

for the planning environment from figure 2.1.

CHAPTER 2. CLASSICAL PLANNING 18

Example 2.5. EXAMPLE OF LANGUAGE, STATE, AND GOAL IN STATE VARIABLE REPRESENTA-

TION. The planning environment is taken from figures 2.1 and 2.2. State variables are listed

together with their arities. Notice that a box can be loaded either in a truck or elsewere (that

is in some of the stacks).

CS={truck, locationA, locationB, craneA, craneB, stackX,

stackY, stackZ, box1, box2, box3, box4, box5, zero, one, two,

nothing, elsewhere}

FS={at/1, on/1, onTop/1, atBottom/1, loaded/1, holding/1,

capacity/1, reachable/2}

Example of a state: {at(truck) = locationA, capacity(truck) = two,

atBottom(stackX) = box3, atBottom(stackZ) = box4, atBottom(stackY) = nothing, on(box2)

= box1, on(box3) = box2, on(box4) = box5, onTop(stackX) = box1, onTop(stackZ) = box5,

holding(craneA) = nothing, holding(craneB) = nothing, loaded(box1) = elsewhere,

loaded(box2) = elsewhere, loaded(box3) = elsewhere, loaded(box4) = elsewhere,

loaded(box4) = elsewhere, reachable(stackX, craneA) = true, reachable(stackY, craneB) =

true, reachable(stackZ, craneB) = true}.

Example of a goal: {atBottom(stackY) = box1, atBottom(stackX) = box4, atBottom(stackZ)

= box3, on(box4) = box5, on(box3) = box2, onTop(stackY) = box1, onTop(stackZ) = box2,

onTop(stackX) = box5, holding(craneA) = nothing, holding(craneB) = nothing}

 As in the classical representation the states of the planning environment are changed

by actions. The following definition formalizes actions in state variable representation.

Definition 2.11 (ACTION, APPLICABILITY, AND ACTION APPLICATION IN STATE VARI-

ABLE REPRESENTATION). An action a in state variable representation is a pair

((), ())p a e a , where ()p a is a precondition of the action, ()e a is an effect of the action.

The first component ()p a is a finite set of assignments { | }zz d z Z? Œ , where Z is a sub-

set of ground state variables and () z zz Z d D$ Œ Œ . The second component ()e a is a finite

set of state transitions { | }ww d w W« Œ where W is a subset of ground state variables and

() w ww W d D$ Œ Œ . An action a is applicable to the state s if ()p a sØ . The result of the

application of the applicable action a to the state s is a new state that will be denoted as

(,)s ae , where (,) ({ | () }) { | ()}xs a s w c w d e a c D w d w d e ae ? / ? « Œ ® Œ ̌ ? « Œ

(that is, the assignments listed in the effect of the action are updated). ゴ

Definition 2.12 (OPERATOR, OPERATOR APPLICABILITY, AND OPERATOR APPLICATION IN

STATE VARIABLE REPRESENTATION). A planning operator o in the state variable repre-

sentation is a pair ((), ())p a e a , where ()p a is a precondition and ()e a is an effect of the

A B

4
5

3
2
1

X Y

Z

A state
A B

4
5

3
2

1 Y X

Z

A goal

CHAPTER 2. CLASSICAL PLANNING 19

planning operator. The first component ()p a is a finite set of assignments { | }zz d z Z? Œ

where Z is a subset of state variables (we do not require the state variables to be ground

here) and () z zz Z d D$ Œ Œ . The second component ()e a is a finite set of state transitions

{ | }ww d w W« Œ where W is a subset of state variables (again they are not necessarily

ground) and () w ww W d D$ Œ Œ . A planning operator o is applicable to the state s if there

exists a substitution s from the set of variables SV to the set of constants SC such that

()p a ss Ø . The result of the application of the applicable planning operator o with the

substitution s to the state s is a new state that will be denoted as (, ,)s oe s , where

(, ,) ({ | () }) { | () }xs o s w c w d e a c D w d w d e ae s s s? / ? « Œ ® Œ ̌ ? « Œ (that is, the

assignments listed in the effect of the operator are updated). ゴ

 The example below shows planning operators for the planning environment from fig-

ure 2.1 in the state variable representation.

Example 2.6. EXAMPLE OF PLANNING OPERATOR IN STATE VARIABLE REPRESENTATION. Vari-

ables are written using capitals. The operators shown here correspond to the planning opera-

tors from the example 2.4.

A planning operator for taking a box on top of a stack by a crane.

(p(take), e(take))=

 (

 {reachable(CRANE)=STACK, holding(CRANE) = nothing,

 onTop(STACK) = BOX1, on(BOX2) = BOX1};

 {holding(CRANE) = BOX1, onTop(STACK) = BOX2, on(BOX2) = nothing}

)

An action for loading the empty truck with a box by a crane at a location.

(p(load), e(load))=

 (

 {holding(CRANE) = BOX, at(TRUCK) = LOCATION, capacity(TRUCK) = two};

 {loaded(TRUCK) = BOX, capacity(TRUCK) = one, holding(CRANE) = nothing};

 {holding(CRANE) = BOX, capacity(TRUCK) = two}

)

 The remaining definitions concerning the planning problem in the state variable repre-

sentation are analogous to those of classical representation. A planning problem is again a

triple 0(, ,)s g O where 0s is the initial state (that is a state in the state variable representa-

tion), g is the goal, and O is the set of allowed planning operators. A solution of a plan-

ning problem is again a sequence of actions that achieves the goal from the initial state.

 The state variable representation is especially useful when the relations among objects

in the planning environment have functional character. The expressive power of the classi-

cal representation and the representation using state variables is the same.

CHAPTER 2. CLASSICAL PLANNING 20

2.5 Complexity of Planning Problems

We give some complexity results about the planning problems in this section. More results

can be found in the literature (BÄckstrÖm and Nebel, 1992; Bylander, 1994; Erol et al.,

1994b; Erol et al., 1995).

 Let us consider a decision version of the planning problem. That is, having a planning

problem in the classical representation the task is to determine whether there exists a plan

for this problem. Results for the state variable representation are the same.

Proposition 2.1 (COMPLEXITY OF CLASSICAL PLANNING - PLAN EXISTENCE). Having a plan-

ning problem 0(, ,)P s g O? in the classical representation, the task of determining whether

there exists a solution plan for the planning problem P is EXPSPACE-complete. ﾐ

 Let us recall that (2)
kn

kEXPSPACE DSPACEŒ?
’I . The complete proof of this theo-

rem is listed in (Ghallab et al., 2004). Sometimes it is convenient to answer the question

whether there is a plan of at most a given length. This problem is still difficult.

Proposition 2.2 (COMPLEXITY OF CLASSICAL PLANNING - BOUNDED PLAN EXISTENCE).

Having a planning problem 0(, ,)P s g O? in the classical representation and k Œ’ , the

task is to determine whether there exists a plan for the problem P that uses at most k ac-

tions. This problem is NEXPTIME-complete. ﾐ

 Let us again recall that (2)
kn

kNEXPTIME NTIMEŒ?
’I . The deeper discussion of this

result is provided in (Ghallab et al., 2004).

 All the results presented above are for the worst case. If we have a description of the

set of planning operators in advance, it is possible to obtain more optimistic results. To be

specific, for the FREECELL planning domain from the 2002 International Planning Com-

petition (Long, 2002) the problem of plan existence and the problem of bounded plan exis-

tence were proved to be NP-complete (Helmert, 2003, 2006).

2.6 Overview of Planning Techniques

There are many algorithmic techniques for solving planning problems. In this section we

give an overview of several most successful planning techniques.

 First of all, we should mention so called forward search. It is backtracking based

method that starts from the initial state and exhaustively tries to apply actions to the cur-

rently maintained state until a goal is reached (Ghallab et al., 2004).

CHAPTER 2. CLASSICAL PLANNING 21

 A simple variation of the forward search is a backward search (Ghallab et al., 2004).

The backward search works in very similar way as forward search but it starts from the goal

and it is trying to reach the initial state. An exhaustive state space exploration is used again.

 Although both the forward and backward search guarantee to find a solution if there

exists a solution (the algorithm is said to be complete) they are extremely inefficient be-

cause of the high branching factor at each decision point. There were several attempts to

reduce the size of the search space that is necessary to explore by decreasing the branching

factor at decision points. The well known STRIPS planning algorithm (Fikes and Nilsson,

1971) was such an attempt. The STRIPS algorithm was based on backward search but in

addition it used several rules how to behave at decision points.

 A very successful approach for solving planning problems is based on so called plan-

ning graphs. The first algorithm which was based on planning graphs was GraphPlan by

Blum and Furst (Blum and Furst, 1997). The search for a plan starts by building the plan-

ning graph. The planning graph is a structure which represents the reachability of states. It

can be used to answer a question whether it is possible to reach a given state by a given

number of actions fast. However, the planning graph is not complete for the reachability

questions. If we get the answer that a state is not reachable it is definitely not reachable and

it is necessary to allow more actions. If the goal seems to be reachable according to the

planning graph then the algorithm tries to extract a plan from the planning graph by search.

 The reachability analysis provided by the planning graphs reduces the search space

significantly. Many planning systems are based on the idea of state reachability using plan-

ning graphs (IPP - Koehler et al., 1997; Koehler, 2007; MaxPlan - Zhao et al., 2006, 2007;

SATPlan - Kautz et al., 2006, 2007; STAN - Long and Fox, 1999).

 Another successful approach for solving planning problems is the usage of Boolean

satisfiability. Solvers based on Boolean satisfiability such as SATPlan and MaxPlan belong

among the best solvers according to the results of the last planning competitions IPC-4

(Edelkamp et al., 2004) and IPC-5 (Gerevini et al., 2006). The input planning problem is

translated automatically into a Boolean formula which is then solved by a solver for Boo-

lean satisfiability such as MiniSAT (EÉn and SÖrensson, 2005, 2007) or Siege (Ryan, 2007).

The solution of the formula is then translated back to a resulting sequence of actions. The

formulation of planning problems as Boolean formulas is often based on planning graphs

(Kautz and Selman, 1999).

 A very similar approach to the usage of Boolean satisfiability is to translate the plan-

ning problem into the formalism of constraint programming. The hand-tailored translation

of planning problems into constraint programming formalism is used in CPlan planner by

van Beek and Chen (1999). This planner is especially successful due to the utilization of

reasoning about spatiotemporally distant objects. Another planner that uses constraint pro-

gramming formalism is GP-CSP-Plan of Do and Kambhampati (2000, 2001). This planner

is based on translation of planning graphs into the constraint programming formalism.

CHAPTER 2. CLASSICAL PLANNING 22

 All the planners mentioned above use some kind of an exhaustive search through the

search space. A different approach for solving planning problems is represented by local

search planners. Local search for a solution is typically based on the exploration of the

neighborhood of the currently best found element of the search space (measured according

to a certain objective function). If there is a better element in the neighborhood then it is

taken as a new best found element. The example of this approach is Hill-climbing algorithm

(Russell and Norvig, 2003). The representative of the planner based on local search is LPG-

td (Gerevini and Serina, 2002, 2007). These planners are intrinsically incomplete.

 The modern planners extensively use various types of heuristics that are used to guide

the search at decision points. Some planners even use heuristics as the main tool for finding

a solution. The representative is HSP of Bonet and Geffner (2001a, 2001b) or SGPlan (Hsu

et al., 2006, 2007).

2.7 Planning Using Planning Graphs

The first algorithm based on planning graphs - GraphPlan (Blum and Furst, 1997) - is able

to find concurrent plans of the planning problems (that is, more actions at a certain time

step can be performed in parallel, see the plan in figure 2.3). The planning graph is a poly-

nomial size data structure which encapsulates a necessary but insufficient condition for the

reachability of a goal. It can be used to answer the question whether it is possible to reach a

certain goal by a certain number of actions. If the answer obtained from the planning graph

is yes then it might be possible but also might not. If the answer obtained from the planning

graph is no then it is definitely not possible to reach the goal within a given number of

steps. This useful property is exploited by the GraphPlan algorithm to effectively cut out

large parts of the search space.

 The GraphPlan algorithm itself works in two interleaving phases. In the first phase, the

planning graph representing the reachability problem for plans up to the certain length is

built or extended. In the second phase, the algorithm is trying to extract a valid plan for a

given goal from the planning graph. If the second phase is unsuccessful, the algorithm con-

tinues with the first phase for plans of extended length.

 The extraction of a plan from the planning graph is done by search. The standard

chronological backtracking was used for the plan extraction in the original version of the

algorithm. Although several other techniques were developed for extracting plans, this

phase represents a bottleneck of the whole planning process based on planning graphs

(Kambhampati, 2000; Zimmerman and Kambhampati, 2005).

 The planning using planning graphs has been developed in many directions since the

original contribution by Blum and Furst in 1997. Let us mention the extensions that allow

negative preconditions and conditional effects (Kambhampati et al., 1997). Another inter-

CHAPTER 2. CLASSICAL PLANNING 23

esting extension of planning graphs that can handle durative actions is described in (Smith

and Weld, 1999).

 Although the GraphPlan algorithm is no longer the state-of-the-art algorithm for clas-

sical planning, the GraphPlan approach remains the fastest for planning with parallel ac-

tions. Moreover, several of today’s state-of-the-art heuristically guided planners (Bonet and

Geffner, 2001a, 2001b; Nguyen et al., 2002; Gerevini and Serina, 2002) exploit the plan-

ning graphs for building powerful heuristics.

 This section is devoted to the formal description of the structure of planning graph and

GraphPlan algorithm. For simplicity reasons all the formal constructs in this section are

defined for the classical representation of planning problems. The reformulation for state

variable representation is straightforward. Nevertheless, some examples presented in this

chapter (for example figure 2.4) use state variable representation since the state variable

representation was used in our experimental evaluation.

2.7.1 Planning Graphs

Assume a fixed language (, ,)L L LL P C V? (let us remind that LP is a finite set of predicate

symbols, LC is a finite set of constants, and LV is a finite set of variable symbol) associated

with the planning environment. In addition, we need so called no-operation actions to be

able to define planning graphs. For every predicate Lp PŒ of arity pr and constants

1 2, , ,
pr Lc c c CŒ@ we assume a no-operation action 1 2(, , ,)rpp c c c

NOOPa ?
@

1 2((, , ,),
prp c c c@ 1 2(, , ,),

prp c c c@ ¸) . Let us denote 1 2(, , ,)
{ |rpp c c c

NOOP NOOPA a?
@

;Lp PŒ 1 2, , ,c c @

}
pr Lc CŒ a set of all no-operations associated with the language L . No-operation is an ac-

tion that produces exactly what is already present in the state of the planning environment.

There is a formal reason for having no-operations in connection with planning graphs - they

preserve states between layers of the planning graph.

 Another slight restriction is that we do not allow negative literals in the goal in the

statement of the planning problem. Observe that this slight restriction is not at the expense

of expressivity (it is for instance possible to introduce additional atoms for negated literals).

The reason for this restriction is the nature of planning graph construction.

 The planning graph for a planning problem 0(, ,)P s g O? is defined as follows. It con-

sists of two alternating structures called a proposition layer and an action layer. The initial

state 0s represents the 0th proposition layer 0P . The layer 0P is a set of atoms occurring in

the state 0s . The rest of the planning graph is defined inductively. Consider that the plan-

ning graph with layers 0 1 1 2 2, , , , , , ,k kP A P A P A P@ has been already constructed (iA denotes

the ith action layer, iP denotes the ith proposition layer). The next action layer 1kA - con-

sists of all the actions that can be obtained from planning operators in O and of all the no-

operations from NOOPA whose preconditions are included in the kth proposition layer kP

(previous proposition layer). All the actions added into 1kA - must satisfy the additional

CHAPTER 2. CLASSICAL PLANNING 24

condition that no two preconditions of any action are conflicting - in the planning graph

terminology conflicting constructs are denoted as mutually excluded (if two atoms are mu-

tually excluded, we briefly say that they are mutex). The following definitions formalize the

notion of mutual exclusion.

Definition 2.13 (INDEPENDENCE OF ACTIONS). A pair of actions { , }a b is independent if

() (() ())e a p b e b/ -̨ ̌ ?¸ and () (() ())e b p a e a/ -̨ ̌ ?¸. Otherwise { , }a b is a pair of

dependent actions. ゴ

Definition 2.14 (ACTION MUTEX AND ACTION MUTEX PROPAGATION). We call a pair of

actions { , }a b within the action layer iA a mutex if either the pair { , }a b is dependent or an

atom of the precondition of the action a is mutex with an atom of the precondition of the

action b (defined in the following definition). ゴ

Definition 2.15 (PROPOSITION MUTEX AND PROPOSITION MUTEX PROPAGATION). We

call a pair of atoms { , }p q within the proposition layer iP a mutex if every action a within

the layer iA where ()p e a-Œ is mutex with every action b within the action layer iA for

which ()q e b-Œ and the action layer iA does not contain any action c for which

{ , } ()p q e c-Ø . ゴ

 The next proposition layer 1kP - consists of all the atoms that appear as positive effects

of some action in the previous action layer 1kA - . We do not care about the negative effects

of actions at this point. Finally a set of mutexes is associated with the proposition layer 1kP -

according to the definition 2.15.

 We can now observe the reason for having no-operation actions. They are included in

an action layer to preserve already present atoms in the next proposition layer.

 Having a planning graph consisting of layers 0 1 1 2 2, , , , , , ,k kP A P A P A P@ , we say the

planning graph has length k . Having the action layer iA the set of actions is often identi-

fied by the symbol iA itself and the set of mutexes associated with the ith action layer is

denoted as iAo . The similar notation is for proposition layers; having the proposition layer

iP the set of its propositions is identified by the symbol iP itself and the set of mutexes

associated with the ith proposition layer is denoted as iPo . This notation comes from

(Ghallab et al., 2004).

 Let us now briefly describe how the state reachability analysis is done using the plan-

ning graph.

Definition 2.16 (CONCURRENT PLAN). Let the function :{1,2, , } {1,2, , }i i ir ›@ @ denotes

a permutation of the set {1,2, , }i@ . A concurrent plan for a planning problem

0(, ,)P s g O? is a sequence of sets of actions of the form
1

1 1 1

1 2[{ , , , };ma a a@

2

2 2 2

1 2{ , , , }; ;ma a a@ @ 1 2{ , , , }]
k

k k k

ma a a@ where for every k / tuple of permutations

CHAPTER 2. CLASSICAL PLANNING 25

1 2

1 2, , , kmm m

kr r r@ the sequence
1 1 1

11 1 1

1 1 1

(1) (2) ()
[, , , ;m m m

m
a a a
r r r

@
2 2 2

22 2 2

2 2 2

(1) (2) ()
, , , ; ;m m m

m
a a a
r r r

@ @

(1) (2) ()
, , ,]m m mk k k

kk k k

k k k

m
a a a
r r r

@ is a solution of the planning problem P . ゴ

 The concurrent plan
1

1 1 1

1 2[{ , , , };ma a a@
2

2 2 2

1 2{ , , , }; ;ma a a@ @ 1 2{ , , , }]
k

k k k

ma a a@ can be also

interpreted in the way that the sets of actions
1

1 1 1

1 2{ , , , };ma a a@
2

2 2 2

1 2{ , , , }; ;ma a a@ @

1 2{ , , , }
k

k k k

ma a a@ respectively can be performed in parallel to achieve the goal. The length of

the concurrent plan is defined as the number of sets which the concurrent plan consists of

(in our case it is k).

Definition 2.17 (CONCURRENT PLAN DETERMINED BY PLANNING GRAPH). A concurrent

plan
1

1 1 1

1 2[{ , , , };ma a a@
2

2 2 2

1 2{ , , , }; ;ma a a@ @ 1 2{ , , , }]
k

k k k

ma a a@ for a planning problem

0(, ,)P s g O? is said to be determined by the planning graph consisting of layers

0 1 1 2 2, , , , , , ,k kP A P A P A P@ if 1 2{ , , , }
i

i i i

m ia a a AØ@ is a pair-wise non-mutex set of actions with

respect to iAo for every 1,2, ,i k? @ . ゴ

Proposition 2.3 (NECESSARY CONDITION ON STATE/GOAL REACHABILITY). Let us have a

planning graph consisting of layers 0 1 1 2 2, , , , , , ,k kP A P A P A P@ for a planning problem

0(, ,)P s g O? . If kg P» or if kg PØ and g is not mutex-free with respect to kPo then the

problem P cannot be solved by any concurrent plan of length k . ﾐ

 We omit details of the proof of this proposition since it is given in (Blum and Furst,

1997) with appropriate analysis. It gives the necessary condition on the existence of a solu-

tion of a given planning problem. Notice that the proposition can be applied on reachability

of states as well as goals since they are both sets of atoms. If we construct a planning graph

with a certain number of layers, then a given goal (or a state) must be contained in the last

proposition layer and must be mutex-free (there is no mutex between any pair of atoms of

the goal in the last proposition layer). More precisely, if this condition does not hold (an

atom of the goal is not contained in the last proposition layer or some two atoms of the goal

are mutex with respect to the last proposition layer) then the given goal cannot be reached

by any concurrent plan of the length that equals to the length of the planning graph.

 Before continuing with the algorithms concerning planning graphs let us briefly dis-

cuss the computational resources required by planning graphs. The following results can be

found in (Ghallab et al., 2004).

Proposition 2.4 (SPACE COMPLEXITY OF PLANNING GRAPHS). The space required by an

action layer of the planning graph is polynomial in size of the input planning problem. The

space required by a proposition layer of the planning graph is also polynomial in size of

the input planning problem. ﾐ

CHAPTER 2. CLASSICAL PLANNING 26

Proof. The size of the input problem is the length of the complete description necessary for

the language (, ,)L L LL P C V? and for the problem instance 0(, ,)P s g O? .

 First let us estimate the number of all possible ground atoms that can appear within the

proposition layer of the planning graph. Let c be the upper bound on the number of pa-

rameters of any operator in O . Let us denote max ()
Lp Pr arity pŒ? (()arity p is the arity of

the predicate symbol p). The number of all possible ground atoms is bounded by
r

L LP C .

 The total number of actions that can form the action layer iA including no-operation

actions is bounded by L NOOPC O A
c

- , where
r

NOOP L LA P C~ . The number of action

mutexes associated with the action layer iA is bounded by
2 2()

r

i L L LA C O P C
c

? -

since there can be a mutex at most between every pair of actions.

 The total number of propositions within the proposition layer iP is bounded by
r

L LP C . Hence the number of all mutexes associated with the proposition layer iP is

bounded by
2 2 2r

i L LP P C~ . ﾐ

 The important property of a planning graph for a given problem is that is has a fixed

point level which is the smallest m such that for every i , i km > ~ , ith proposition and ac-

tion layers are identical to respective せth proposition and action layers (that is iP Pm ? ,

iP Pmo o? , iA Am ? , and iA Amo o?). Therefore it is useless to build planning graph of the

length beyond the fixed point level. The complexity of planning graphs is summarized in

the table 2.1.

Planning graph Space requirements

ith action layer

r

i L L LA C O P C
c

~ -

2()
r

i L L LA C O P C
c

o ~ - , where max ()
Lp Pr arity pŒ? , c

is the upper bound on number of parameters of operators

ith proposition layer

r

i L LP P C~

2 2r

i L LP P Co ~ , where max ()
Lp Pr arity pŒ?

Table 2.1. COMPLEXITY OF PLANNING GRAPH. Summary of space requirement of the structure of

planning graph.

 When implementing the data structures for the planning graph it is convenient to store

relationships between action and proposition layers. In particular, it is convenient to store

the support relations between an action and atoms from the next proposition layer that are

positive effects of this action (we also say that the action is support for these atoms). This

support relation is represented as a set of links between the action and atoms from the next

proposition layer. The next relation that is often stored within the planning graph is a pre-

condition relation between an action and atoms from the previous proposition layer. More

precisely, this relation captures information of what atoms from the proposition layer are

CHAPTER 2. CLASSICAL PLANNING 27

the preconditions for the action. This precondition relation is represented by links between

action’s precondition atoms from the proposition layer and the corresponding action.

Figure 2.4. STRUCTURE OF PLANNING GRAPH. First three layers of the planning graph for the dock

worker robots planning problem depicted in figures 2.1, 2.2, and 2.3. The depicted planning graph

uses state variable representation. Support and precondition relations are represented by green and

blue arrows respectively (relations between no-operation actions are depicted using dotted arrows).

Proposition and action mutexes are represented by blue arcs.

 An example of the planning graph using the state variable representation is shown in

figure 2.4. The advantage of the state variable representation is that assignments of the

same state variable within the proposition layer are automatically pair-wise mutex. This

property allows slightly more effective implementation (there is no need to explicitly store

mutexes between the assignments to a single state variable). We use the state variable rep-

resentation in the experimental implementation for our empirical evaluation.

free(transporter)=2

holding(crane_A)=nothing

holding(crane_B)=nothing

loaded(box_1)=elsewhere

loaded(box_2)=elsewhere

loaded(box_3)=elsewhere

loaded(box_4)=elsewhere

loaded(box_5)=elsewhere

location(transporter)=site_A

on(box_1)=box_2

on(box_2)=box_3

on(box_3)=pile_X

on(box_4)=pile_Z

on(box_5)=box_4

ontop(pile_X)=box_1

ontop(pile_Y)=nothing

ontop(pile_Z)=box_5

move(transporter,site_A,site_B)

take_regular(crane_B,pile_Z,box_5,box_4)

take_regular(crane_A,pile_1,box_1,box_2)

no-op_free(transporter)=2

no-op_holding(crane_A)=nothing

no-op_holding(crane_B)=nothing

no-op_loaded(box_1)=elsewhere

no-op_loaded(box_2)=elsewhere

no-op_loaded(box_3)=elsewhere

no-op_loaded(box_4)=elsewhere

no-op_loaded(box_5)=elsewhere

no-op_location(transporter)=site_A

no-op_on(box_1)=box_2

no-op_on(box_2)=box_3

no-op_on(box_3)=pile_X

no-op_on(box_4)=pile_Z

no-op_on(box_5)=box_4

no-op_ontop(pile_X)=box_1

no-op_ontop(pile_Y)=nothing

no-op_ontop(pile_Z)=box_5

free(transporter)=2

holding(crane_A)=box_1

holding(crane_A)=nothing

holding(crane_B)=box_5

holding(crane_B)=nothing

loaded(box_1)=elsewhere

loaded(box_2)=elsewhere

loaded(box_3)=elsewhere

loaded(box_4)=elsewhere

loaded(box_5)=elsewhere

location(transporter)=site_A

location(transporter)=site_B

on(box_1)=box_2

on(box_1)=inair

on(box_2)=box_3

on(box_3)=pile_X

on(box_4)=pile_Z

on(box_5)=box_4

on(box_5)=inair

ontop(pile_X)=box_1

ontop(pile_X)=box_2

ontop(pile_Y)=nothing

ontop(pile_Z)=box_4

ontop(pile_Z)=box_5

Proposition layer 0P Action layer 1A Proposition layer 1P

CHAPTER 2. CLASSICAL PLANNING 28

2.7.2 GraphPlan Algorithm

The GraphPlan algorithm is a planning algorithm based on state reachability analysis using

the data structure of planning graphs. The algorithm consists of two interleaved phases. The

first phase is represented by incremental expansion of the planning graph. The incremental

expansion of the planning graph is just adding one action and one proposition layer respec-

tively as new last two layers of the planning graph (notice that it is also possible to expand

the planning graph with more than one action and proposition layers).

 The second phase of the GraphPlan algorithm consists in an attempt to extract a con-

current plan from the planning graph. This phase is performed only if the given goal is

reachable in the constructed planning graph. If the plan extraction is unsuccessful then the

algorithm continues with the planning graph expansion phase. These two phases are re-

peated till the planning problem is solved or a termination condition is reached.

 The key parts of the basic version of the GraphPlan algorithm are shown here as algo-

rithms 2.1 and 2.2. The algorithm 2.1 formally describes the plan extraction phase. Algo-

rithm 2.2 represents the main loop which repeatedly performs the planning graph expansion

and the extraction phases and checks the termination condition.

 The presented symbolic code will be used for all the algorithms throughout the thesis.

We use procedures (does not have a return value) and functions (has a return value) as the

main structural entities. The control structure of procedures and functions is depicted using

indentation. The symbolic code omits the internal details of data structures as it is common

in the literature.

 Let us now concentrate on the plan extraction phase. Suppose we have a goal for

which we are trying to find a concurrent plan starting in the initial state. Next suppose that

we have constructed the planning graph for the given planning problem up to a certain

length. The process of search for a concurrent plan starts with satisfying the goal at the last

layer of the planning graph. First, it is checked if the given goal is contained in the last

proposition layer (all the goal’s atoms must occur in the last proposition layer) and if it is

mutex-free with respect to the layer (there must be no mutex between any atoms of the goal

with respect to the last proposition layer). If this condition does not hold, the process termi-

nates with the answer that the goal cannot be satisfied. Otherwise the process continues by

finding a set of mutex-free actions from the last action layer (the layer preceding the last

proposition layer) that satisfy the goal (we also say these actions support the goal). This set

of supporting actions induces another goal. This goal is formed by preconditions of the ac-

tions from the set of supporting actions. The plan extracting procedure is recursively called

at this point with parameters specifying the new goal and the intention to extract this goal

from the previous layer. If the recursive call of the procedure is unsuccessful the algorithm

continues with further attempts to find another set of non-mutex actions supporting the

original goal. If the recursive call is successful, we have a concurrent plan.

CHAPTER 2. CLASSICAL PLANNING 29

Algorithm 2.1. GRAPHPLAN - PLAN EXTRACTION. Plan extraction phase of the GraphPlan algo-

rithm. The data structure of the planning graph is a compound structure consisting of several

arrays indexed by layers - array of sets of propositions, array of sets of proposition mutexes,

array of sets of actions, array of sets of action mutexes, and array of sets of nogoods. The indi-

vidual components of the planning graph data structure are accessed using . (“dot”) in the

symbolic code.

 function extractPlan (, ,)pG l g : sequence

 1: if 0l ? then

 2: if . [0]g pG PØ then return []

 3: else return []failure

 4: if g is subsumed in . []pG N l then return []failure

 5: z « extractPlanFromLayer (, , ,pG l g ¸)

 6: if []failurez ? then

 7: . [] . [] { }pG N l pG N l g« ̌

 8: return []failure

 9: else return z

 function extractPlanFromLayer (, , ,)pG l g ¦ : sequence

 10: if g ? ¸ then

 11: ' { () | }g p a a z« Œ

 12: Z« extractPlan (, 1, ')pG l g/

 13: if []failureZ ? then return []failure

 14: else return concatenate (,)zZ

 15: else

 16: select any t gŒ

 17: { | . [] & ()}ts a a pG A l t e a-« Œ Œ

 18: if ts ?¸ then return []failure

 19 for each ta sŒ do

 20: if checkSupports (, , ,)pG l az then

 21: ' ()g g e a-« /

 22: ' { }az z« ̌

 23: return extractPlanFromLayer (, , ', ')pG l g z

 24: return []failure

 function checkSupports (, , ,)pG l a ¦ : boolean

 25: for each b zŒ do

 26: if { , } . []a b pG A loŒ then return False

 27: return True

CHAPTER 2. CLASSICAL PLANNING 30

 Observe that the decision point at which the above search procedure branches is de-

termining which actions from the action layer will support a goal. In the next sections we

will describe how this process can be improved.

 The algorithm 2.1 is a formalization of the above search process. It consists of three

functions extractPlan, extractPlanFromLayer, and checkSupports. The function extract-

Plan represents the top calling function. This function constructs a concurrent plan for a

given goal and for a given planning graph of a given length (number of layers). If search for

a concurrent plan is successful, the function returns the concurrent plan as a sequence of

sets. Otherwise a singleton sequence containing the symbol failure is returned. The next

two functions are auxiliary. The function extractPlanFromLayer finishes the concurrent

plan for a given goal at a given layer of the planning graph supposed that a certain set of

actions has been already selected into the plan. Finally, the function checkSupports checks

whether an action can be added to the set of actions such that the resulting set of actions is

mutex-free.

 The function extractPlan gets three parameters - pG , l , and g . The parameter pG is

the structure of planning graph. The parameter l is the length of the planning graph and the

parameter g is the goal we want to satisfy. The structure of planning graph pG is a com-

pound structure which consists of several arrays of sets representing layers of the planning

graph. The components of this compound structure are accessed using the “.” (dot) nota-

tion. The components are following: .pG P is an array indexed by layers whose cells are

sets representing atoms of the individual proposition layers, .pG Po is an array indexed by

layers representing proposition mutexes of the individual proposition layers; .pG A and

.pG Ao are arrays again indexed by layers representing actions and action mutexes respec-

tively of individual action layers, and finally .pG N is an array indexed by layers contain-

ing so called proposition nogoods for the individual proposition layers.

 A nogood associated with a certain proposition layer of the planning graph is a set of

atoms that cannot be satisfied together in the proposition layer (even though they are

mutex-free). The nogoods are inferred in course of search for a concurrent plan. If it is

found in course of search that a certain goal cannot be satisfied in a certain proposition

layer, the goal is declared to be a nogood. If later another attempt to satisfy a goal contain-

ing this nogood as a sub-goal (nogood is a subset of the goal) occurs at the same proposi-

tion layer, it is possible to identify the goal as unsatisfiable without search by checking in

against nogoods associated with the layer.

 The call extractPlan (, ,)pG l g attempts to extract a concurrent plan from the planning

graph pG to satisfy the goal g in the lth proposition layer. If we are satisfying the goal in

the initial layer it is sufficient to check whether g is contained in the initial layer (lines 1-

3). If this is not the case and we are somewhere within the planning graph, a check of the

goal g against stored nogoods stored for the lth proposition layer is performed (line 4). If

the goal g is not subsumed by the stored nogoods, the function extractPlanFromLayer is

called with parameters specifying that we need to extract a concurrent plan for the goal g

CHAPTER 2. CLASSICAL PLANNING 31

from the planning graph pG starting in the lth proposition layer and no action has been

selected yet (¸ as the last parameter - line 5). If the concurrent plan extraction is successful

we are finished, otherwise a new nogood for the specified layer is stored (lines 6-9). The

call extractPlanFromLayer (, , ,)pG l g ¦ specifies that a concurrent plan should be extracted

from the planning graph pG starting at the lth proposition layer and supposed that we have

already included actions listed in the set ¦ into the lth set of actions of the concurrent plan

and the partial goal g remains to be satisfied. The function starts by testing if the remain-

ing goal g is empty (line 10). If this is the case a new goal 'g for the previous proposition

layer is formed by the union of all the preconditions of all the actions from the set ¦ (line

11). Then the function extractPlan is called with parameters specifying that a concurrent

plan for the goal 'g should be extracted from the planning graph starting in the (l-1)th

proposition layer (line 12). Finally, in this execution branch a test whether the plan extrac-

tion was successful or not is performed (line 13-14). If it is successful ¦ is added as the

last member of the constructed concurrent plan sequence otherwise a failure is reported to

the superior calling procedure. If there is non-empty partial goal g (lines 15-24) an atom t

is selected from the goal (line 16) and a set of actions ts from the lth action layer which has

atom t as its positive effect is constructed (ts is called a set of supports for atom t - line

17). If there is no supporting action for atom t then the function reports a failure (line 18)

otherwise the search for a supporting action which forms a mutex-free set of actions to-

gether with actions from ¦ starts (lines 19-23). Each candidate action a from ts is

checked if it forms together with ¦ a mutex-free set. This check is implemented by the

function checkSupports which gets parameters pG , l , a , and ¦ . If { }a¦ ̌ forms a

mutex-free set with respect to the lth action layer of the planning graph pG the True value

is returned (lines 25-27). If the check is successfully passed a new partial goal 'g and a

new set of actions 'z are passed to the subsequent call of the extractPlanFromLayer func-

tion (lines 21-23). The new goal 'g and the new set of actions 'z reflect the fulfilled deci-

sion - a new action is selected as a member of the concurrent plan sequence which shrinks

the goal yet to be satisfied. This process can be also viewed as transfer of the goal g into

the set of mutex-free supporting actions ¦ and continuing to the lower layer at the moment

the whole goal is supported. Search for the set of mutex-free set of supporting actions for a

goal represents one of the main bottlenecks of the GraphPlan algorithm.

 The algorithm 2.2 represents the top control loop of the algorithm which repeatedly

executes planning graph expansion and concurrent plan extraction phases. The algorithm

consists of two functions - generatePlanGP and checkFixedPoint. The function generate-

PlanGP is the main control function; it gets parameters 0s , g , and O specifying the prob-

lem. The return value of the function is a sequence representing concurrent plan for the

planning problem 0(, ,)s g O . The function checkFixedPoint with parameters pG and l

checks whether a specified planning graph pG of a given length l reached its fixed point.

CHAPTER 2. CLASSICAL PLANNING 32

Algorithm 2.2. GRAPHPLAN. Main loop of the GrapPlan planning algorithm. The code listed

here uses an external function expandPlanningGraph which expands a specified planning

graph up to a specified length; the resulting planning graph is returned as a return value.

 function generatePlanGP 0(, ,)s g O : sequence

 1: 0. [0]pG P s«

 2: . [0]pG Po «¸

 3: . [0]pG N «¸

 4: m «`

 5: 0M «

 6: 0l «

 7: until (. []g pG P lØ and 2 . []g pG P lǫ ?¸) or checkFixedPoint (,)pG l do

 8: 1l l« -

 9: pG « expandPlanningGraph (,)pG l

 10: if . []g pG P l» or 2 . []g pG P lǫ ”¸ then return []failure

 11: if checkFixedPoint (,)pG l then

 12: lm «

 13: . []pG N lM «

 14: do

 15: Z« extractPlan (, ,)pG l g

 16: if []failureZ ? then

 17: if checkFixedPoint (,)pG l then

 18: if m ?` then lm «

 19: if . []pG N mM ? return []failure

 20: . []pG N mM «

 21: 1l l« -

 22: pG « expandPlanningGraph (,)pG l

 23: while []failureZ ?

 24: return Z

 function checkFixedPoint (,)pG l : boolean

 25: if 0l ~ then return False

 26: else

 27: if . [1] . []pG P l pG P l/ ” or . [1] . []pG P l pG P lo o/ ” then return False

 28: else

 29: if . [1] . []pG A l pG A l/ ” or . [1] . []pG A l pG A lo o/ ” then return False

 30: return True

CHAPTER 2. CLASSICAL PLANNING 33

 The function generatePlanGP builds the planning graph for the given planning prob-

lem up to the level where the given goal is contained or the fixed point is reached (lines 1-

9). Within this process the function expandPlanningGraph is used. This function expands a

specified planning graph pG up to a specified length l . In our case, the function just adds

one action and one proposition layer to the existing planning graph. Notice the setup of the

fixed point level m and its size M (lines 4-5, 12-13). This is important for termination con-

dition. Notice also, that if the fixed point is reached and the goal is still not contained in the

last proposition layer or it is not mutex-free, the algorithm terminates with failure (line 10).

 After the initial planning graph construction, the algorithm continues by a loop in

which plan extraction and planning graph expansion interleave (lines 14-23). An attempt to

extract a concurrent plan starting in the currently last proposition layer of the planning

graph satisfying the given goal is performed first (line 15). If the plan extraction is unsuc-

cessful, the termination condition is checked (lines 16-20) and planning graph is expanded

by one action and proposition layer (lines 21-22). The algorithm terminates with failure if

the set of nogoods in the fixed point level m does not change after two subsequent unsuc-

cessful plan extractions (more precisely, all the attempts to satisfy a goal in the fixed point

level are caught within the check against the set of recorded nogoods). If the plan extraction

is successful, the function returns a solution concurrent plan (line 24).

2.8 Constraint Programming

Constraint programming provides a framework for modeling and solving a large variety of

problems arising in combinatorial optimization, artificial intelligence, computer graphics,

planning, and scheduling etc. The pivotal concept in constraint programming is to separate

problem modeling and problem solving. The problem is modeled using concepts such as a

variable and a constraint which is a relation between the variables that we want to satisfy.

The solving techniques range from intelligent exhaustive search (Baker, 1995) to various

local techniques based on greedy exploration of the search space (Harvey, 1995).

 One of the most successful techniques developed within constraint programming are

so called consistency techniques. A consistency technique allows reducing the search space

significantly by a clever pruning of the sets of possible values for the variables.

 However, even with the usage of consistency techniques and intelligent search there is

still a lot of problems that are too difficult to be solved by these techniques only. Therefore

problem oriented heuristics are used to guide the search for a solution. Authors of software

products offering constraint technology such as ILOG (ILOG, 2007), CHOCO (CHOCO,

2007), Gecode (Gecode, 2007), and SICStus Prolog (SICStus, 2007) are aware of this fact

and provide large collections of built-in problem oriented heuristics.

CHAPTER 2. CLASSICAL PLANNING 34

2.8.1 Constraint Satisfaction Problems

The constraint satisfaction problem (CSP) consists of variables and of constraints. Each

variable has assigned a finite domain of values for it. A constraint is an arbitrary relation

over the domains of the variables in the scope of the constraint. Constraints represent rela-

tions between variables and restrict the values of the variables to allowed combinations

only. The number of variables involved in the constraint is called an arity of the constraint.

Definition 2.18 (CONSTRAINT SATISFACTION PROBLEM). A constraint satisfaction prob-

lem is a triple (, ,)X C D where X is a finite set of variables and C is a finite set of con-

straints over the variables from the set X , and each variable from X is assigned domain

of values D . A sequence of variables constrained by a constraint c CŒ is called a scope of

the constraint and will be denoted as cX (the order of variables in the scope matters). ゴ

 It is convenient to assign a so called current domain of values to each variable. The

current domain for variable x XŒ is denoted as []D x . Current domains are initially equal

to D and they are used as working domains by algorithms.

 Example 2.7 shows a formulation of the graph coloring problem as a constraint satis-

faction problem. Let us have a graph (,)G V E? and a number k Œ’ which determines the

maximum number of colors that can be used. The task is to assign a color to each vertex of

the graph such that no two adjacent vertices have the same color.

Example 2.7. EXAMPLE OF A CONSTRAINT SATISFACTION PROBLEM. The graph coloring

problem expressed as a constraint satisfaction problem.

Corresponding constraint satisfaction problem P = (X, C)

X = {a, b, c, d, e}

a, b, c, d, e Œ {1, 2, 3}

C = {a Œ b, a Œ c, b Œ d, c Œ d, d Œ e}

 To solve a given constraint satisfaction problem it is necessary to assign values to vari-

ables such that all the constraints are satisfied. The following definitions formally describe

the solution of a constraint satisfaction problem.

Definition 2.19 (ASSIGNMENT OF VALUES TO VARIABLES). A complete assignment of

values to variables for the problem (,)P X C? is a function : X D{ › . A partial assign-

ment of values to variables for the problem (,)P X C? is a function : X Dl |› where

¸ X X|” Ł . ゴ

G = (V, E); k = 3

c

a
b

d e

CHAPTER 2. CLASSICAL PLANNING 35

Definition 2.20 (SOLUTION OF CONSTRAINT SATISFACTION PROBLEM). A solution of a

given constraint satisfaction problem (,)P X C? is a complete assignment of values to

variables : X D{ › and 1 2()[, , ,c C x x$ Œ @]k cx X? µ 1 2[(), (), , ()]kx x x c{ { { Œ@

(constraint is a subset of the Cartesian product of the domains of variables of its scope). ゴ

 One of the solutions of the problem from example 2.7 is the following complete as-

signment () 1a{ ? , () 2b{ ? , () 2c{ ? , () 3d{ ? , and () 1e{ ? .

 The complexity of solving constraint satisfaction problems is summarized in the fol-

lowing proposition.

Proposition 2.5 (COMPLEXITY OF CONSTRAINT SATISFACTION PROBLEMS). Having a con-

straint satisfaction problem P the problem of deciding whether there is a solution of the

problem P is NP-complete. ﾐ

 This proposition can be easily proved by using polynomial time transformation of

some NP-complete problem to a constraint satisfaction problem. As it was shown in the

example 2.7 the graph coloring problem which is a known NP-complete problem can be

used for this.

2.8.2 Solving Techniques

There is a wide variety of techniques for solving constraint satisfaction problems (Dechter,

2003). Techniques for solving CSPs range from backtracking-based search to local search

(Baker, 1995; Harvey, 1995). In the thesis we are focusing on backtracking-based methods

only. The reason is that these methods are able to prove non-existence of a solution (the

search space is explored systematically; nothing is skipped) and this is a property we need

in our applications of CP.

 The core of all the solving algorithms discussed in the thesis is formed by chronologi-

cal backtracking. The algorithm performs a systematic search through the set of all possible

assignments of values to the variables. At each step the algorithm assigns a value to the

variable and checks satisfaction of the constraints by this assignment. If the assignment

satisfies the constraints, the next variable is assigned. Otherwise another value is tried for

the variable. More precisely, the task is to assign values to all the unassigned variables such

that all the constraints are satisfied. The task is solved recursively. At each level of the re-

cursion, the algorithm heuristically selects a variable that will be assignment a value (a

variable ordering heuristic is used for this selection). Then all the values from the vari-

able’s current domain are systematically tried (the order of values is determined by a value

ordering heuristic). That is, a selected value is temporarily assigned to the variable and

satisfaction of constraints is checked (it is sufficient to check satisfaction of the constraints

CHAPTER 2. CLASSICAL PLANNING 36

affected by the assignment; that is, only constraints containing the newly assigned variable

in their scope need to be checked). If the constraints are satisfied, we obtained a task of the

same type but smaller. Thus the algorithm recursively proceeds with the next unassigned

variable. If the constraints are not satisfied or if the smaller task cannot be solved, the vari-

able is unassigned and the next value from its current domain is tried. If all the values for

the variable were tried and the solution has not yet been found, the algorithm returns to the

previous variable and tries the next value for it. The algorithm terminates with success

when all the variables are successfully assigned.

 The basic chronological backtracking algorithm is inefficient. Its worst case time com-

plexity is exponential in the size of the CSP (()
X

O D). Although it is unlikely (unless

P NP?) to have a solving algorithm with lower worst case time complexity than exponen-

tial, there is a large room for improvements.

 Again there is a variety of techniques for improving backtracking-based search algo-

rithms. In the following text, we discuss only selected approaches that are most important

with respect to our own contributions - consistency techniques, global constraints, and

problem modeling.

2.8.3 Consistency Techniques

A consistency technique is used for ruling out inconsistent values or the tuples of values

from further consideration. If the value or the tuple of values is inconsistent then it cannot

be part of any solution of the problem.

 Consider the following simple example. Let us have two variables {1,2}aŒ , {1}bŒ

and a constraint a b” in the constraint satisfaction problem. Then we can immediately rule

out the value 1 from the current domain of variable a since it cannot be part of any solu-

tion of the problem.

 Depending on the strength of a consistency technique it is possible to rule out more or

less values (or tuples of values) from the current domains of variables. However, the

stronger the consistency is the more time and space is required to establish it in the prob-

lem. Therefore a trade-off is necessary to be found between the strength of the consistency

and its requirements of computational resources.

 The main area of application of consistency techniques are general search algorithms

for solving constraint satisfaction problems. The early removal of inconsistencies from the

problem saves the time which the search algorithm would consume by unsuccessful at-

tempts to assign inconsistent values to the variables otherwise. In many search algorithms a

certain type of consistency is enforced in the problem after each decision of the algorithm

(Jussien et al., 2000; Surynek, 2003; Surynek, 2005).

CHAPTER 2. CLASSICAL PLANNING 37

2.8.4 Arc-consistency

Arc-consistency combines simplicity of implementation with the relatively strong pruning

power (Mackworth, 1977). Arc-consistency is a technique that removes values (not tuples

of values) from the current domains of variables. The original definition of arc-consistency

was formulated for problems consisting of binary constraints only. For simplicity we use

the restriction on binary constraints too. In the following definition a term arc refers to the

ordered pair of variables.

Definition 2.21 (ARC-CONSISTENCY FOR BINARY CONSTRAINTS). Consider a binary con-

straint satisfaction problem (, ,)P X C D? and a binary constraint c CŒ where [,]cX x y? .

An arc [,]x y is arc-consistent with respect to the constraint c if for each value []xd D xŒ

there is a value []yd D yŒ such that an assignment xx d? , yy d? satisfies the constraint c

(that is [,]x yd d cŒ). The binary constraint c CŒ , where [,]cX x y? , is arc-consistent if

the arcs [,]x y and [,]y x are arc-consistent with respect to the constraint c . We say the

problem (, ,)P X C D? to be arc-consistent if all the constraints in the set C are arc-consis-

tent. ゴ

 Observe that the values that are inconsistent with respect to arc-consistency cannot

participate in any solution. Therefore removal of inconsistent values with respect to arc-

consistency does not change the set of solutions of the problem.

 The task of enforcing arc-consistency is to compute the maximum (with respect to in-

clusion) current domains of variables such that the problem is arc-consistent.

Figure 2.5. ARC-CONSISTENCY OF A BINARY CONSTRAINT. Original and current domains of variables

x and y are depicted in the figure. Values removed from the current domains are depicted by the

grey color. The current domains of variables are represented by the blue color.

 Making a single constraint arc-consistent is easy. It is possible to exactly follow the

definition of arc-consistency and rule out values form the domains of the corresponding

variables. The arc-consistent state of the constraint x y> is shown in figure 2.5. Enforcing

arc-consistency for the whole constraint satisfaction problem is more difficult. Making a

x: 7 8 9 10 11 12 13

y: 3 4 5 6 7 8 9

x y>

CHAPTER 2. CLASSICAL PLANNING 38

certain constraint arc-consistent by removing values from the domains of its variables may

cause that another constraint may become inconsistent.

 The most straightforward way to make the problem arc-consistent is to make all the

constraints arc-consistent and repeat this process until current domains of variables are

changing. This is the way how the basic algorithm AC-1 proceeds. An improvement of

AC-1 is represented by the algorithm AC-2 (Waltz, 1975). A further improvement is repre-

sented by the algorithm AC-3 (Mackworth, 1977).

2.8.5 Algorithm AC-3

AC-3 algorithm is used as a consistency enforcing procedure in planning graphs therefore,

a more detailed description is devoted to this algorithm. The idea of the algorithm is to re-

peatedly make constraints arc-consistent until the current domains of variables are chang-

ing. The symbolic code of the algorithm is shown here as algorithm 2.3.

Algorithm 2.3. AC-3. Basic algorithm for enforcing arc-consistency.

 procedure propagateAC-3 ()REVISEC

 1: REVISEREVISE CQ «

 2: while REVISEQ ”¸ do

 3: REVISEQcŒ , arbitrary constraint

 4: }{cQQ REVISEREVISE /«

 5: [,] cx y X«

 6: [,]x yD D/ / « filter (, [], [])c D x D y

 7: if xD/ ”¸ then

 8: [] [] xD x D x D/« /

 9: { | & }REVISE REVISE eQ Q e C x X e c« ̌ Œ Œ ”

 10: if yD/ ”¸ then

 11: [] [] yD y D y D/« /

 12: { | & }REVISE REVISE eQ Q e C y X e c« ̌ Œ Œ ”

 The symbolic code of the algorithm AC-3 builds on the function filter which makes a

single constraint arc-consistent. The function gets the constraint and current domains of the

variables bound by the constraint as its parameters. It works exactly according to the defini-

tion of arc-consistency. The return value of the function filter is an ordered pair of sets of

values which have to be removed from the current domains of variables bound by the con-

straint to make the constraint arc-consistent.

 The algorithm consists of a single procedure propagateAC-3 which has a set of con-

straints that we want to make arc-consistent as a parameter. To make the whole constraint

CHAPTER 2. CLASSICAL PLANNING 39

satisfaction problem (, ,)P X C D? arc-consistent the procedure should be invoked by the

call propagateAC-3 ()C . The procedure itself is represented by a loop (lines 2-12) con-

trolled by the queue of constraints which should be revised for arc-consistency. In each

iteration of the loop a constraint is selected from the queue (lines 3-4) and values which

have to be ruled out from the current domain to enforce arc-consistency are found (lines 5-

6). Then the current domains of variables bound by the revised constraint are updated (val-

ues are removed - lines 7-9 and 10-12). When doing this, newly affected constraints by the

change of the current domains are scheduled into the queue of constraints for revision (lines

9 and 12).

 The complexity of the AC-3 algorithm depends on the effectiveness of the implemen-

tation of the filter function. Assuming the very basic implementation (sequential search for

the consistent value in the current domain of the neighboring variable through the con-

straint), the worst case time complexity of the filter function is ([] [])O D x D y when called

for the constraint over the variables x and y . The worst case time complexity of the whole

algorithm is summarized in the following proposition. We omit the detailed proof of the

proposition since it is given in (Mackworth, 1977) and summarized in (Surynek, 2003).

Proposition 2.6 (WORST CASE TIME COMPLEXITY OF AC-3). Assuming the basic imple-

mentation of the function filter (with the worst case time complexity of ([] [])O D x D y over

the constraint with variables x and y) the AC-3 algorithm for enforcing arc-consistency

in the problem (, ,)P X C D? has the worst case time complexity of

, [,](([] []) [] [])
cc C X x yO D x D y D x D yŒ ? -Â which is

3
()O C D . ﾐ

Idea of proof. The key idea of the proposition is the observation that function filter can be

invoked at most , [,]([] [])
cc C X x y D x D yŒ ? -Â times throughout the loop considering that

each call the function removes only one value from a current domain of a variable. ﾐ

 The space required by the algorithm is proportional to the size of the queue of con-

straints for revision which is proportional to C . The complexity of the algorithm is sum-

marized in table 2.2.

 There exist more efficient algorithms for enforcing arc-consistency than AC-3. The

several best known are AC-3.1 (Zhang and Yap, 2001), AC-4 (Mohr and Henderson, 1986),

AC-6 (BessiÈre and Cordier, 1993), and AC-2000/AC-2001 (BessiÈre and RÉgin, 2001). The

common characteristic of these algorithms is a more effective implementation of the filter

function. Time complexities of these algorithms are lower than that of AC-3, nevertheless

the space complexity is typically higher since these algorithms use advanced data structures

such as support counters to speedup the search for a consistent value. The more detailed

summary of the collection of these arc-consistency enforcing algorithms is given in (Sury-

nek, 2003; Surynek, 2005).

CHAPTER 2. CLASSICAL PLANNING 40

AC-3 Propagation

Space complexity

(worst case)
()O C

Time complexity

(worst case)

3
()O C D

, [,](([] []) [] [])
cc C X x yO D x D y D x D yŒ ? -Â

Table 2.2. COMPLEXITY OF AC-3. Summary of asymptotic space and time complexity of the AC-3

algorithm.

2.8.6 Global Constraints

Consider a situation where we have a set of n variables 1 2, , , nx x x@ with certain domains

and we require that all these variables have assigned pair-wise different values. This rela-

tion can be modeled by (1) / 2n n - simple constraints i jx x” for , 1,2, ,i j n i j? ® ”@ .

However, an explicit representation of the relation was lost because the original relation

was fragmented into many simple constraints. By losing the explicit formulation of the rela-

tion we also lost the ability to exploit this explicit formulation for stronger consistency en-

forcing over the variables participating in the relation (for instance arc-consistency does not

identify any value as inconsistent in the following CSP though it has no solution:

(, ,)P X C D? , where 1 2 3{ , , }X x x x? , 1 2 2 3{ , ,C x x x x? ” ” 1 3}x x”), and {1,2}D ? .

 This is the reasons why a different approach is used for modeling such relations in

practice - so called global constraints are used. A global constraint is a specialized con-

straint modeling a specific sub-problem. The scope of a global constraint typically includes

higher number of variables. The global constraints are accompanied with a specialized and

efficient algorithm for enforcing certain type of consistency.

 The global constraint for the above example when different values must be assigned to

variables is called allDifferent (RÉgin, 1994). Its filtering procedure for enforcing consis-

tency is based on algorithms for computing maximum network flows (Ahuja et al., 1993).

This constraint is able to detect insolvability of the previously mentioned problem P . We

shall define a new global constraint for planning later in the thesis.

2.8.7 Problem Modeling

Another important issue regarding the efficiency of solving of CSP is modeling. There are

many different ways how to express a certain problem as a CSP. Models for a given prob-

lem are typically equivalent in terms of the set of solutions (it is possible to obtain a solu-

tion of one model from another model by certain transformation). However, different mod-

CHAPTER 2. CLASSICAL PLANNING 41

els for the same problem may behave differently with respect to the consistency techniques

(for example arc-consistency may propagate well in some model but may not propagate in

another model). Consider the following example. Let us have a CSP 1 1 1 1(, ,)P X C D? ,

where 1 1 2 3{ , , }X x x x? , 1 1 2 1 2 3{ ; }C x x x x x? ? - ?), and 1 {1,2,3}D ? , and let us have a CSP

2 2 2 2(, ,)P X C D? , where 2 1 2 3{ , , }X y y y? , 2 1 2 2 3{ ;2 }C x x x x? ? ?), and 2 {1,2,3}D ? . Prob-

lems are equivalent. That is, the set of solutions of 1P is 1 2 3{ 1, 1, 2}x x x? ? ? , the set of

solutions of 2P is 1 2 3{ 1, 1, 2}y y y? ? ? , and there is a simple transformation between the

solutions 1 1 2 2 3 3{ , , }x y x y x y“ “ “ . However, arc-consistency (the generalized version

for constraints of higher arities than two) for the problem 1P infers that 1[] {1,2}D x ? ,

2[] {1,2}D x ? , and 3[] {2,3}D x ? ; while arc-consistency for the problem 2P infers that

1[] {1}D y ? , 2[] {1}D y ? , and 3[] {2}D y ? . That is, the model 2P allows arc-consistency to

infer more information.

 Different models of the same problem are often combined together to obtain strongest

possible filtration by consistencies. In each such sub-model a consistency efficient for this

sub-model is enforced. Thus a different filtering effects in each sub-model can be achieved

(different sets of values are ruled out in each sub-model). Then the filtering effects are com-

bined together using so called channeling constraints. A channeling constraint typically

requires equivalence between sub-models for the same part of the problem. If we use the

above example with sub-models 1P and 2P , the channeling constraints would be 1 1x y? ,

2 2x y? , and 3 3x y? . For more complex problems such kind of a careful modeling based

on different views of the problem can bring strong filtering effects as we shall show later

for planning problems.

42

CHAPTER 3

CONTRIBUTIONS TO PLANNING

USING PLANNING GRAPHS

We are focusing on improving of the plan extraction phase of the GraphPlan algorithm. By

using concepts and techniques from constraint programming (Dechter, 2003) we improve

the search for a plan. We are using maintaining arc-consistency (Mackworth, 1977;

Dechter, 2003) during extraction of a plan from the planning graph to reduce the search

space. Further, we proposed a special type of global reasoning which we called projection

consistency which allows the fast and efficient reasoning about goal satisfaction within the

planning graph during plan extraction. The projection consistency allows yet stronger re-

duction of the search space than maintaining arc-consistency. Moreover, the concept of

projection consistency can be used for definition of class of sub-problems that can be

solved in polynomial time.

 A material presented in this chapter also appears in (Surynek, 2006), (Surynek, 2007a),

(Surynek, 2007b), (Surynek, 2007c), and in (Surynek, 2007d). In (Surynek, 2006) and

(Surynek, 2007a) we introduce some kind of a constraint based reasoning in planning

graphs (Blum and Furst 1997). In (Surynek and BartÁk, 2007a) we study the effect of main-

taining arc-consistency in planning graphs. The projection consistency is described in

(Surynek, 2007c, 2008a; Surynek et al., 2007a, 2007b). Finally, we define a tractable class

based on the projection consistency in (Surynek, 2007d, 2007e, 2008b; Surynek and BartÁk,

2007b).

3.1 Problem of Finding Supporting Actions

We study the problem of finding a mutex-free set of actions in an action layer of the plan-

ning graph that together satisfy a certain goal (they support the goal). To distinguish be-

tween the main goal of the planning problem and goals that arise during search within plan

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 43

extraction phase we call the later sub-goals. The formal definition of the problem is as fol-

lows.

Definition 3.1 (PROBLEM OF FINDING SUPPORTS). Let A be a set of actions of the action

layer of a given planning graph and let Ao be a set of mutexes between actions from A .

Next let us have a sub-goal g . A problem of finding supports for a sub-goal g is the task

of determining a set of actions A¦ Ø where no two actions from ¦ are mutex with respect

to Ao and ¦ satisfies the sub-goal g , that is ()
a

g e a¦
-

ŒØ I . The actions from the set ¦

are called supports for the sub-goal g in this context. ゴ

Figure 3.1. PROBLEM OF FINDING SUPPORTS FOR A SUB-GOAL. Example of a problem of finding

supports for a sub-goal. Three transporters must be loaded. Each transporter has a capacity of one

box. Mutexes are depicted as arcs between actions (mutexes are between actions loading the same

box to different transporters). State variable representation is used in the figure.

 An example of the problem of finding supports for a sub-goal is shown in figure 3.1. If

we examine the course of execution of the GraphPlan algorithm, we can observe that typi-

cally huge numbers of sub-goals must be satisfied or proved to be unsatisfiable along the

search for the global goal in the standard GraphPlan algorithm. The effectiveness of a

method for solving the problem of finding supports has therefore a major impact on the

performance of the planning algorithm as a whole. Unfortunately the problem of finding

supports is NP-complete. This claim can be proved by using reduction of Boolean formula

satisfaction problem to the problem of finding supports. The illustration of the reduction is

also showed in figure 3.2.

Proposition 3.1 (COMPLEXITY OF PROBLEM OF FINDING SUPPORTS). The problem of find-

ing supports for a sub-goal in planning graph is NP-complete. ﾐ

supports

supports supports

load(box_2, transporter_C)

load(box_3, transporter_C)

supports

load(box_1, transporter_B)

load(box_2, transporter_B)

load(box_1, transporter_A)

load(box_2, transporter_A)

load(box_3, transporter_A)

free-capacity(transporter_B)=0 free-capacity(transporter_C)=0 free-capacity(transporter_A)=0

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 44

Proof. Observe that the problem of finding supports is in NP. It is sufficient to treat sets as

lists to prove this claim. Having a set of actions ¦ it is possible to check whether it is a

solution of the supports problem for a goal g in (())O A A g¦ o- - steps. First we need

check if all the actions from ¦ are also from A . It takes A¦ steps to check if A¦ Ø

holds. Next we need to check if no two actions from ¦ are mutex. A mutex { , }i ja a where

,i ja a AŒ , can be checked against ¦ in 2 ¦ steps. For all mutexes this can be done in

2 A¦ o steps. Computing of the set ()
a

e a¦
-

ŒI takes ¦U steps where U is the action

size bounding constant (that is ()a A$ Œ max(() , () , ())p a e a e a- /U ‡). Checking

whether ()
a

g e a¦
-

ŒØ I takes g¦U steps. Hence, the total number of steps for verifying

the solution is 2A A g¦ ¦ o ¦- -U which is (())O A A g¦ o- - . The resulting ex-

pression is polynomial in size of the input.

 Completeness with respect to NP class can be proved by using polynomial reduction of

Boolean formula satisfaction problem (SAT) to problem of finding supports. Consider a

Boolean formula B . It is possible to assume that the formula B is in the form of conjunc-

tion of disjunctions, that is 1 1
imn i

i j jB x? ?? ® ° , where i

jx is a variable or a negation of a vari-

able. For each clause 1
im i

j jx?° where 1,2, ,i n? @ we introduce a literal il into the con-

structed goal g . Next we introduce an action (i

ja ? ¸ ,{ },il ¸) into the set of actions A for

each i

jx from the clause (the action has the only one positive effect and no preconditions

and no negative effects). Actions are introduced in this way for all the clauses from B . If

for some , {1,2, , }i k nŒ @ ; {1,2, , }ij mŒ @ ; {1,2, , }kl mŒ @
i k

j lx x? ¬ or i k

j lx x¬ ? holds we

introduce a mutex { , }i k

j la a into the set of mutexes Ao (notice that it is also possible to

build the set of mutexes implicitly by constructing appropriate positive and negative effects

of the actions). The constructed sets A , Ao and the goal g constitute the instance of the

problem of finding supports (see figure 3.2). The size of the resulting problem is
2

()O B ,

where B is the number of literals appearing in B .

 Having a set of actions ¦ solving the constructed instance of the problem of finding

supports we can construct valuation f as follows ()i

jf x True? (that is: if i

jx v? for some

variable v then ()f v True? , if i

jx v? ¬ then ()f v False?) for each i

ja AŒ . The truth

values for the remaining variables in B can be selected arbitrarily. Mutexes ensure that the

valuation f is a correctly defined function. Moreover, we have 1()im i

j jf x True?° ? for

1,2, ,i n? @ . Thus every clause of B is positively valued. This is implied by the fact that

the goal g is satisfied by ¦ . The solution of the original Boolean formula satisfaction prob-

lem is obtained from ¦ in ()O B steps. ﾐ

 There is a little hope to solve the problem of finding supporting actions effectively in

general in the light of the above result. Nevertheless, the approach presented within the

algorithm 2.1 where the simple uninformed backtracking is used to solve the problem is too

naive.

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 45

Figure 3.2. REDUCTION OF BOOLEAN SATISFIABILITY TO THE PROBLEM OF FINDING SUPPORTS. Illus-

tration of the reduction of a Boolean satisfaction problem to the problem of finding supports for a

sub-goal.

3.2 Basic Constraint Model: Arc-consistency

Compared to the simple uninformed backtracking used to solve the problem of finding sup-

porting actions for a sub-goal constraint programming provides more effective tools to

solve similar combinatorial problems.

 We model the problem of finding supporting actions for a sub-goal as a constraint sat-

isfaction problem. Having this formulation, we use arc-consistency (Mackworth, 1977) for

pruning the search space during the search for supporting actions. The constraint model is

built whenever a sub-goal arises in some layer of the planning graph during the plan extrac-

tion phase of the GraphPlan algorithm. Suppose that the sub-goal g| arises in course of

plan extraction phase in the ith proposition layer of the planning graph. At this point of the

plan extraction phase we build the constraint satisfaction problem expressing the problem

of finding mutex-free set of actions from the ith action layer that support the sub-goal g| .

We use two types of variables to model the problem - activity variables and support vari-

ables.

Activity variables: A Boolean variable () { , }active a False TrueŒ is included in the model

for every action a from the ith action layer of the planning graph which supports some

proposition in the sub-goal g| (that is ()e a g- |̨ ”¸). ズ

x1

V

x2

l2

¬x2

V

¬x3

l3

x2

V

x3

l4

¬x1

V

¬x2

l1

a
1
¬x1={¸,{l1},¸}

a
1
¬x2={¸,{l1},¸}

supports

a
2
x1={¸,{l2},¸}

a
2
x2={¸,{l2},¸}

supports

a
3
¬x2={¸,{l3},¸}

a
3
¬x3={¸,{l3},¸}

supports

a
4
x2={¸,{l4},¸}

a
4
x3={¸,{l4},¸}

supports

Boolean formula B = (¬x1 ° ¬x2) (x1 ° x2) (¬x2 ° ¬x3) (x2 ° x3)

Goal g = {l1, l2, l3, l4}

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 46

Support variables: A variable ()support p is included into the model for every atom

p g|Œ . The domain of the variable ()support p consists of all the actions from the ith ac-

tion layer of the planning graph which support the atom p (that is ()support p Œ

{ | ()}a p e a-Œ). ズ

 Constraints of the model are accumulated in two clusters. The first cluster is formed by

constraints between Boolean activity variables and the second cluster is represented by con-

straints between support variables. There is one special more complex channeling con-

straint between these two clusters. This special constraint controls propagation of changes

between the clusters.

Activity mutex constraint: A binary constraint (,)activityMutex a b forbidding assignment

of the value True to the pair of Boolean activity variables ()active a and ()active b (that is

() ()active a True active b True? ® ? is forbidden) is included into the model if and only if

actions a and b are mutex in the ith action layer of the planning graph. ズ

Support mutex constraint: A binary constraint ()supportMutex p,q between variables

()support p and ()support q is refined by adding a new forbidden assignment

() ()support p a support q b? ® ? if and only if actions a and b are mutex in the ith action

layer of the planning graph (more precisely, we start with the constraint

()supportMutex p,q that allows arbitrary valuation of the variables of its scope respecting

the domains; then for every pair of actions ()a support pŒ and ()b support qŒ that are

mutex in the ith action layer of the planning graph we refine the constraint

()supportMutex p,q by forbidding the new assignment () ()support p a support q b? ® ?).ズ

 Having this model the uninformed backtracking within the plan extraction phase which

solves the problem of finding supporting actions (lines 16-27 of algorithm 2.1) can be re-

placed by solving of the proposed constraint model. The defined model combines in fact

two models. The first sub-model (cluster) consists of activity variables and activity mutex

constraints, the second sub-model (cluster) consists of support variables and support mutex

constraints. The cluster of activity variables is used for fast propagation after selection of an

action. It provides a fast detection of actions mutually excluded with the selected action.

The cluster consisting of support variables and constraints represents the main sub-model. It

is richer than the activity sub-model and arc-consistency can infer more in this sub-model

(the solution of activity sub-model can be derived from the solution of support sub-model;

however, the opposite is not possible since there is no information about supported atoms in

the activity sub-model). The drawback of the support sub-model is that it is large and in

practice enforcing arc-consistency in this sub-model takes non-trivial amount of time.

 To solve the proposed constraint model we use the standard chronological based back-

tracking (Dechter, 2003) augmented by various degrees of constraint propagation and cer-

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 47

tain type of dynamicity (the model is changed during search). The backtracking is also aug-

mented by the standard variable and value selection heuristics (BessiÈre and RÉgin, 1996).

The search proceeds by selecting an atom with the fewest number supports from the current

sub-goal (that is a support variable with the smallest current domain is selected - first fail

heuristic). The number of mutexes between the support variables is used for breaking ties.

That is, if there are more support variables with the smallest current domain then the sup-

port variable which participates in more mutex relations is selected. For value ordering we

select the value (action) that participates in the fewest number of mutex relations (succeed

first heuristic). The general framework of the process of solving the proposed constraint

model is shown as algorithm 3.1.

Algorithm 3.1. SOLVING METHOD FOR BASIC CONSTRAINT MODEL OF PROBLEM OF SUPPORTS.

Top level search control of the algorithm for solving basic constraint model of the problem of

finding supporting action for a sub-goal. The symbolic code uses external function propagate-

BasicModel which enforces certain level of consistency in the model. Several variants of this

function are described in the following section.

 function solveBasicModel (,)M ¦ : set

 1: { () | () . }SUPPORTX support p support p M X« Œ

 2: if SUPPORTX ? ¸ then return ¦

 3: else

 4: SUPPORTx « heuristicallySelectVariable ()SUPPORTX

 5: if . []SUPPORTM D x ?¸ then return { }failure

 6: else

 7: while . []SUPPORTM D x ”¸ do

 8: SUPPORTa « heuristicallySelectValue (. [])SUPPORTM D x

 9: . [()] . [()] { }SUPPORT SUPPORTM D active a M D active a False| « /

 10: { | ()}SUPPORTh p p e a-« Œ

 11: { () | () . }DELETEX support p p h support p M X? Œ ® Œ

 12: . . DELETEM X M X X| « /

 13: { | .DELETE c DELETEC c c M C X X« Œ ® ̨ ” ¸}

 14: . . DELETEM C M C C| « /

 15: (,)M ¦| | « propagateBasicModel (, { })SUPPORTM a¦| ̌

 16: if { }failure¦ | ” then

 17: ¦ ||« solveBasicModel (,)M ¦| |

 18: if { }failure¦ || ” then return ¦ ||

 19: . [] . [] { }SUPPORT SUPPORT SUPPORTM D x M D x a« /

 20: return { }failure

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 48

 The solving algorithm is represented by the single recursive function solveBasicModel

which gets two parameters M and ¦ . The parameter M is the constraint model (con-

straint satisfaction problem represented as a compound structure consisting of the set of

variables X , of the set of constraints C , and of the array D indexed by variables repre-

senting current variable domains; components of this compound structure are again ac-

cessed using “.” - dot). The parameter ¦ is the set of already selected actions into the solu-

tion of the problem. To solve the constraint model M representing the problem of finding

supporting actions the function should be invoked as follows: solveBasicModel (,M ¸) .

 The solving process assigns values to support variables until the set of assigned sup-

port variables satisfies the original goal. In fact we do not assign values to all the support

variables. The support variables of already satisfied atoms are immediately removed from

the model together with constraints containing them in their scope. If there are no support

variables in the model, the problem is solved. The modification of the model is done be-

cause of its large size at the beginning. The smaller model has smaller number of con-

straints that must be checked for consistency.

 This process is implemented by the solveBasicModel function as follows. First it is

checked whether there are any support variables (lines 1-2). If there is no support variable

the problem is solved and the parameter ¦ is the solution. Otherwise a support variable

SUPPORTx is selected (lines 4-5) and if its current domain is non-empty all the values from

the current domain are tested to participate in the solution (lines 6-8; values are tested in a

heuristically determined order). When a value SUPPORTa for the support variable SUPPORTx is

selected the constraint model is modified by removing the support variable SUPPORTx and

corresponding constraints (lines 8-14). The activity variable corresponding to SUPPORTa ac-

tion is forced to be active (the False value is ruled out from its current domain - line 9).

Then a certain level of consistency is enforced in the model (line 15). The result is a modi-

fied constraint model M | and eventually more actions selected into the solution set ¦ | . If

the consistency enforcing is successfully finished the solving process continues by the re-

cursive call of the solveBasicModel function with modified constraint model M | and ex-

tended set of selected actions ¦ | as parameters (lines 16-18).

 The propagation in the model is ensured in several ways. The first aspect is the dy-

namicity of the model. Whenever the algorithm detects that an action must be performed to

support a certain atom in the sub-goal, the constraint model is refined by deleting all the

support variables that correspond to the positive effects of the action. The constraint net-

work is also appropriately modified (all the constraints connected with the deleted variable

are removed). An action a must be performed if the corresponding activity variable

()active a has the singleton set { }True as its current domain or the support variable

()support p of some atom p has the singleton set { }a as its current domain. The latter case

means that the action a is the only supporting action for the atom p and thus there is the

only chance to satisfy the atom p by selecting the action a to be performed.

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 49

 The second aspect of constraint propagation is consistency. We maintain arc-consis-

tency in the cluster of activity variables and in the cluster of support variables separately.

The propagation between the clusters is done through the special channeling constraint (re-

call that arc-consistency has different effect in both clusters). We proposed three variants of

constraint propagation between the clusters. The method of propagation through the chan-

neling constraint strongly relates to the way how consistency is enforced in the model.

However, the common property is that every time when the labeling step is performed (an

action is selected) the consistency is enforced in the model (or more precisely, consistency

is enforced in a selected part of the model). The variants of propagation are described in the

following section. For enforcing arc-consistency in the model the algorithm AC-3 is used

(see section 2.9.4).

3.2.1 Variants of Constraint Propagation

We describe three variants of propagation scheme for the algorithm for solving the basic

constraint model of the problem of finding supporting actions for a sub-goal. The individual

variants represent different levels of consistencies enforced in the constraint model. The

variants are named: variant A, variant B, and variant C. The variant A represents the weak-

est level of consistency; on the other hand this variant propagates quickly. The variant C

represents the strongest level of consistency but it is computationally most expensive. The

variant B represents a compromise between variant A and variant C.

 The individual propagation schemes can be integrated with the top control solving al-

gorithm (algorithm 3.1) by appropriate definition of the external function propagate-

BasicModel (line 15).

Propagation scheme of variant A: When a supporting action is selected to satisfy an atom

in the sub-goal, the corresponding activity variable is set to the value True . Then

arc-consistency is enforced in the cluster of activity variables. The next step consists of

propagation of the changes in the cluster of activity variables into the cluster of support

variables through the channeling constraint. The channeling constraint is defined as follows

in this variant. If an activity variable is definitely False (its current domain is singleton

{ }False), then the corresponding action is removed from current domains of all the sup-

porting variables. Observe that this variant cannot detect that an activity variable is defi-

nitely True (its current domain is singleton { }True). That is why arc-consistency propa-

gates weakly through the activity mutex constraints.

 This variant is functionally equivalent to forward checking (Dechter, 2003) in the clus-

ter of supporting variables (however this version is faster thanks to simplicity of the activity

cluster).

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 50

 The whole propagation variant is formally described here as algorithm 3.2. The algo-

rithm is represented by the single function propagateBasicModel-VariantA which gets the

constraint model M and the set of already selected actions into the solution ¦ as parame-

ters. The function returns a pair consisting of a modified constraint model after enforcing

consistency and of the set of actions selected into the solution (in this case the set of se-

lected actions is the same as the input parameter; in other variants it is extended). Arc-

consistency is enforced within the cluster of activity variables which is denoted as

|
ACTIVITYXM (the constraint model restricted to the set of activity variables). After enforcing

the consistency (lines 1-2) the changes made in the cluster of activity variables are propa-

gated into the cluster of support variables (lines 3-8). ズ

Algorithm 3.2. CONSTRAINT PROPAGATION - VARIANT A. This algorithm represents a variant of

the external function propagateBasicModel for the algorithm 3.1.

 function propagateBasicModel-VariantA (,)M ¦ : pair

 1: { () | () . }ACTIVITYX active a active a M X« Œ

 2: |
ACTIVITYXM « enforceArcConsistency-AC-3 (|)

ACTIVITYXM

 3: { () | () . . [()] { }}REMOVEA active a active a M X M D active a False« Œ ® ?

 4: for each ()REMOVE REMOVEactive a AŒ do

 5: for each () .support p M XŒ such that . [()]REMOVEa M D support pŒ do

 6: [()] [()] { }REMOVED support p D support p a« /

 7: if [()]D support p ?¸ then return (,)M failure

 8: return (,)M ¦

Propagation scheme of variant B: In this propagation scheme we proceed similarly as in

the variant A. When a supporting action is selected to satisfy some atom in the goal the

corresponding activity variable is set to the value True . Then arc-consistency is enforced in

the cluster of activity variables and changes are propagated into the cluster of support vari-

ables. This propagation is done in the same way as in the variant A. In addition to the vari-

ant A, changes in the cluster of support variables are propagated back to the cluster of activ-

ity variables. It is done in the following way. When a support variable has a singleton set as

its current domain (the proposition has the only support) the corresponding activity variable

is set to the value True and arc-consistency is enforced again in the cluster of activity vari-

ables. The process is repeated until changes are made.

 The symbolic code of this propagation variant is listed algorithm 3.3. The algorithm is

again represented by the single function propagateBasicModel-VariantB which has the

same interface as the previous variant of propagation function (input parameter and return

values are the same). The function consists of a loop (lines 2-22) which continues until the

constraint model is changing. Arc-consistency is enforced in the cluster of activity variables

(lines 12-13). Then changes made in the previous execution of the loop in the cluster of

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 51

support variables are propagated into the cluster of activity variables - the constraint model

is modified (lines 3-11). Next, the changes made in the cluster of activity variables are

propagated into the cluster of support variables (lines 14-21). ズ

Algorithm 3.3. CONSTRAINT PROPAGATION - VARIANT B. This algorithm represents a variant of

the external function propagateBasicModel for the algorithm 3.1.

 function propagateBasicModel-VariantB (,)M ¦ : pair

 1: SELECTA «¸

 2: do

 3: for each ()SELECT SELECTactive a AŒ do

 4: . [()] . [()] { }SELECT SELECTM D active a M D active a False« /

 5: { | ()}SELECTh p p e a-« Œ

 6: { () | () . }DELETEX support p p h support p M X? Œ ® Œ

 7: . . DELETEM X M X X« /

 8: { | .DELETE c DELETEC c c M C X X« Œ ® ̨ ” ¸}

 9: . . DELETEM C M C C« /

 10: { ()}SELECT SELECT SELECTA A active a« /

 11: { }SELECTa¦ ¦« ̌

 12: { () | () . }ACTIVITYX active a active a M X« Œ

 13: |
ACTIVITYXM « enforceArcConsistency-AC-3 (|)

ACTIVITYXM

 14: { () | () . . [()] { }}REMOVEA active a active a M X M D active a False« Œ ® ?

 15: for each ()REMOVE REMOVEactive a AŒ do

 16: for each () .support p M XŒ such that . [()]REMOVEa M D support pŒ do

 17: [()] [()] { }REMOVED support p D support p a« /

 18: if [()]D support p ?¸ then return (,)M failure

 19: else

 20: if [()] { }D support p a? then

 21: { ()}SELECT SELECTA A active a« ̌

 22: while SELECTA ”¸

 23: return (,)M ¦

Propagation scheme of variant C: This variant further evolves the previous variant. Now

consistency is enforced in both clusters. After selecting the action to support the given atom

a corresponding activity variable is set to the value True and arc-consistency is enforced in

the cluster of activity variables. Then changes are propagated into the cluster of support

variables where arc-consistency is enforced too. The last step of the iteration consists of

propagation of changes from the cluster of support variables into the cluster of activity

variables. Propagation in both directions between variable clusters through channeling con-

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 52

straint is done in the same way as in previous variants. The whole process is again repeated

until the model in changing.

 The symbolic code of this propagation variant is listed here as algorithm 3.4. The sym-

bolic code of this propagation variant is similar to the variant B. Changes are again propa-

gated from the cluster of support variables into the cluster of activity variables (lines 3-11)

and in the opposite direction from the cluster of activity variables into the cluster of support

variables (lines 15-18). The difference from the variant B is that arc-consistency is now

enforced both in the cluster of activity variables (lines 13-14) and in the cluster of support

variables (lines 19-20). ズ

Algorithm 3.4. CONSTRAINT PROPAGATION - VARIANT C. This algorithm represents a variant of

the external function propagateBasicModel for the algorithm 3.1.

 function propagateBasicModel-VariantC (,)M ¦ : pair

 1: SELECTA «¸

 2: do

 3: for each ()SELECT SELECTactive a AŒ do

 4: . [()] . [()] { }SELECT SELECTM D active a M D active a False« /

 5: { | ()}SELECTh p p e a-« Œ

 6: { () | () . }DELETEX support p p h support p M X? Œ ® Œ

 7: . . DELETEM X M X X« /

 8: { | .DELETE c DELETEC c c M C X X« Œ ® ̨ ” ¸}

 9: . . DELETEM C M C C« /

 10: { ()}SELECT SELECT SELECTA A active a« /

 11: { }SELECTa¦ ¦« ̌

 12: { () | () . }ACTIVITYX active a active a M X« Œ

 13: |
ACTIVITYXM « enforceArcConsistency-AC-3 (|)

ACTIVITYXM

 14: { () | () . . [()] { }}REMOVEA active a active a M X M D active a False« Œ ® ?

 15: for each ()REMOVE REMOVEactive a AŒ do

 16: for each () .support p M XŒ such that . [()]REMOVEa M D support pŒ do

 17: [()] [()] { }REMOVED support p D support p a« /

 18: if [()]D support p ?¸ then return (,)M failure

 19: { () | () . }SUPPORTX support p support p M X« Œ

 20: |
SUPPORTXM « enforceArcConsistency-AC-3 (|)

SUPPORTXM

 21: for each () .support p M XŒ such that . [()] { }M D support p a? do

 22: { ()}SELECT SELECTA A active a« ̌

 23: while SELECTA ”¸

 24: return (,)M ¦

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 53

 The constraint model with maintaining consistency provide stronger search space

pruning than the approach used within the standard GraphPlan’s plan extraction phase. The

question is which variant performs best and what type of consistency is better. Experiments

showed that variant C is the best choice on problems with higher number of interacting

objects and with high action parallelism. However on problems with low object interaction

the simple variant A is the best. Let us note that the cluster of action variables provides

faster constraint propagation compared to the cluster of support variables since it is struc-

turally simpler.

 The space complexity of the constraint model corresponds to the space complexity of

the layer in which the constraint model is build. This observation is summarized in the fol-

lowing proposition.

Proposition 3.2 (SPACE COMPLEXITY OF BASIC CONSTRAINT MODEL). The worst case esti-

mation on the space required by the basic constraint model for the problem of finding sup-

porting actions in the ith action layer iA for a sub-goal g which arise in the ith proposi-

tion layer iP of the planning graph is ()i iO g A Ao- . ﾐ

Proof. The constraint model consists of iA activity variables with domains of size 2 and

of g support variables with domains of sizes at most iA . Next we need a space of iAo

to store the constraints in the model. Together we need the space of 2 i i iA g A Ao- -

which is ()i iO g A Ao- . ﾐ

 The worst case time complexity of solving the problem of finding supports is exponen-

tial unless P NP? . However, the interesting information with respect to the analysis is

time complexity of a single propagation step. The results are summarized in the following

propositions.

Proposition 3.3 (TIME COMPLEXITY OF A SINGLE PROPAGATION STEP OF VARIANT A). The

worst case time complexity of a single propagation step of the propagation variant A is
2

()i iO A g A- supposed that the constraint model was built for problem of finding sup-

ports in the ith action and proposition layer of the planning graph and for the

sub-goal g . ﾐ

Proof. Enforcing arc-consistency by AC-3 algorithm within the cluster of activity variables

takes
2

()iO A steps (according to proposition 2.6 we get
2 3(2)iO A which is

2
()iO A). The

propagation of changes made in the cluster of activity variables to the cluster of support

variables takes ig A steps since at most ig A values are removed from the current vari-

able domains in the cluster of support variables. The worst case number of steps is
2

()i iO A g A- in total. ﾐ

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 54

Proposition 3.4 (TIME COMPLEXITY OF A SINGLE PROPAGATION STEP OF VARIANT B). The

worst case time complexity of a single propagation step of the propagation variant B is
3

()i iO A g A- supposed that the constraint model was built for problem of supports in the

ith action and proposition layer of the planning graph and for the sub-goal g . ﾐ

Proof. We already know that enforcing arc-consistency by AC-3 algorithm in the cluster of

activity variables takes
2

()iO A steps. This arc-consistency enforcing must be performed

iA times in the worst case since each iteration of the main control loop rules out from con-

sideration at least one activity variable (activity variable is selected). Amortized number of

steps over all the iterations of the main loop consumed by propagating changes between the

variable clusters is ig A . In total we have
3

()i iO A g A- steps required by the propaga-

tion of the variant B. ﾐ

Proposition 3.5 (TIME COMPLEXITY OF A SINGLE PROPAGATION STEP OF VARIANT C). The

worst case time complexity of a single propagation step of the propagation variant B is
32

()iO g A supposed that the constraint model was built for problem of finding supports in

the ith action and proposition layer of the planning graph and for the sub-goal g . ﾐ

Proof. The number of steps required by enforcing arc-consistency by the algorithm AC-3 in

the cluster of activity variables amortized over all the iterations of the main control loop is
3

()iO A in the worst case. The number of steps required by the propagation between activ-

ity variable and support variable clusters amortized over all the iterations of the main con-

trol loop is ig A . The number of steps amortized over all the iterations of the main control

loop required by enforcing arc-consistency by the AC-3 algorithm in the cluster of support

variables is
32

ig A (we have at most
2

g constraints and the size of the domains is

bounded by iA). Altogether we need
3 32

() () ()i i iO A O g A O g A- - which is
32

()iO g A . ﾐ

Propagation

variant
Variant A Variant B Variant C

Time complexity

(worst case)

2
()i iO A g A-

3
()i iO A g A-

32
()iO g A

Space complexity

(worst case)
()i iO g A Ao-

Table 3.1. COMPLEXITY OF PROPAGATION IN BASIC CONSTRAINT MODEL. Summary of asymptotic

worst case time and space complexities of the individual variants of propagations in the basic con-

straint model.

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 55

 The above complexity results for enforcing arc-consistency in the constraint model of

the problem of finding supporting actions are summarized in table 3.1.

 Notice that worst case time complexities of the individual variants of propagation dif-

fer significantly. However, the time consuming propagation variant C may reduce the num-

ber of steps of the top control solving algorithm more than for example fast propagating

variant A. For uncovering the behavior of the process of solving constraint models con-

nected with various constraint propagation variants we used an experimental evaluation.

3.2.2 Experimental Evaluation

We performed a set of experiments to evaluate the contribution of the proposed constraint

model and arc-consistency maintaining framework for solving the problems of finding sup-

porting actions. Our experiments are targeted on comparison of the basic version of the

GraphPlan algorithm with the enhanced versions of the GraphPlan algorithm which use the

constraint model and a variant of solving technique (variant A, variant B, and variant C).

 We implemented all the tested algorithms. This ensures that the all tested techniques

use common style of programming and common data structures for the same purposes (the

possible advantage of using more advanced data structure for the same task is therefore

eliminated). All the tested algorithms were implemented in the C++ language (Stroustrup,

1986) and were compiled under identical conditions using gcc compiler version 3.4.3

(GNU Project, 2008) with options providing maximum optimization for the target testing

machine (-O3 -mtune=opteron). The tests were run on a machine with two AMD Opteron

242 processors (1600 MHz) with 1GB of memory under Mandriva Linux 10.2 (Mandriva,

2008).

 We used standard variable and value selection heuristics as mentioned above. Specifi-

cally an atom with the smallest number of supporting actions is always selected as first to

be satisfied (in both the enhanced GraphPlan implementation with maintaining

arc-consistency in the constraint model as well as in the standard GraphPlan implementa-

tion). Then supporting action are tried starting with the action that is least constrained

(however, this value ordering was observed to has almost no effect on the performance).

 There is also another important implementation issue concerning nogood recording.

We used unrestricted nogood recording. We also used state variable representation for plan-

ning problems.

 We used three types of planning environments - dock worker robots environment

(Ghallab et al., 2004), refueling planes environment (which is original) and towers of Hanoi

planning environment. Several instances of planning problems of various difficulties from

each proposed planning environment were used.

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 56

Dock Worker Robots planning environment.

This planning domain consists of a traffic net-

work, transportation trucks and of cranes (Ghal-

lab et al., 2004). Each transportation truck has a

certain capacity of packages and can move arbi-

trarily within the traffic network. There are two types of places within the traffic network

called locations and sites. A location is an ordinary place which represents a node in the

traffic network. A site is a special place where packages can be loaded and unloaded to and

from the transportation truck. Each site has a certain number of cranes and a certain number

of piles of packages (packages in a pile behave like a stack - LIFO). Each crane can load

and unload a package to and from a transportation truck. Typically, not all the piles within a

site are reachable by a single crane so the cooperation among cranes on the site is neces-

sary.

 The task within this planning domain is usually to transport some packages from one

site to another site and to stack them on piles in the right order. ズ

Refueling Planes planning

environment. Consider that we

need to plan how to refuel a

fleet of planes in order to get

them to the far destination. For

simplicity we have several air-

ports and several planes with

certain fuel capacities. Planes

can travel between the airports.

A plane consumes certain amount of fuel to travel a unit of distance. Some extra fuel is also

necessary for landing and taking-off. Each airport has an unlimited source of fuel and

planes can refuel at the airport. The important ability of planes is to transfer fuel from one

plane to another plane in-flight.

 The task is typically to get a fleet of planes from one airport to some distant one. The

task is especially interesting when planes need an intermediate landing on some middle

airport or in-flight refueling. ズ

Towers of Hanoi planning

environment. This planning

environment is a generalization

of the well known puzzle. The

original game consists of three

pegs and a number of discs of

different sizes stacked on pegs. It is possible to move a disc on the top of one peg to another

A B

4
5

3
2
1

X Y

Z

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 57

peg in each turn. The condition that a smaller disc is always put on larger disc must be pre-

served throughout the game. Our generalization is that we use arbitrary number of pegs and

we allow moving more than one disc in a single turn (we can pick up for example two top

discs by two hands and then place them in a different order than they were picked).

 The original game starts with all disc stacked on the first peg. However, we allow arbi-

trary configuration (satisfying the condition on disc sizes) as the starting point in our gener-

alization. Originally, the objective is to move all discs to the last third peg. Again we allow

arbitrary valid configuration as a goal. ズ

 Various difficulties of individual planning problems were established by using various

numbers of objects appearing in the planning environments and by encoding planning tasks

of different difficulties into the problems (that is we encoded tasks requiring various num-

bers of steps to be finished). All the problems used in our experimentation were solvable

(that is, the algorithm terminated with the answer that solution exists and retuned one solu-

tion).

 Along the execution of experimental tests, we collected variety of statistical data char-

acterizing performance of the individual algorithmic techniques. The list of statistical char-

acteristics collected is summarized in table 3.2.

Statistical data collected during tests

Number of actions considered

Number of actions considered during plan extraction phase.

The considered action is an action that was tried to be in-

cluded in the resulting plan.

Number of backtracks
Number of backtracks that happened during plan extraction

phases.

Number on constraint checks

Number checks of constraints made along the search for solu-

tion. A check of a constraint is checking whether the con-

straint is satisfied for a given assignment of variables of its

scope.

Number of sub-goals

Number of sub-goals that must be resolved during plan ex-

traction phases. In other words, this is the number of problems

of finding supporting actions that must be solved along the

search for a plan.

Number of mutex checks
Number of checks whether certain two actions or atoms are in

the mutex relation.

Number of nogoods recorded Number of nogoods recorded until the solution was found.

Planning graph building time
Overall time spent by building and extending of the planning

graph.

Plan extraction time Overall time spent in plan extraction phases.

Table 3.2. STATISTICAL CHARACTERISTICS COLLECTED DURING EXPERIMENTAL EVALUATION. List of

statistical characteristics collected in each execution of empirical test for the individual algorithmic

technique.

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 58

 The most relevant values obtained from measurements are plan extraction time, num-

ber of constraint checks (it is a check whether the constraint is satisfied for a given assign-

ment of values to variables of its scope), and number of backtracks. They represent the ef-

fectiveness of the individual algorithmic technique for solving the given problem.

 Resulting solution concurrent plan characteristics are shown in tables 3.3, 3.4, and 3.5.

Problems are identified by numbers for reference to the attached medium (the numbering is

not continuous since some problems have very similar characteristics and therefore only

one representative among similar problems were selected for presentation). The number of

actions in the resulting concurrent plan and the length of concurrent plan are shown. While

the lengths of concurrent plans are the same for all the methods, the number of actions may

differ due to the ordering heuristics (however the difference is not significant). The tables

show the number of actions of the best performing method we implemented (tractable class

method - see section 3.4).

Resulting concurrent plan lengths for Dock Worker Robots (dwr) problems

Problem

number
01 02 03 04 05 07 16 17 20 21 22 23 24 25 26 27

Concurrent

plan length
6 6 2 3 14 16 18 20 20 13 11 12 13 13 11 10

Number of

actions
10 8 4 4 34 40 44 42 32 24 26 28 30 30 26 28

Table 3.3. CHARACTERISTICS OF SOLUTION CONCURRENT PLANS FOR DOCK WORKER ROBOTS PROB-

LEMS. Concurrent plan lengths and number of actions in concurrent plans for Dock Worker Robots

problems used in experimental evaluation.

Resulting concurrent plan lengths for Towers of Hanoi (han) problems

Problem

number
01 02 03 04 07 08 09 10 11 12 13 14 15 16 17 18

Concurrent

plan length
6 14 30 10 14 20 16 20 12 16 12 12 6 10 6 6

Number of

actions
6 14 30 12 20 26 20 24 16 24 20 20 14 18 10 14

Table 3.4. CHARACTERISTICS OF SOLUTION CONCURRENT PLANS FOR TOWERS OF HANOI PROBLEMS.

Concurrent plan lengths and number of actions in concurrent plans for Towers of Hanoi problems

used in experimental evaluation.

 The comparison of the overall solving time of the standard GraphPlan algorithm and

the enhanced versions based on maintaining arc-consistency is shown in figure 3.3. The

standard GraphPlan is compared with arc-consistency propagation variants A, B, and C.

Figure 3.3 shows the time using logarithmic scale for time. Problems are ordered along the

horizontal line. Each problem is identified by a prefix (“dwr” for Dock Worker Robots

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 59

planning environment, “han” for Towers of Hanoi planning environment, and “pln” for

Refueling Planes planning environment) followed by the number of the problem. Problems

are listed along the horizontal axis in the ascending order according to the solving time us-

ing variant A propagation scheme (this ordering allows to depict deviation of the standard

GraphPlan and the variant C propagation scheme). The time limit of 1 hour is used.

Resulting concurrent plan lengths for Refueling Planes (pln) problems

Problem

number
01 04 05 06 10 11 13 14 15 16 17 19 20 21 22 23

Concurrent

plan length
5 5 6 9 10 10 10 8 8 5 8 8 9 10 9 13

Number of

actions
9 9 14 14 15 14 14 12 16 13 12 16 17 18 14 21

Table 3.5. CHARACTERISTICS OF SOLUTION CONCURRENT PLANS FOR REFUELING PLANES PROB-

LEMS. Concurrent plan lengths and number of actions in concurrent plans for Refueling Planes prob-

lems used in experimental evaluation.

Figure 3.3. COMPARISON OF OVERALL SOLVING TIMES (LOGARITHMIC SCALE) - (STD, VARA, VARB,

VARC). Comparison of the overall solving time of the standard GraphPlan algorithm and enhanced

versions which use maintaining arc-consistency for solving the problem of finding supports (stan-

dard version and variants A,B, and C of the propagation scheme are compared). Problems on the

horizontal axis are listed in the ascending order according to the time consumed by variant A. Time

limit of 1 hour for each problem is used.

 The graph shows that GraphPlan enhanced by any of the variants of propagation for

maintaining arc-consistency in the constraint model of the problem of finding supporting

actions outperforms the standard version in terms of overall problem solving time (for ex-

ample the improvement is up to 1600% when we compare standard GraphPlan and the

Overall solving time (logarithmic scale)

0.01

0.1

1

10

100

1000

10000

h
a

n
0

1

d
w

r0
3

d
w

r0
4

h
a

n
0

2

p
ln

0
4

d
w

r0
2

d
w

r0
1

h
a

n
0

4

p
ln

0
1

h
a

n
0

3

p
ln

1
6

p
ln

1
0

h
a

n
1

5

h
a

n
1

7

p
ln

2
2

p
ln

0
5

h
a

n
0

7

p
ln

1
4

d
w

r2
7

h
a

n
1

1

p
ln

1
9

p
ln

1
7

d
w

r2
2

p
ln

2
1

d
w

r2
6

d
w

r0
5

h
a

n
1

8

p
ln

2
0

p
ln

0
6

h
a

n
1

6

p
ln

1
1

d
w

r2
3

d
w

r2
1

p
ln

2
3

h
a

n
0

8

p
ln

1
3

h
a

n
0

9

d
w

r0
7

d
w

r2
5

d
w

r2
4

h
a

n
1

3

d
w

r2
0

d
w

r1
6

h
a

n
1

2

h
a

n
1

0

h
a

n
1

4

p
ln

1
5

d
w

r1
7

Problem identifier

T
im

e
 (

s
e
c
o
n
d
s
)

Standard

MAC Variant A

MAC Variant B

MAC Variant C

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 60

variant C on the problem dwr07). Generally we can conclude that the improvement is better

towards harder problems (harder problems are on the right). Notice that we improved only

the plan extraction phase. Phase of building planning graph remains the same, so the more

time is spent in plan extraction phase the better is the improvement.

 If we compare the individual propagation variants, it is possible to conclude that vari-

ant A and variant B are almost the same in terms of overall solving time. The variant B

seems to be slightly faster than the variant A but the difference is not significant. The more

interesting difference is between the variants A and B and the variant C. The variant C is

significantly faster on number of evaluated problems (namely on the problem dwr16 the

variant C is approximate 400% faster than the variants A and B). Moreover, only the vari-

ant C solved all the problems within the time limit of 1 hour for each problem (all the algo-

rithms except variant C failed to solve the problem dwr17; the standard GraphPlan failed to

solve7 hardest problems). However, the variant C is not always the fastest. Its performance

is worse than that of variants A and B on certain problems (for example on the problem

han14). Moreover, the variant C was outperformed by standard GraphPlan algorithm on the

problem han18. This is caused by the fact that on certain types of planning problems (such

as that of Towers of Hanoi) the complex propagation scheme of the variant C represents an

overhead.

 The comparison of the time spent in plan extraction phases (that is we do not account

time spent by building planning graph) is shown in figure 3.4.

Figure 3.4. COMPARISON OF PLAN EXTRACTION PHASES TIMES (LOGARITHMIC SCALE) - (STD, VARA,

VARB, VARC). Comparison of the plan extraction time of the standard GraphPlan algorithm and en-

hanced versions which use maintaining arc-consistency for solving the problem of finding supports

(standard version and variants A,B, and C of the propagation scheme are compared). Problems on

the horizontal axis are listed in the ascending order according to the overall solving time consumed

by variant A (same ordering as in figure 3.3). Time limit of 1 hour for each problem is used again.

Plan extraction phases time (logarithmic scale)

0.01

0.1

1

10

100

1000

10000

h
a
n
0
1

d
w

r0
3

d
w

r0
4

h
a
n
0
2

p
ln

0
4

d
w

r0
2

d
w

r0
1

h
a
n
0
4

p
ln

0
1

h
a
n
0
3

p
ln

1
6

p
ln

1
0

h
a
n
1
5

h
a
n
1
7

p
ln

2
2

p
ln

0
5

h
a
n
0
7

p
ln

1
4

d
w

r2
7

h
a
n
1
1

p
ln

1
9

p
ln

1
7

d
w

r2
2

p
ln

2
1

d
w

r2
6

d
w

r0
5

h
a
n
1
8

p
ln

2
0

p
ln

0
6

h
a
n
1
6

p
ln

1
1

d
w

r2
3

d
w

r2
1

p
ln

2
3

h
a
n
0
8

p
ln

1
3

h
a
n
0
9

d
w

r0
7

d
w

r2
5

d
w

r2
4

h
a
n
1
3

d
w

r2
0

d
w

r1
6

h
a
n
1
2

h
a
n
1
0

h
a
n
1
4

p
ln

1
5

d
w

r1
7

Problem identifier

T
im

e
 (

s
e

c
o

n
d

s
)

Standard
MAC Variant A

MAC Variant B
MAC Variant C

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 61

 The ordering of problems along the horizontal axis in figure 3.4 is the same as in fig-

ure 3.4. So, the portion of time spent by building planning graphs and in plan extraction

phase can be observed. The differences among individual methods are more expressed

since the graph building time (which is the same for all the methods) is ruled out. The loga-

rithmic scale is used again for the time axis.

 The comparison in terms of number of constraint checks of the standard GraphPlan

and the enhanced versions based on maintaining arc-consistency is shown in figure 3.5. The

constraint check is checking whether a certain constraint is satisfied for a tuple of values.

The ordering of the problems is again the same as in figure 3.3 and again the logarithmic

scale is used.

Figure 3.5. COMPARISON OF NUMBER OF CONSTRAINT CHECKS - (STD, VARA, VARB, VARC). Com-

parison of the standard GraphPlan and enhanced variants based on constraint model with maintain-

ing arc-consistency for solving the problems of finding supports in terms of number of constraint

checks. Standard GraphPlan and propagation schemes of variants A, B, and C are compared. The

ordering of problems along the horizontal axis is the same as in figure 3.3.

 The results in the graph in figure 3.5 show that the standard GraphPlan has the highest

number of constraint checks (in this case it is the number of checking whether two actions

are mutex). The enhanced variants of GraphPlan using propagation schemes A and B have

very similar number of constraint checks. The variant C has the number of constraint

checks slightly higher than variants A and B. This is partially expectable since the variant C

uses the most complicated propagation scheme.

 The comparison of the number of backtracks of the tested methods is shown in figure

3.6. The ordering of problems along the horizontal axis is again the same as in figure 3.3

and again the logarithmic scale is used. So, the correlation between other measured charac-

teristics may be observed. The number of backtracks correlates quite well with the time

spent in the plan extraction phase. Although not perfectly.

Constraint checks (logarithmic scale)

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

h
a

n
0

1

d
w

r0
3

d
w

r0
4

h
a

n
0

2

p
ln

0
4

d
w

r0
2

d
w

r0
1

h
a

n
0

4

p
ln

0
1

h
a

n
0

3

p
ln

1
6

p
ln

1
0

h
a

n
1

5

h
a

n
1

7

p
ln

2
2

p
ln

0
5

h
a

n
0

7

p
ln

1
4

d
w

r2
7

h
a

n
1

1

p
ln

1
9

p
ln

1
7

d
w

r2
2

p
ln

2
1

d
w

r2
6

d
w

r0
5

h
a

n
1

8

p
ln

2
0

p
ln

0
6

h
a

n
1

6

p
ln

1
1

d
w

r2
3

d
w

r2
1

p
ln

2
3

h
a

n
0

8

p
ln

1
3

h
a

n
0

9

d
w

r0
7

d
w

r2
5

d
w

r2
4

h
a

n
1

3

d
w

r2
0

d
w

r1
6

h
a

n
1

2

h
a

n
1

0

h
a

n
1

4

p
ln

1
5

d
w

r1
7

Problem identifier

N
u
m

b
e
r

o
f

c
h
e
c
k
s

Standard

MAC Variant A

MAC Variant B

MAC Variant C

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 62

Figure 3.6. COMPARISON OF NUMBER OF BACKTRACKS - (STD, VARA, VARB, VARC). Comparison of

the standard GraphPlan and enhanced variants based on constraint model with maintaining arc-

consistency for solving the problems of finding supports in terms of number backtracks. Standard

GraphPlan and propagation schemes of variants A, B, and C are compared. The ordering of prob-

lems along the horizontal axis is the same as in figure 3.3.

Figure 3.7. COMPARISON OF IMPROVEMENTS WITH RESPECT TO MAC VARIANT A - (STD, VARB,

VARC). Comparison of the standard GraphPlan and enhanced variants based on constraint model

with maintaining arc-consistency for solving the problems of finding supports in terms of improve-

ment ratio of the plan extraction phase depending on the average action parallelism (number of ac-

tions in the plan divided by the length of the resulting concurrent plan). Improvements are com-

puted with respect to the with respect to the variant A (which has the ratio 1).

 Figure 3.6 shows that in terms of the number of backtracks the standard GraphPlan

performs worst. The enhancements that use the propagation variants A and B have the simi-

lar numbers of backtracks for each problem. The best method in terms of the number of

Backtracks (logarithmic scale)

1

10

100

1000

10000

100000

1000000

10000000

h
a

n
0

1

d
w

r0
3

d
w

r0
4

h
a

n
0

2

p
ln

0
4

d
w

r0
2

d
w

r0
1

h
a

n
0

4

p
ln

0
1

h
a

n
0

3

p
ln

1
6

p
ln

1
0

h
a

n
1

5

h
a

n
1

7

p
ln

2
2

p
ln

0
5

h
a

n
0

7

p
ln

1
4

d
w

r2
7

h
a

n
1

1

p
ln

1
9

p
ln

1
7

d
w

r2
2

p
ln

2
1

d
w

r2
6

d
w

r0
5

h
a

n
1

8

p
ln

2
0

p
ln

0
6

h
a

n
1

6

p
ln

1
1

d
w

r2
3

d
w

r2
1

p
ln

2
3

h
a

n
0

8

p
ln

1
3

h
a

n
0

9

d
w

r0
7

d
w

r2
5

d
w

r2
4

h
a

n
1

3

d
w

r2
0

d
w

r1
6

h
a

n
1

2

h
a

n
1

0

h
a

n
1

4

p
ln

1
5

d
w

r1
7

Problem identifier

N
u
m

b
e
r

o
f

b
a
c
k
tr

a
c
k
s

Standard

MAC Variant A

MAC Variant B

MAC Variant C

Improvement of Plan Extraction Phase w.r.t. MAC Variant A

(logarithmic scale)

0.1

1

10

1

1
.2

1
.4

1
.6

1
.8 2

2
.2

2
.4

2
.6

2
.8 3

Average action paralellism

Im
p
ro

v
e
m

e
n
t

ra
ti
o

Standard w.r.t. MAC Variant A

MAC Variant B w.r.t. MAC Variant A

MAC Variant C w.r.t. MAC Variant A

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 63

backtracks is propagation of the variant C. This was expected since quite complex reason-

ing is done at each decision step which reduces the number of decision steps as a result.

 The graph in figure 3.7 is targeted on discovering the property which relates to the

achieved improvements with respect to the maintaining arc-consistency in variant A. The

hypothesis is that higher action parallelism allows better improvements by using the con-

straint models and maintaining arc-consistency for solving the problem of finding support-

ing actions (intuitively said the action parallelism is the number of actions that can be per-

formed simultaneously). The ordering of problems along the horizontal axis in figure 3.7 is

therefore according to the number of actions in the resulting concurrent plan divided by the

length of the concurrent plan. Let this value define an action parallelism. Although the re-

sults are not entirely convincing it seem that the higher action parallelism allows more sig-

nificant improvement by solving the problem of finding supporting actions using the pro-

posed constraint models with maintaining arc-consistency. The propagation variant C satis-

fies this statement most visibly.

3.2.3 Overall Analysis of Results

The experiments showed that maintaining arc-consistency brings a significant improvement

in the number of backtracks when solving the problem of finding supporting actions for a

sub-goal. There is also a significant improvement of the time of extraction phase as well as

in overall solving time in comparison with standard GraphPlan.

 We can conclude that the most complex propagation variant C performs generally as

best. The gain from the variant C is more significant on hard problems. However, the vari-

ant C of propagation is not always the best choice. For example on some problems from the

Hanoi Towers planning environment sometimes the variant C was worse than the standard

version of the GraphPlan algorithm in terms of time necessary for plan extraction phase.

 We also found that improvements can be achieved for problems with higher action

parallelism. This is expectable since in such a case the problem of finding supporting ac-

tions is non-trivial and better reasoning about the problem pays-off. On the other hand

when problems do not have high action parallelism the constraint model with maintaining

arc-consistency does not bring any significant improvement. This is caused by the fact that

problems of finding supporting actions are simple in these cases and maintaining

arc-consistency to solve these easy problems represents an overhead in such case.

3.2.4 Discussion and Related Works

Regarding experimental evaluation there may be objection why we did not compared our

planner with today’s state-of-the-art planners on standard benchmark problems used in the

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 64

international planning competitions such as IPC (Gerevini et al., 2006). The answer is as

follows. First, our goal was not to implement a competitive planner for some kind of a com-

petition. We are rather focusing on understanding the structure of planning problems and on

utilizing this knowledge to improve the solving process. Second, our experimental evalua-

tion is targeted on comparing ideas and algorithmic techniques itself. We are not comparing

performance of a various coding styles. Moreover, several today’s state-of-the-art planners

are provided without source code as an executable only. Hence no reasonable comparison

of ideas used in the planner with other ideas is possible in such a case.

 The above experimental evaluation showed that it is possible to integrate a technique

known from constraint programming (namely arc-consistency) into the planning algorithm

(namely into the GraphPlan algorithm) with a significant performance profit. Although this

idea itself does not lead to a state-of-the-art planner it represents an interesting improve-

ment that can be competitive in combination with other ideas and precise implementation.

 If we compare our approach with other existing techniques we may see that our idea

was quite original. Many techniques for solving planning problems try to directly translate

the problem into another formalism. After this translation they solve the problem in a new

formalism. Many of these approaches use Boolean formula (SAT) or constraint satisfaction

as the target formalism. SAT based planners are described in (Kautz et al., 1996; Kautz and

Selman, 1999); another constraint programming methods are described in (Baioletti et al.,

1998; Kambhampati, 2000; Kambhampati et al., 1997; Kautz and Selman, 1999; Lopez and

Bacchus, 2003). The drawback of these methods is that the information induced by the

original formulation is often lost during translation into the target formalism. Some plan-

ners are trying to overcome this drawback by hand tailored encoding of a planning problem

into the target formalism (van Beek and Chen, 1999). We do not follow this approach.

 We use constraint programming techniques to solve a small sub-problem which arises

during the GraphPlan style solving process. This is in contrast to other approaches which

use constraint programming formalism on the planning problem as a whole. The way how

we model our problem can be viewed as a synthesis of the encoding style of the planning

graph as a CSP known from GP-CSP planner (Kambhampati, 2000) and the Boolean for-

mula satisfaction approach known from SATPlan planner (Kautz and Selman, 1999) ap-

plied in smaller scale (not for the whole problem).

 We also examined what would happen if we use stronger singleton arc-consistency

(Dechter, 2003; BartÁk and Erben, 2004; BessiÈre and Debruyne; 2005) instead of arc-

consistency in the same situation (Surynek, 2006; Surynek, 2007a). The performed experi-

ments showed that singleton arc-consistency is too expensive. More precisely, the usage of

singleton arc-consistency significantly reduces the number of backtracks (more than the

above model with maintaining arc-consistency) but the number of constraints checks in-

creased too much. The result was that unaffordable amount of time was spent by propagat-

ing singleton arc-consistency and the overall improvement of runtime was either poor or

even negative in comparison with the standard GraphPlan.

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 65

 Nevertheless, we do not consider our method to be flawless. The significant drawback

of the proposed maintaining arc-consistency technique for solving problems of supports is

that it is only a local consistency technique. We exploit only little from the structural in-

formation hidden in the problem formulation. If we consider what a significant improve-

ment was achieved using a local consistency technique what would be the improvement if

we would have some kind of a global consistency technique? This observation led us to

develop such a global technique that is described in the next section.

3.3 Advanced Constraint Model: Global Constraints

Our new global consistency is based on discovering the hidden structural information in the

constraint model. We are viewing the given problem as a graph in which we search for

structures. We found that complete sub-graphs represent the valuable structures with re-

spect to the task of solving the problem of finding supports. We call the global constraint

and the associated consistency based on structural decomposition of the problem projection

global constraint and projection consistency respectively. The name of the concept was

chosen according to consistency checking with respect to a sub-problem - we project the

consistency into the smaller space.

3.3.1 Projection Consistency

We examined the effect of maintaining arc-consistency for solving the problem of finding

supporting actions for a sub-goal in the previous section. We obtained substantive speedups

using this type of reasoning compared to pure backtracking based method. However,

arc-consistency provides only some type of a local reasoning over the problem. By contrast,

the projection constraint introduces some type of global reasoning over the problem of find-

ing supports. It was motivated by observation of layers of the planning graph when they are

visualized as graphs (actions are vertices and mutexes are edges) - let us call such graphs

mutex graphs. These mutex graphs embody high density of edges on majority of testing

planning problems (however our method works with sparse mutex graphs as well). The

high density of edges is caused by various factors. We consider that the most important

factor is that certain sets of actions are intrinsically pair-wise mutually excluded (for exam-

ple imagine a robot at coordinates [3,2] , the robot can move to coordinates in its neighbor-

hood, so the actions are: ([2,2])moveTo , ([2,3])moveTo , ([3,3])moveTo , @ , all these

actions are pair-wise mutually excluded). Such set of actions induces a complete sub-graph

- a clique - within the mutex graph.

 The knowledge of clique decomposition of the mutex graph allows us to do quite

strong reasoning since at most one action from a clique can be selected. This is just the first

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 66

part of the idea how projection constraint works. The second part of the idea of projection

constraint is to take a subset of atoms of a given sub-goal and to calculate how a certain

clique of actions contributes to satisfaction of the subset of atoms. This reasoning can be

used to discover that some actions within a certain clique do not contribute enough to the

sub-goal and therefore can be ruled out. Actions that are ruled out are no more considered

along the search and hence the search speeds up since a smaller number of alternatives must

be considered.

3.3.2 Preprocessing Step: Clique Decomposition

Projection constraint assumes that a clique decomposition of a mutex graph of a given ac-

tion layer of the planning graph is known. Thus we need to perform a preprocessing step in

which a clique decomposition (clique cover) of the mutex graph is constructed. Let

(,)G A Ao? be a mutex graph (vertices represent actions, edges represent action mutexes)

obtained from an action layer in the planning graph (or we can interpret the action layer as a

mutex graph). The task is to find a partition of the set of vertices 1 2 nA C C C? ̌ ̌ ̌@

such that i jC C̨ ? ¸ for every , {1,2, , }i j n i jŒ ® ”@ and iC is a clique with respect to

Ao for {1,2, , }i n? @ . Generally, cliques of the partitioning do not cover all the mutexes.

For 2 2 2

1 2()nmA A C C Co? / ̌ ̌ ̌@ , mA ”¸ holds in general (where
2 {{ , } | , }C a b a b C a b? Œ ® ”). The requirement is to minimize a pair [,]n mA in lexico-

graphic ordering. Unfortunately, the problem of the clique cover of the defined property is

NP-complete on a graph without any restriction (Golumbic, 1980).

 As an exponential amount of time spent in preprocessing step is unacceptable it is nec-

essary to abandon the requirement on optimality of clique cover. Moreover, we don’t know

whether the mentioned optimality requirement is the right one or the best with respect to the

solved problem. It is sufficient to find some clique cover to introduce projection constraint.

Our experiments showed that a simple greedy algorithm provides satisfactory results. Its

complexity is polynomial in the size of the input graph which is acceptable for preprocess-

ing step.

 The example of a mutex graph of the action layer of the planning graph and its clique

decomposition by the greedy algorithm is shown in figure 3.8. It is the real-life mutex graph

which was extracted from the action layer from the planning graph for a Dock Worker Ro-

bots problem.

 The simple greedy algorithm is listed below as algorithm 3.5. The algorithm builds

cliques greedily. That is, a vertex of the highest degree is always preferred. In a given graph

the algorithm greedily constructs the largest clique. Then this clique is removed from the

graph and is included into the clique cover. The algorithm then continues by finding the

next largest clique in the remaining graph. This process is repeated until the graph is empty.

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 67

Figure 3.8. ILLUSTRATION OF MUTEX GRAPH AND CLIQUE DECOMPOSITION. The left part of the fig-

ure is an illustration of a mutex graph obtained from the action layer of the planning graph for a

slightly more complex Dock Worker Robots problem. Vertices represent actions and edges repre-

sent action mutexes. The vertices representing actions are placed randomly in the window. The right

part of the figure shows an illustration of clique decomposition of the graph on the left. The indi-

vidual cliques of actions are depicted by grouping of vertices into clusters.

Algorithm 3.5. GREEDY CLIQUE COVER ALGORITHM. Greedy algorithm for finding clique

cover of a mutex graph.

 function findCliqueCover (,)A Ao : pair

 1: 1n «

 2: mA«¸

 3: while A ”¸ do

 4: nC «¸

 5: nA A«

 6: nA Ao o«

 7: while nA ”¸ do

 8: (,) (,)| ()deg () deg ()
n n n nn n A A A Aa A b A a bo oŒ $ Œ ‡

 9: { }n nC C a« ̌

 10: { | { , } }n n n nA b A b C a b Ao« Œ º ® Œ

 11: {{ , } |{ , } { , }n n nA a b a b A a b Co o« Œ ® ̨ ?¸}

 12: {{ , } |{ , } { , } 1}nmA mA a b a b A a b Co« ̌ Œ ® ̨ ?

 13: nA A A« /

 14: 2()nA A C mAo o« / ̌

 15: 1n n« -

 16: return 1 2({ , , , },)nC C C mA@

 The largest (greedy) clique itself is found by selecting the vertex of the highest degree

in the current graph. The second vertex selected in the clique is the vertex of the highest

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 68

degree from the vertices neighboring to the first selected vertex. As the third vertex in the

clique a vertex of the highest degree from the vertices that are neighbors of both the first

selected vertex and the second selected vertex is added. This process is repeated until there

are some vertices that are neighbors of all the already selected vertices.

 The algorithm consists of a single function findCliqueCover which gets the mutex

graph of some action layer of the planning graph as its parameters.

 The function findCliqueCover gets the set of actions A (which represents vertices) and

the set of action mutexes Ao (which represents edges). The function returns a pair consist-

ing of the clique cover and the set of edges (mutexes) that are outside the clique cover. The

function consists of two loops - the main loop (lines 3-15) represents repeated finding of the

(greedy) largest clique in the currently remaining graph. This loop is executed until the

given graph is non-empty. The second loop (lines 7-11) represents repeated selection of the

vertex of the highest degree. This loop is executed until the neighborhood of the selected

vertices is non-empty.

Proposition 3.6 (TIME COMPLEXITY OF THE GREEDY CLIQUE COVER ALGORITHM). The

worst case time complexity of the greedy algorithm for finding clique cover (algorithm 3.5)

for a graph (,)G A Ao? is
2

()O A A Ao- . ﾐ

Proof. The internal loop of the algorithm (lines 8-11) is executed at most ()O A times.

Each iteration of the loop consumes time for finding a vertex with the highest degree and

time for constructing a graph for the next iteration. Selecting a vertex of highest degree

takes ()O A steps supposed degrees of vertices are known. Construction of a graph for the

next iteration (line 10-11) takes ()O A Ao- steps. In total we have the worst case time

complexity of (() ())A O A O A Ao- - which is
2

()O A A Ao- . ﾐ

3.3.3 Counting Derived from Clique Decomposition

For the following description we assume that a clique cover 1 2 nA C C C? ̌ ̌ ̌@ of the

set of actions A with respect to the set of mutexes Ao is known. Next consider a sub-goal

g we want to satisfy. Projection consistency is defined over the above decomposition for a

goal p gØ . The goal p is called a projection goal in this context. The projection goal

represents some kind of a parameter for the new consistency. The new consistency has dif-

ferent results for different projection goals. The fact that at most one action from a clique

can be selected allows us to introduce the following definition.

Definition 3.2 (CLIQUE CONTRIBUTION). A contribution of a clique 1 2{ , , , }nC C C CŒ @ to

the projection goal p is defined as max(() |)e a p a C- ̨ Œ . The contribution of the clique

C to the projection goal p is denoted as (,)c C p . ゴ

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 69

 The concept of clique contribution is helpful when we are trying to decide whether it is

possible to satisfy the projection goal using the actions from the clique cover. If for instance

1 (,)n
i ic C p p?Â > holds then the projection goal p cannot be satisfied. Nevertheless, the

projection constraint can handle a more general case as it is described in the following defi-

nitions.

Definition 3.3 (PROJECTION CONSISTENCY: SUPPORTED ACTION). An action ia CŒ for

{1,2, , }i nŒ @ is supported with respect to projection consistency with the projection goal

p if 1, (,) ()n
j j i jc C p p e a-
? ”Â ‡ / holds. ゴ

Definition 3.4 (PROJECTION CONSISTENCY: CONSISTENT PROBLEM). The preprocessed

instance of the problem of finding supports consisting of actions 1 2 nA C C C? ̌ ̌ ̌@ ,

mutexes Ao , and the goal g is projection consistent with respect to a projection goal

p gØ , p ”¸ if every action ia CŒ for 1,2, ,i n? @ is supported. ゴ

 If the cliques of the clique cover are regarded as CSP variables and actions from the

cliques are regarded as values for these variables then we can introduce a projection con-

straint. The projection constraint’s scope contains all the clique variables. Hence the pro-

jection constraint/consistency can be regarded as a global constraint/consistency.

 To enforce projection consistency with respect to some projection goal p over the

problem of finding supporting actions it is necessary to rule out unsupported actions. Notice

that projection consistency is not a sufficient condition to obtain a solution.

Proposition 3.7 (CORRECTNESS OF PROJECTION CONSISTENCY). Projection consistency is

correct. That is, the set of solutions of the problem of finding supporting actions S for a

goal g is the same as the set of solutions of the problem of finding supporting actions S |

which we obtain from S by enforcing projection consistency with respect to a projection

goal p gØ . ﾐ

Proof. The proposition can proved by observing that an unsupported action cannot partici-

pate in any solution. Let ia CŒ be an unsupported action for some {1,2, , }i nŒ @ . That is

1, (,)n
j j i jc C p? ”Â > ()p e a-/ holds. Observe that after the selection of the action a there is

no chance to satisfy the goal p . Hence it is not possible to satisfy g since it is the superset

of p . ﾐ

 A useful property of the projection consistency with a single projection goal p is that

the removal of an unsupported action does not affect any of the remaining supported ac-

tions. That is if an action is supported, it remains supported after removal of any other un-

supported action. We call this property a monotonicity. The usefulness consists in the fact

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 70

that it is enough to check each action of the problem only once to enforce the projection

consistency.

Proposition 3.8 (MONOTONICITY OF PROJECTION CONSISTENCY). Projection consistency

with a projection goal p is monotone. That is, if an arbitrary unsupported a action is re-

moved from a clique iC for {1,2, , }i nŒ @ the set of supported actions within the problem

remains unchanged. ﾐ

Proof. Let jb CŒ be an unsupported action after removal of an (unsupported) action a

from iC . First, let us investigate the case when i j? . Action b is unsupported after re-

moval of a if 1, (,) ()n
k k j kc C p p e b-
? ”Â > / . Observe that removal of a has no effect on

the truth of the expression 1, (,) ()n
k k j kc C p p e b-
? ”Â > / . Hence, the action b was unsup-

ported even before the action a was removed (removal of action a did not cause that b is

unsupported).

 For the case i j” the situation is similar. Action b is unsupported after removal of a

if 1, , (,) ({ },) ()n
k k i j k ic C p c C a p p e b-
? ”Â - / > / (i). If (,) ({ },)i ic C p c C a p? / then the re-

moval of the action a has no effect on the truth value of the expression (i). If

(,) ({ },)i ic C p c C a p@ / , then () (,)ip e a c C p-̨ ? . From the assumption that a is unsup-

ported we have 1, (,) ()n
k k i kc C p p e a-
? ”Â > / . Hence 1 (,)n

k kc C p p?Â > (this indicates that

the problem is unsolvable). Hence 1 (,) (,) () ()n
k k jc C p c C p p e b p p e b- -
?Â / > / ̨ ~ /

and also 1, (,) ()n
k k j kc C p p e b-
? ”Â > / holds. Again we have that b was unsupported even

before removal of a . ﾐ

 To discuss complexity issues of our approach we have to formally define propagation

algorithm for projection consistency. The propagation algorithm for projection consistency

is shown below as algorithm 3.6.

 The algorithm consists of two functions - the main function enforceProjectionConsis-

tency and the auxiliary function calculateCliqueContribution. The input of the algorithm is

a projection goal p and the clique decomposition 1 2{ , , , }nC C C@ .

 The algorithm directly follows definitions of projection consistency. First, the overall

contribution i of all the cliques of the clique cover is computed (lines 1-5). Then each ac-

tion is checked whether it is supported with respect to projection consistency and the given

projection goal p (lines 6-10). If the action is unsupported then it is removed from the

clique decomposition (line 9).

Proposition 3.9 (COMPLEXITY OF PROJECTION CONSISTENCY). Propagation algorithm for

projection consistency with a projection goal p over the supports problem consisting of

actions 1 2 nA C C C? ̌ ̌ ̌@ , mutexes Ao and a goal g runs in ()O p A steps. ﾐ

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 71

Proof. The auxiliary function calculateCliqueContribution performs ()iO p C steps for a

clique iC for {1,2, , }i nŒ @ (the loop on lines 13-14 performs exactly C iterations, each

iteration of the loop takes pU steps, where U is the action size bounding constant (that is

()a A$ Œ max(() , () , ())p a e a e a- /U ‡ , in fact it is sufficient to have ()a A$ Œ

max(())e a-U ‡). Hence lines 3-5 of the main function enforceProjectionConsistency take

1
() ()

n

ii
O p C O p A

?
?Â . Finally, the loops on lines 6-10 of the main function perform a

conditional statement on the line 8 A times. Each check of the condition in the conditional

statement on the line 8 takes pU steps. Hence we have a total number of steps

()O p A . ﾐ

Algorithm 3.6. PROJECTION CONSISTENCY PROPAGATION ALGORITHM. Projection consistency

propagation algorithm with respect to a single projection goal.

 function enforceProjectionConsistency 1 2({ , , , },)nC C C p@ : pair

 1: 0i «

 2: changed False«

 3: for 1,2, ,i n? @ do

 4: ic «calculateCliqueContribution (,)iC p

 5: ici i« -

 6: for 1,2, ,i n? @ do

 7: for each ia CŒ do

 8: if ()ic p e ai -/ > / then

 9: { }i iC C a« /

 10: changed True«

 11: return 1 2(,{ , , , })nchanged C C C@

 function calculateCliqueContribution (,)C p : integer

 12: 0c «

 13: for each a CŒ do

 14: max(, ())c c e a p-« ̨

 15: return c

 We were not concerned about the question of how to select projection goals for a prob-

lem with a goal g until now. The only condition on a projection goal p is that p gØ

must hold.

 The projection consistency filters out different sets of inconsistent actions for different

projection goals. So it is suitable to enforce projection consistency with respect to several

projection goals. For maximum pruning power, we would have to enforce projection con-

sistency for every subset of the goal g . However, this is unrealistic since there are expo-

nentially many subsets of the goal g . Hence we can select only a limited number of projec-

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 72

tion goals. At the same time the selection must be done carefully in order to achieve strong-

est possible filtering effect. An analysis of projection goal selection is given below.

 Let us note that enforcing consistency with respect to the projection goals is similar to

edge-finding rules from scheduling with unary resources (Baptiste et al., 2001).

Edge-finding rules are defined with respect to a subset of activities (an action with dura-

tion). The subset of activities is used as a parameter for the rules and hence its role is simi-

lar to projection goal (it was proved that for edge-finding rules a polynomial number of

subsets is sufficient).

 The following ideas are focused on comparison of projection consistency with arc-

consistency of the problem of finding supporting actions as it was introduced in the previ-

ous section.

Definition 3.9 (SIMPLIFIED ARC-CONSISTENCY FOR THE PROBLEM OF FINDING SUPPORT-

ING ACTIONS). Let us have a problem of finding supporting actions S for a goal g . For

each atom t gŒ we introduce a so called support variable which contains all the actions

that supports the atom t in its domain (an action a supports an atom t if

() ()t e a t e a- /Œ ® º , a set { |ts a a A? Œ ® supports atom }t is called a set of supports for

an atom t). Between every two support variables there is a mutex constraint. The mutex

constraint is satisfied by an assignment of actions to its variables if the actions of the as-

signment are non-mutex. The supports problem is arc-consistent if every action mutex con-

straint is arc-consistent. ゴ

 Depending on the quality of the clique decomposition of the mutex graph of the sup-

ports problem there may be a situation in which a projection goal can be selected to simu-

late arc-consistency by projection consistency. Moreover, there may be situations when

projection consistency is stronger than arc-consistency. Both cases are formally summa-

rized in the following observations. Experiments showed that such cases are not rare, espe-

cially when projection goals are selected in order to prefer such cases.

Observation 3.1 (ARC-CONSISTENCY BY PROJECTION CONSISTENCY). For a given prob-

lem of finding supporting actions S for a goal g there exist clique decompositions and

projection goals p gØ such that if the problem S is projection consistent with respect to

these clique decompositions and projection goals then it is arc-consistent. ﾐ

Proof. It is sufficient to investigate a case for a single constraint between two support vari-

ables. An action a in the domain of a support variable v should be removed in order to

establish arc-consistency if it does not have a support with respect to the given constraint.

That is all the actions in the domain of the support variable u which neighbors with v

through the given constraint are mutex with a . Hence []a D uº must hold to enforce

arc-consistency. Let us suppose that { } []a D ǔ is a part of a single action clique of the

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 73

clique decomposition. Further let us suppose that action a does not support the atom corre-

sponding to the variable u . Then the projection consistency with respect to a projection

goal p which contains exactly the atom corresponding to the variable u ({ }p u?) re-

moves action a from the clique. ﾐ

 Although the situation for the projection consistency from the proof is rather artificial,

our empirical experimentation gives us evidence that it is not a rare case. Moreover, there

are a lot of other similar situations when projection consistency gives the same results as

arc-consistency. However, these situations are difficult to be theoretically classified (this is

not our goal).

 Let us note that enforcing arc-consistency by the standard AC-3 algorithm takes
2 3

()O g A steps for the problem of finding supporting actions consisting of actions from

the set A (the model from the definition 3.9 is used - we have g variables with domains

of the size at most A). In contrast, the projection consistency requires only ()O p A steps

for a single projection goal p . As we will see later even if we enforce projection consis-

tency with respect to a certain set of projection goals, it still has lower complexity than

AC-3.

 The example of enforcing projection consistency is shown in figure 3.9. The consis-

tency is enforced with respect to multiple projection goals in the figure.

Observation 3.2 (STRENGTH OF PROJECTION CONSISTENCY). For a given problem of find-

ing supporting actions S for a goal g there exists a clique decomposition and a projection

goal p gØ such that the problem S is arc-consistent but it is not projection consistent

with the projection goal p . ﾐ

Proof. We prove the observation by constructing an instance of the problem of finding sup-

ports. Let us have a goal 1 2 3{ , , }g t t t? where it for 1,2,3i ? are atoms and actions
1

1 1 2 3({},{ },{ , })a t t t? , 1

2 2 1 3({},{ },{ , })a t t t? , 1

3 3 1 2({},{ },{ , })a t t t? , 2

1 1 2 3({},{ },{ , })a t t t? ,
2

2 2 1 3({},{ },{ , })a t t t? , and 2

3 3 1 2({},{ },{ , })a t t t? . The problem of finding supports consisting

of actions 1 1 1 2 2 2

1 2 3 1 2 3{ , , , , , }a a a a a a and the goal g cannot be solved. Actions 1

1a , 1

2a and 1

3a are

pair-wise mutex as well as actions 2

1a , 2

2a and 2

3a . The domain of a support variable for the

atom 1t is 1 2

1 1{ , }a a , for the atom 2t it is 1 2

2 2{ , }a a and for the atom 3t it is 1 2

3 3{ , }a a . The

arc-consistency on the model from the definition 3.9 does not remove any action from the

domains of support variables. On the other hand, projection consistency is more successful.

Suppose that the preprocessing step finds cliques 1 1 1

1 2 3{ , , }a a a and 2 2 2

1 2 3{ , , }a a a . The contribu-

tions of both cliques is 1 . Hence none of the actions is supported with respect to projection

consistency. So the projection consistency removes all the actions and detects insolvability

of the problem. ﾐ

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 74

Figure 3.9. ILLUSTRATION OF PROJECTION CONSISTENCY. An instance of the problem of finding

supporting actions consisting of eight actions. Doted lines connecting an action and an atom depict

the support relation; solid lines represent mutexes. Circled vertices depict the solution of the prob-

lem (that is, the set of actions which together satisfy the goal g by their positive effects). Projection

consistency with respect to multiple projection goals is enforced in this problem. Cliques detected

by the greedy algorithm are: C1={a1,a2,a3,a4}, C2={a6,a8}, C3={a5}, and C4={a7}. Unsupported ac-

tions for the projection goals p1={c,e,f}, p2={a,b,d,g}, and p3={h} are depicted by squared vertices.

For example vertex for the action a3 is unsupported for the projection goal p1={c,e,f} since action a3

contributes by 0, C2 contributes by 2, C3 contributes by 0, and C4 contributes by 0 which is together

less than the size of p1.

 In our experimental evaluation the projection consistency is enforced for projection

goals p gØ that contains all the atoms for which the number of supporting actions (defini-

tion 3.13) is the same. More formally, let { | }i tp t t g s i? Œ ® ? , then projection consis-

tency is enforced for every 1,2,i ? @ for which ip ”¸.

 The described selection of projection goals is partially motivated by observations 3.1

and 3.2 and partially by preliminary experiments with various variants of projection goals.

Nevertheless, we do not know whether it is the best set of projection goals with respect to

the ratio of pruning power and overall size.

 It takes 1,2, &() ()
ii p iO p A O g A? ”̋ ?Â @

 steps to enforce projection consistency with

respect to all projection goals as defined above. If the projection consistency is enforced

with respect to one projection goal it may happen that it becomes inconsistent with respect

to another projection goal. Therefore the consistency should be enforced repeatedly in the

AC-1 style (Dechter, 2003) until cliques of actions are no longer changing. This takes
2

()O g A (consistency enforcing is performed at most A times since in each iteration at

least one action is ruled out). It is still better than
2 3

()O g A steps of AC-3 on the model

from the definition 3.9. However, the empirical tests showed that such repetition does not

provide any significant extra filtering effect. Hence we use the only iteration of projection

consistency with respect to projection goals ip for {1,2, }i ? @ where ip ”¸.

 The application of the projection consistency in planning using planning graphs is very

similar to the situation where we were using arc-consistency. We only need to suppose that

e
+
(a1)={a,b}

e
+
(a2)={c}

e
+
(a4)={h}

e
+
(a3)={d}

e
+
(a5)={a,b,j}

e
+
(a6)={e,f} e

+
(a7)={d,g,h,i}

e
+
(a8)={g,h}

 a b c d e f g h Goal g =

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 75

clique covers of action layers were constructed together with the planning graph expansion.

At the point when a plan is extracted from the planning graph and more precisely at the

point when the problem of finding supporting actions is resolved a constraint model is con-

structed.

 Consider that we are solving the problem of finding supporting actions at action layer

A with mutexes Ao for sub-goal g . Next suppose that a clique cover of the mutex graph

formed by the action layer was constructed. Let it consists of the cliques 1C , 2C , @ , kC and

let mA be the set of mutexes outside the clique decomposition (the clique decomposition is

constructed only once). We construct the constraint model consisting of variables

()support p for each p gŒ which contains actions from A that have p as their positive

effect in its domain. Next we have variables ()clique i for every 1,2, ,i k? @ whose do-

mains consist of the actions of the corresponding clique of the decomposition. Constraints

in our model are represented by the set of mutexes outside the clique decomposition mA

and by a single global projection constraint.

 A part of the symbolic code for solving the above constraint model is listed below as

algorithm 3.7. The complete symbolic code can be obtained from algorithm 3.1 by replac-

ing the model and the call at line 15 by propagateAdvancedModel (, { })SUPPORTM a¦| ̌ .

 The algorithm 3.7 is again very similar to algorithms 3.2, 3.3, and 3.4. The difference

here is that instead of arc-consistency the projection consistency is enforced. The meaning

of the input and the output of the algorithm is the same as in the cases of algorithms 3.2,

3.3, and 3.4. The algorithm consists of a loop (lines 2-27) which is repeated until a queue of

actions SELECTA that are selected to satisfy the goal is non-empty. In each iteration of the

loop, actions listed in the queue are included into the solution and the constraint model is

modified according to the selected actions (lines 3-10). Then projection consistency is en-

forced (lines 11-19). The projection consistency is enforced with respect to the projection

goals that contain atoms that have the same number of supporting actions (line 12). The

projection consistency is enforced over the variables representing cliques of the decomposi-

tion ((1)clique , (2)clique ,@ , ()clique k) (lines 13-14). It is then propagated to the support

variables (lines 15-19). This propagation is simply done by removing each action from the

domains of support variables that is missing in the domains of variables representing the

clique decomposition. The constraints representing the mutexes outside the clique decom-

position are utilized by enforcing arc-consistency over the set of support variables (line 20-

21). After enforcing consistencies some of the support variables may have empty current

domains which indicates a failure (lines 22-24) - notice that a clique variable with an empty

current domain does not indicate a failure. If the algorithm passes the failure test, some of

actions may become again selected (if they are the only support for a certain atom) (lines

25-26). If there exist such actions the algorithm continues with the next iteration of the

main loop.

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 76

Algorithm 3.7. CONSTRAINT PROPAGATION - PROJECTION CONSISTENCY. This code represents

the external function propagateAdvancedModel for the algorithm 3.1.

 function propagateAdvanceModel-Projection (,)M ¦ : pair

 1: SELECTA «¸

 2: do

 3: for each SELECT SELECTa AŒ do

 4: { | ()}SELECTh p p e a-« Œ

 5: { () | () . }DELETEX support p p h support p M X? Œ ® Œ

 6: . . DELETEM X M X X« /

 7: { | .DELETE c DELETEC c c M C X X« Œ ® ̨ ” ¸}

 8: . . DELETEM C M C C« /

 9: { }SELECT SELECT SELECTA A a« /

 10: { }SELECTa¦ ¦« ̌

 11: { | () . }g p support p M X« Œ

 12: for each 1,2,i ? @ such that { | }i tp t t g s i« Œ ® ? ”¸ do

 13: (,{ . [(1)], , . [()]})changed M D clique M D clique k «@

 14: enforceProjectionConsistency ({ . [(1)], , . [()]},)iM D clique M D clique k p@

 15: if changed then

 16: . [(1)] . [()]REMAININGA M D clique M D clique k« ̌ ̌@

 17: for each () .support p M XŒ such that

 18: ()(())REMAININGa a support p a A& Œ ® º do

 19: . [()] . [()] { }M D support p M D support p a« /

 20: { () | () . }SUPPORTX support p support p M X« Œ

 21: |
SUPPORTXM « enforceArcConsistency-AC-3 (|)

SUPPORTXM

 22: { () . | | . [()]
SUPPORTEMPTY XX support p M X M D support p« Œ ?¸}

 23: if EMPTYX ”¸ then

 24: return (,{ })M failure

 25: for each () .support p M XŒ such that . [()] { }M D support p a? do

 26: { ()}SELECT SELECTA A active a« ̌

 27: while SELECTA ”¸

 28: return (,)M ¦

3.3.4 Experimental Evaluation

We implemented the above constraint model and projection consistency enforcing algo-

rithm in C++ and we have integrated it into our implementation of the GraphPlan algorithm

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 77

in order to improve the solving process of the problems of finding supporting actions for a

goal. For the experimental evaluation itself we used the same set of problems as in the case

of evaluation of constraint models for maintaining arc-consistency. That is, we used several

instances of planning problems from Dock Worker Robots environment, Towers of Hanoi

environment, and from the Refueling Planes environment. Again the same statistical char-

acteristics were collected. The tests were performed on the same hardware (two AMD Op-

terons 242 - 1600 MHz with 1GB of memory) as previous experimental evaluation. Our

implementation was again compiled using the gcc compiler version 3.4.3 with maximum

optimization for the target machine (-O3 -mtune=opteron). The tests were again run under

Mandriva Linux 10.2. These settings of the experiments allow us to directly compare per-

formance of the standard GraphPlan algorithm and the variants of maintaining arc-

consistency with the just proposed application of maintaining projection consistency in

terms of time.

Figure 3.10. COMPARISON OF OVERALL SOLVING TIMES (LOGARITHMIC SCALE) - (STD, VARA, VARB,

VARC, PRJ). Comparison of the overall solving time of the standard GraphPlan algorithm and en-

hanced versions which use maintaining arc-consistency and maintaining projection consistency for

solving the problem of finding supports (standard version and variants A,B, and C and projection

consistency propagation schemes are compared). Problems on the horizontal axis are listed in the

ascending order according to the time consumed by the variant C. Time limit of 1 hour for each

problem is used.

 Since the projection consistency was further improved we postpone the presentation of

complete results into the next section. We show the overall solving time comparison of the

algorithm that uses projection consistency with all the previously discussed algorithms. The

results in figure 3.10 shows the comparison of the standard version of the GraphPlan algo-

rithm and the enhanced versions which use maintaining arc-consistency of variants A, B,

and C and maintaining projection consistency. The ordering of problems along the horizon-

Overall solving time (logarithmic scale)

0.01

0.1

1

10

100

1000

10000

h
a

n
0
1

d
w

r0
3

d
w

r0
4

h
a

n
0
2

p
ln

0
4

d
w

r0
2

d
w

r0
1

h
a

n
0
4

p
ln

0
1

p
ln

1
6

h
a

n
0
3

p
ln

1
0

h
a

n
1
5

h
a

n
1
7

p
ln

2
2

p
ln

0
5

d
w

r2
2

p
ln

1
4

h
a

n
0
7

d
w

r2
6

p
ln

1
9

d
w

r2
7

p
ln

1
7

h
a

n
1
1

d
w

r0
5

p
ln

2
1

p
ln

2
0

p
ln

0
6

h
a

n
1
6

d
w

r2
3

p
ln

1
1

d
w

r2
1

p
ln

2
3

h
a

n
1
8

d
w

r0
7

h
a

n
0
8

p
ln

1
3

h
a

n
0
9

d
w

r2
5

d
w

r1
6

d
w

r2
4

h
a

n
1
3

d
w

r2
0

d
w

r1
7

p
ln

1
5

h
a

n
1
2

h
a

n
1
0

h
a

n
1
4

Problem identifier

T
im

e
 (

s
e
c
o
n
d
s
)

Standard

MAC Variant A

MAC Variant B

MAC Variant C

Projection

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 78

tal axis is according to the ascending time consumed by the variant C. The results show that

the version with maintaining projection consistency is the best on almost all the tested prob-

lems. The projection consistency loses with the variant C more significantly only on one

problem (problem pln15). Notice that projection consistency requires an extra time for

building the clique cover and still it is faster.

3.3.5 Conclusion and Discussion

We proposed a novel consistency technique which we called projection consistency. The

technique is designed to prune the search space during extraction of plans by the GraphPlan

algorithm. We theoretically showed that the projection consistency has faster propagation

algorithm than the arc-consistency propagation algorithm AC-3 when applied on the same

problem. Empirical tests showed significant improvements compared to the standard

GraphPlan and also compared to the version using arc-consistency.

 Experimental comparison of projection consistency with local arc-consistency tech-

nique confirmed the hypothesis that global consistency that respects the structural informa-

tion encoded in the problems provides better propagation. However, there are still some

questions regarding the proposed technique.

 The first interesting issue is how to make projection consistency stronger. This may be

done by other types of projection goals. But it is also possible to do it by the slight modifi-

cation of the definition of the supported action. Instead of the expression 1, (,)n
j j i jc C p? ”Â ‡

()p e a-/ in the definition 3.12 one can use 1, (, ()) ()n
j j i jc C p e a p e a- -
? ”Â / ‡ / . Unfortu-

nately this change causes that monotonicity (proposition 3.8) - the main argument for low

complexity of propagation algorithm - no longer holds.

 The similarity between Boolean formula satisfaction problem and the problem of fin-

ding supporting actions for a goal as it is shown in proposition 3.1 leads us to the question

whether it is possible to exploit projection consistency for solving SAT problems. We deal

with this question in the chapter 4. The expectable question is also how to extend the pre-

sented ideas for planning graphs with time and resources (Long and Fox, 2003; Smith and

Weld, 1999). Since the planning graphs for complex problems are really large the related

question is also how to make planning graphs unground and how to get rid of high numbers

of no-operation actions.

3.4 Tractable Class of Problem of Finding Supports

We discuss a special class of the problem of finding supporting actions with respect to pro-

posed projection consistency in this section. Consider that we have a clique decomposition

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 79

of the mutex graph of a certain action layer of the planning graph. Next consider that a set

of atoms supported by actions in the clique is constructed for each clique. We noticed that

the intersection graph (Golumbic, 1980), where vertices are these sets and edges are their

non-empty intersections, has typically a simple structure resembling interval graphs.

 The method described in this section is trying to utilize the above observation for solv-

ing the problem of supporting actions in connection with projection consistency. More pre-

cisely, we present a polynomial time solving procedure for solving the problem of supports

when the above intuitively defined graph is acyclic. Next, we propose a heuristic that

guides the solving process of the general problem of supports that is trying to simplify the

problem to one belonging into the tractable class.

3.4.1 Tractability

It is possible to make projection consistency stronger by a slight reformulation of the defi-

nition of the supported action. The definition of the consistent problem remains the same.

We will need the modified version of the projection consistency to be able to solve certain

instances of the problem of finding supporting actions in polynomial time.

Definition 3.10 (STRONGLY SUPPORTED ACTION). An action ia CŒ for {1,2, , }i nŒ @ is

strongly supported with respect to projection consistency with the projection goal p if

1, (, ()) ()n
j j i jc C p e a p e a- -
? ”Â / ‡ / holds. ゴ

 Let us call the projection consistency that uses the definition of strongly supported

actions a strong projection consistency. The new variant of consistency is correct.

Proposition 3.10 (CORRECTNESS OF STRONG PROJECTION CONSISTENCY). Strong projection

consistency is correct. That is, the set of solutions of the problem of finding supporting ac-

tions S for a goal g is the same as the set of solutions of the problem of finding supporting

actions S | which we obtain from S by enforcing strong projection consistency with respect

to a projection goal p gØ . ﾐ

Proof. As in the proof of correctness of the basic variant of projection consistency we show

that an unsupported action cannot participate in any solution. Let ia CŒ be an unsupported

action for some {1,2, , }i nŒ @ . That is 1, (, ())n
j j i jc C p e a-
? ”Â / > ()p e a-/ holds. Observe

that after the selection of the action a it is not possible to satisfy the goal p . Hence it is not

possible to satisfy g since it is the superset of p . ﾐ

Proposition 3.11 (STRONGER PROJECTION CONSISTENCY). If the problem of supports is

strongly projection consistent with respect to a projection goal p then it is projection con-

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 80

sistent with respect to the projection goal p . Moreover there exists a the problem of sup-

ports which is projection consistent with respect to a projection goal p and it is not

strongly projection consistent with respect to the same projection goal p . ﾐ

Proof. To prove the first part of the proposition it is sufficient to observe that

1, (, ())n
j j i jc C p e a-
? ”Â / ‡ 1,() (,)n

j j i jp e a c C p-
? ”Â/ ‡µ ()p e a-/ for any ia CŒ for

{1,2, , }i n? @ and for any projection goal p . Moreover, there exists a problem of finding

supports and the projection goal p where for some ia CŒ and {1,2, , }i nŒ @ inequalities

1, (,) ()n
j j i jc C p p e a-
? ”Â ‡ / and 1, (, ()) ()n

j j i jc C p e a p e a- -
? ”Â / > / hold. Let 1 1{ }C a?

and 2 2 3{ , }C a a? where 1 ({},{ , },{})a ? §¤ 2 ({},{ , },{})a ? ⁄¤ , 3 ({},{ , },{})a ? ƒ§ . If we

take { , , , }p ? ⁄ƒ§¤ and action 2 2a CŒ then 1, 2 1(,) ,{ , , , }) 2(n
j j jc C p Cc? ”Â ⁄ƒ§¤ ? ‡?

2()p e a-/ ? { , , , } { , } 2⁄ƒ§¤ / §¤ ? . However 1, 2 2 1(, ()) (,{ , }) 1n
j j jc C p e a c C-
? ”Â / ƒ§ ? >?

2()p e a-/ ? { , , , } { , } 2⁄ƒ§¤ / §¤ ? . ﾐ

 The modification of the definition was simple. Unfortunately this is not true for the

propagation algorithm. Our modification substantially changed the effect of removal of an

unsupported action on the set of strongly supported actions with respect to a single projec-

tion goal. The set of supported actions does not change after removal of an unsupported

action in case of projection consistency. This property of projection consistency is called a

monotonicity and represents the main argument for the low complexity of the propagation

algorithm. For strong projection consistency the monotonicity does not hold (the set of sup-

ported actions may change). Fortunately, this property does not matter for the (tractable)

case we are about to investigate.

Proposition 3.12 (NON-MONOTONICITY OF STRONGER PROJECTION). Strong projection con-

sistency with a projection goal p is not monotone. That is, there exists a problem where a

supported action a becomes unsupported after the removal of another unsupported action

b (support relations are considered with respect to p). ﾐ

Proof. Let us have a problem with the goal { , , , , , }g ? ⁄ƒ§¤ ¼ ı and a clique decomposition

1 1{ }C a? , 2 2{ }C a? , and 3 3{ }C a? where 1 ({},{ , },{})a ? ⁄ƒ 2 ({},{ , },{})a ? ƒ§ ,

3 ({},{ , },{})a ? ¼ ı . Let p g? . The action 1a is unsupported with respect to p since

1, 1 1 2 3(, ()) (,{ , , , }) (,{ , , , })n
j j jc C p e a c C c C-
? ”Â / §¤ ¼ ı - §¤ ¼ ı? ? 1 2 3- ? > 1()p e a-/ ?

{ , , , } 4§¤ ¼ ı ? . Similarly for the remaining actions. The action 2a is also unsupported with

respect to p since 1, 2 2 1(, ()) (,{ , , , })n
j j jc C p e a c C-
? ”Â / ⁄¤ ¼ ı? - 3(,{ , , , })c C ⁄¤ ¼ ı ?

1 2 3- ? 2()p e a-> / ? { , , , }⁄¤ ¼ ı ? 4 . The action 3a is supported with respect to p

since 1, 3 3 1(, ()) (,{ , , , })n
j j jc C p e a c C-
? ”Â / ⁄ƒ§¤? - 2(,{ , , , })c C ⁄ƒ§¤ ? 2 2 4- ? ‡

3()p e a-/ ? { , , , }⁄ƒ§¤ ? 4 . After removal of the unsupported action 1a the action 3a

becomes also unsupported since 1, 1,31 1 3 3({ }, ()) (, ())n
j j jc C a p e a c C p e a- -
? ”Â/ / - / ?

1 1({ },{ , , , })c C a/ ⁄ƒ§¤ - 3(,{ , , , })c C ⁄ƒ§¤ 0 2 2? - ? > 3()p e a-/ ? { , , , }⁄ƒ§¤ ? 4 . ﾐ

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 81

Definition 3.11 (MERGED POSITIVE EFFECT). For a clique 1 2{ , , , }nC C C CŒ @ of the action

clique decomposition we define a merged positive effect as ()a C e a-

ŒI . It is denoted as

()me C- .ゴ

Definition 3.12 (CLIQUE INTERSECTION GRAPH). We define a clique intersection graph

1 2({ , , , },)I n IG C C C E? @ for the action clique decomposition 1 2 nA C C C? ̌ ̌ ̌@ as an

undirected intersection graph of corresponding merged positive effects. That is

{{ , } |I i jE C C? () ()i ji j me C me C- -” ® ̨ ”¸} . ゴ

Proposition 3.13 (TRACTABLE CASE: PROJECTION CONSISTENCY). Let 1 2A C C? ̌ ̌@

nČ be a clique decomposition of the action layer and let g be a goal we want to satisfy.

Next let (,)I I IG V E? be the corresponding clique intersection graph. If the graph IG is

acyclic then a problem of satisfying the goal g by selecting just one action ia from the

clique iC for every 1,2, ,i n? @ can be solved in polynomial time after enforcing strong

projection consistency with respect to certain projection goals. ﾐ

Proof. We need to show that if the defined problem is strong projection consistent with

respect to the certain projection goals then it is necessary to do only little to find the solu-

tion or conclude that there is no solution.

 Let us take the projection goals 1,(() ())
n

i jj j ig me C me C- -

? ”̨ /I for every 1,2, ,i n? @

and () ()i jg me C me C- -̨ ̨ for every { , }i j IC C EŒ . If 1 ()
n

iig me C-

?/ ”I ¸ holds then

there is obviously no solution. This condition can be checked in ()O g AÂ steps, where U

is the action size bounding constant (that is ()a A$ Œ max(() , () , ())p a e a e a- /U ‡). If

1 ()
n

iig me C-

?Ø I holds then arbitrary selection of just one action a from the clique iC for

every 1,2, ,i n? @ which preserves relation of strong supports over the edges IE solves the

problem. This selection can be done by starting in the root clique of IG and continuing to

the leaves according to the breadth first order. It takes ()O g A steps to select actions in

this way.

 Consider an arbitrary atom t gŒ . There are at most two cliques for which the atom t

is an element of their merged effect. This is due to the acyclicity of the corresponding

clique intersection graph IG . In the case when there is just one such clique iC we show

that an arbitrary selection of an action ia CŒ satisfies t . Let

1,
(() ())

n

i jj j i
p g me C me C- -

? ”? ̨ /I , for such p we have t pŒ and

1, (, ())n
j j i jc C p e a-
? ”Â / ‡ ()p e a-/ since the problem is strong projection consistent with

respect to the projection goal p . We also have 1, (, ()) 0n
j j i jc C p e a-
? ”Â / ? since the sum is

empty (no other clique intersects the projection goal p by its merged effect). Hence

() 0p e a-/ ? and ()t e a-Œ , that is, we do not need to care about satisfaction of such at-

oms. Let us investigate the case when there are two cliques iC and jC for which

()it me C-Œ and ()jt me C-Œ . Suppose that an action a is selected from the clique iC and

an action b from the clique jC . Consider the projection goal p g? ̨ () ()i jme C me C- -̨ ,

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 82

both actions are strongly supported with respect to p . That is

1, (, ())n
k k i kc C p e a-
? ”Â / ‡ ()p e a-/ and 1, (, ()) ()n

k k j kc C p e b p e b- -
? ”Â / ‡ / . Without loss

of generality suppose that action a was selected before b . Since there are only two cliques

interfering over the projection goal p , we specially have (, ()) ()jc C p e a p e a- -/ ‡ / after

selecting a (the sum on the left reduces to the single summand). Hence it is possible to

select the action b from jC such that (()) () (, ())jp e a e b c C p e a- - -/ ̨ ? / . Altogether

we obtained that () ()p e a e b- -Ø ̌ , hence () ()t e a e b- -Œ ̌ . ﾐ

 The question arises whether the strong projection consistency with respect to the pro-

jection goals mentioned in the proof of the proposition 3.13 can be enforced over the

acyclic problem in polynomial time.

 We use the idea that is used to enforce arc-consistency in an acyclic constraint network

(Dechter, 2003). It is possible to enforce arc-consistency in such a network by enforcing

directed arc-consistency in the direction from the leaves to the root of the network and then

from the root to the leaves according to the breath-first search ordering of the network. Al-

most the same can be done for the strong projection consistency. First we enforce the con-

sistency for the projection goals 1,(() ())
n

i jj j ig me C me C- -

? ”̨ /I for every 1,2, ,i n? @ .

Then cliques of the decomposition are ordered according to the breadth-first search and the

strong projection consistency is enforced over the edges of the intersection graph. It is done

in the direction from the leaves to the root of the clique intersection graph first and then

from the root to the leaves.

 The complete algorithm for enforcing strong projection consistency with respect to the

discussed projection goals is shown here as algorithm 3.8. Let us briefly describe the sym-

bolic code of the algorithm. The strong consistency propagation algorithm for the acyclic

clique intersection graph consists of three functions - enforceStrongProjectionConsistency,

propagateStrongProjection, and breadthFirstSearch. The function enforceStrongProjec-

tionConsistency is the main function and propagateStrongProjection and breadthFirst-

Search are auxiliary functions.

 The function enforceStrongProjectionConsistency gets the goal g and 1 2{ , , , }nC C C@

clique decomposition of the mutex network. The strong projection consistency is first en-

forced over the leaves of the clique intersection graph (lines 3-6) with respect to special

projection goals. Then the clique intersection graph is ordered according to the breath first

search (line 7) and strong projection consistency is enforced over the edges of the clique

intersection graph in the direction from the leaves to the root (lines 8-12) and in the oppo-

site direction from root to the leaves (lines 13-17). Special projection goals corresponding

to the edges of the clique intersection graphs are used. The return value of the function is a

pair of the modified cliques of the decomposition and the indicator of the change.

 The function propagateStrongProjection makes the problem strong projection consis-

tent with respect to a single projection goal. The function gets the projection goal and the

clique decomposition as its parameters and returns the modified clique decomposition to-

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 83

gether with the indicator of change. The last function breadthFirstSearch returns the num-

bering of vertices of a give graph in breath-first order. The resulting numbering is returned

in the form of a permutation.

Algorithm 3.8. CONSTRAINT PROPAGATION - STRONG PROJECTION CONSISTENCY. Strong pro-

jection consistency propagation algorithm for acyclic clique intersection graph.

 function enforceStrongProjectionConsistency 1 2(,{ , , , })ng C C C@ : pair

 1: changed False«

 2: let 1 2({ , , , },)I n IG C C C E? @ be the clique intersection graph

 3: for 1,2, ,i n? @ do

 4:
1,

(() ())
n

i jj j i
p g me C me C- -

? ”« ̨ /I

 5: (,{ })iCe « propagateStrongProjection (,{ })ip C

 6: changed changed e« °

 7: r « breadthFirstSearch ()IG

 8: for , 1, ,2j n n? / @ do

 9: let () (){ , }i j IC C Er r Œ such that () ()i jr r>

 10: () ()() ()i jp g me C me Cr r
- -« ̨ ̨

 11: () ()(,{ , })i jC Cr re «propagateStrongProjection () ()(,{ , })i jp C Cr r

 12: changed changed e« °

 13: for 1,2, , 1i n? /@ do

 14: for each () (){ , }i j IC C Er r Œ such that () ()i jr r> do

 15: () ()() ()i jp g me C me Cr r
- -« ̨ ̨

 16: () ()(,{ , })i jC Cr re «propagateStrongProjection () ()(,{ , })i jp C Cr r

 17: changed changed e« °

 18: return 1 2(,{ , , , })nchanged C C C@

 function propagateStrongProjection 1 2(,{ , , , })mp C C C@ : pair

 19: Falsee «

 20: for 1,2, ,i m? @ do

 21: for each ia CŒ do

 22: if 1, (, ()) ()n
j j i jc C p e a p e a- -
? ”Â / > / then

 23: { }i iC C a« /

 24: Truee «

 25: return 1 2(,{ , , , })mC C Ce @

 function breadthFirstSearch 1 2(({ , , , },))mv v v E@ : permutation

 26: []Q «

 27: F «¸

 28: 1k «

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 84

 29: for 1,2, ,i m? @ do

 30: if iv Fº then

 31: ()i kr «

 32: 1k k« -

 33: Q « concatenate (,)iQ v

 34: { }iF F v« ̌

 35: while []Q ” do

 36: [|]u R Q«

 37: Q R«

 38: for each { , }ju v EŒ do

 39: if jv Fº then

 40: ()j kr «

 41: 1k k« -

 42: Q « concatenate (,)jQ v

 43: { }jF F v« ̌

 44: return r

 The relatively simple structure of the clique intersection graph and the selected set of

projection goals allow us to compute the strong projection consistency of the given problem

(we are overcoming the fact that monotonicity does not hold). The key idea was to reduce

the effect of removal of an unsupported action to the remaining actions with respect to the

projection goals. In other words, if we remove an unsupported action only the actions from

the cliques neighboring through an edge in clique intersection graph can become unsup-

ported with respect to the selected projection goals.

 The following proposition summarizes the claim that algorithm 3.8 enforces strong

projection consistency with respect to the selected projection goals.

Proposition 3.14 (CORRECTNESS OF STRONG PROJECTION CONSISTENCY ENFORCING ALGO-

RITHM). Let 1 2A C C? ̌ ̌@ nČ be a clique decomposition of the action layer and let g

be a goal we want to satisfy. Next let (,)I I IG V E? be the corresponding clique intersection

graph. If the graph IG is acyclic then strong projection consistency with respect to the

goals
1,

(() ())
n

i jj j i
g me C me C- -

? ”̨ /I for every 1,2, ,i n? @ and () ()i jg me C me C- -̨ ̨

for every { , }i j IC C EŒ is enforced by algorithm 3.8. ﾐ

Proof. Enforcing strong projection consistency for projection goals ip g? ̨ (()ime C- /

1, ())
n

jj j i me C-

? ”I for every 1,2, ,i n? @ means that ()ip e a-Ø must hold for every ia CŒ

and for every 1,2, ,i n? @ . The projection goals of this form are disjoint (i jp p̨ ?¸ for

, 1,2, ,i j n i j? ® ”@) and only one clique can contribute to such a projection goal (only iC

contributes to ip). Hence it is sufficient to check actions in iC for strong projection consis-

tency (each action is checked once) only with respect to projection goal ip for every

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 85

1,2, ,i n? @ (for actions jb CŒ where j i” ()ip e b-̨ ?¸ holds). Individual cliques and

their actions can be considered in an arbitrary order since removal of an unsupported action

with respect to projection goal ip for some 1,2, ,i n? @ does not influence relation of

strong supporting of any other action with respect to any projection goal jp for

1,2, ,j n? @ .

 For enforcing strong projection consistency with respect to a single projection goal
, () ()i j

i jp g me C me C- -? ̨ ̨ where { , }i j IC C EŒ it is sufficient to check (and remove)

actions in iC and in jC (each action is checked once). If an action ia CŒ is strongly sup-

ported with respect to ,i jp , it means that there is an action jb CŒ such that
, () ()i jp e a e b- -Ø ̌ . Hence a supported action ia CŒ with respect to ,i jp cannot be made

unsupported with respect to ,i jp by removing any unsupported action jb CŒ with respect

to ,i jp . The removal of an action ia CŒ (unsupported with respect to other projection goal

than ,i jp) can make unsupported with respect to ,i jp only actions in the clique jC (for ac-

tions kb CŒ where k i k j” ® ” , ()i jp e b-̨ ?¸ holds since otherwise IG has a cycle).

 Let us now consider the consistency with respect to all the projection goals ,i jp where

{ , }i j IC C EŒ . It is sufficient to enforce strong projection consistency for projection goals

corresponding to the edges of IG in the reverse breadth-first search order and then in the

normal breadth-first search order. Let r be a breadth-first search ordering of IG with (1)Cr

as the root. In the first phase (lines 8-12) we proceed from the leaves to the root while ac-

tions unsupported with respect to the direct successor clique (with respect to r) are re-

moved. That is, if ()jCr is a direct successor of ()iCr for 1,2, , 1i n? /@ then actions un-

supported with respect to (), ()i jpr r are removed from ()iCr . At the end of this phase for

every action ()ia CrŒ for 1,2, , 1i n? /@ there is an action ()jb CrŒ for every successor

()jCr of ()iCr such that (), () () ()i jp e a e br r - -Ø ̌ (i). Notice, that when removing an action

from ()iCr to enforce the consistency with respect to (), ()i jpr r , an action in another succes-

sor (a successor that has been already treated) of ()kCr of ()iCr may become unsupported.

 Hence, we need to enforce that for every action ()jb CrŒ for 2,3, ,j n? @ there is an

action ()ia CrŒ for a direct predecessor ()iCr of ()jCr such that (), () () ()i jp e a e br r - -Ø ̌

(ii). Actions unsupported with respect to their direct predecessors are removed in the sec-

ond phase (lines 13-17). We proceed from the root to the leaves in the second phase. To

enforce (ii) we remove unsupported actions from ()jCr for 2,3, ,j n? @ with respect to
(), ()i jpr r where ()iCr is a direct predecessor of ()jCr . Notice that (i) remains unaffected

since there is always only one predecessor with respect to the breadth-first search ordering

of cliques. Hence at the end of the second phase (i) and (ii) hold. That is, the problem is

strongly projection consistency with respect to all the projection goals ,i jp where

{ , }i j IC C EŒ . ﾐ

 Let us note that the situation in the proof is similar to arc-consistency when it is en-

forced in the acyclic constraint network (Dechter, 2003). The following proposition sum-

marizes the complexity of the algorithm for enforcing the strong projection consistency.

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 86

Proposition 3.15 (COMPLEXITY OF STRONG PROJECTION CONSISTENCY). The algorithm for

enforcing strong projection consistency over an action clique decomposition 1A C? ̌

2C ̌@ nČ which has an acyclic clique intersection graph has the worst case time com-

plexity of ()O g A . ﾐ

Proof. The function propageStrongProjection takes ()i

iO p C steps for projection goal
ip g? ̨ (()ime C- / 1,

())
n

jj j i
me C-

? ”I and ,(())i j

i jO p C C- for projection goal
, () ()i j

i jp g me C me C- -? ̨ ̨ . In total, we need
1

()
n i

ii
O p C

?Â steps (which is ()O g A)

for projection goals of the first form and ,

{ , }
(())

I

i j

i ji j E
O p C C

Œ
-Â steps (which is again

()O g A since the clique intersection graph is acyclic) for projection goals of the second

form. Hence the total time consumed by the function propageStrongProjection is ()O g A .

The breadth first search performed over the clique intersection graph (line 7) takes ()O n

steps which is again ()O g A . The overall time complexity is thus ()O g A . ﾐ

Definition 3.12 (MUTEX NETWORK). A mutex network for the action clique decomposition

1 2 nA C C C? ̌ ̌ ̌@ and for the set of mutexes outside the decomposition mA is a graph

1 2({ , , , },)m n mG C C C E? @ , where {{ , }m i jE C C? | (,){ , }i i j j i ji j a C a C a a” ® & Œ & Œ Œ

}mA . ゴ

Proposition 3.16 (TRACTABLE CASE: MUTEX NETWORK). Let us have a clique decomposi-

tion of the action layer of the planning graph 1 2 nA C C C? ̌ ̌ ̌@ and a set of mutexes

outside the clique decomposition mA . Let (,)m m mG V E? be the corresponding mutex net-

work. If the graph mG is acyclic then a problem of selecting just one action ia from the

clique iC for every 1,2, ,i n? @ such that no two selected actions are mutex with respect to

mA can be solved in polynomial time. ﾐ

Proof. This is a well known result from constraint programming in fact. If each clique of

the clique decomposition 1 2 nA C C C? ̌ ̌ ̌@ is regarded as a CSP variable and mutexes

of the set mA are regarded as constraints then the defined problem of selecting non-mutex

actions is an acyclic constraint satisfaction problem. It is sufficient to enforce arc-

consistency and to label the variables in breadth first order to obtain a solution. More de-

tails about this result can be found in (Dechter, 2003). The arc-consistency algorithm runs

in polynomial time with respect to A and mA . ﾐ

Proposition 3.17 (OVERALL TRACTABLE CASE). Let us have a clique decomposition of the

action layer of the planning graph 1 2 nA C C C? ̌ ̌ ̌@ and a set of mutexes outside the

clique decomposition mA . Let (,)I I IG V E? be the corresponding clique intersection graph

and let (,)m m mG V E? be the corresponding mutex network. If the graph

1 2({ , , , },)n I mG C C C E E? ̌@ is acyclic then the corresponding problem of finding sup-

ports can be solved in polynomial time. ﾐ

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 87

Proof. To prove the proposition we use a combination of results from propositions 3.13,

3.14, 3.15 and 3.16. The first step consists of enforcing strong projection consistency and

arc-consistency in the problem of finding supports. Since it is quite easy using the above

results we describe the process briefly. If the interference of cliques is through an edge

from IE then strong projection consistency is enforced over the intersection of the corre-

sponding merged positive effects. If the interference of cliques is through an edge from mE

then arc-consistency with respect to mA is enforced. Again this combined consistency can

be enforced in polynomial time by proceeding from the leaves to the root of the graph G

and conversely. The extraction of a solution from the consistent problem can be also done

in polynomial time. The extraction procedure starts by selecting an action from the root

clique and proceeds to the leaves of the graph G while strong projection consistency and

arc-consistency relations are preserved over the edges of G . The described solution extrac-

tion can be carried out in polynomial time. ﾐ

Figure 3.11. A DIAGRAM OF MERGED POSITIVE EFFECTS OF THE CLIQUE DECOMPOSITION. A dia-

gram of merged positive effects of cliques of action layer clique decomposition. Each line of the

diagram represents a clique. The scope of the merged positive effect of the clique is depicted as one

or more horizontal bars. The width of bars is proportional to the number of actions in the individual

action cliques. The diagram was constructed according to an action layer of the planning graph for

an instance of the Dock Worker Robots domain.

 We described the tractable class of the problem of finding the supporting actions for a

goal in order to utilize the theoretical results in solving real problems. The obstacle is that

not every instance of the problem of supports belongs to the described class. The figure 3.8

shows a real example of the clique decomposition of the action layer of the planning graph

of an instance of the Dock Worker Robots planning domain. The corresponding diagram of

merged positive effects is shown in figure 3.11 and the corresponding clique intersection

Atoms in positive effects

C1

C3

C4

 C5

C6

C7

C8

C3

C4

C10

C11

C9

A
c
ti
o

n
 c

liq
u

e
s

C2

C5

C12

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 88

graph is shown in figure 3.12. According to these figures the problem does not belong to

just defined class (the graph of the figure 3.12 is not acyclic). However, the problem is very

close to our tractable class. The clique intersection graph can be made acyclic by removing

a single vertex. The vertex removal corresponds to the selection of an action from the

clique corresponding to the vertex, namely 6C . After having the clique intersection graph

acyclic we can use the algorithm described above.

Figure 3.12. CLIQUE INTERSECTION GRAPH. An intersection graph of merged positive effects of

cliques of the action layer clique decomposition form figure 3.11. The effect of removing of the

cycle-cut-set consisting of the vertex C6 is denoted by doted edges.

The obstacle here is that determining the smallest set of vertices (cycle-cut-set) which re-

moval makes the graph acyclic is NP-complete (Dechter, 2003). So, we cannot afford to

solve the problem of cycle-cut-set optimally. For our purposes we do not need an optimal

cycle-cut-set but the smaller the cycle-cut-set is the larger is the complement that can be

solved in backtrack-free manner by the proposed polynomial time solving algorithm.

 For selecting actions we suggest to use highest degree heuristics. That is an action

from the clique of the highest degree of the clique intersection graph (merged with corre-

sponding mutex network) is selected preferably. Notice, that the clique of the highest de-

gree in the clique intersection graph is often the largest clique.

 The complete algorithm for solving the problem of supporting actions for a goal works

as follows. The algorithm use the standard backtracking based scheme as it is presented in

algorithms 3.1 and 3.10. The difference is that at each decision point (selection of an action

into the solution) the described tractability of the remaining problem is checked. If the re-

maining problem belongs to the tractable class the algorithm switches to the algorithm for

solving the tractable problem which is done in backtrack-free manner. If the remaining pro-

blem of supports does not belong to the tractable class an action from the clique of action of

the highest degree in the clique intersection graph is selected into the solution and the who-

le solving process continues into the next iteration.

C3

C6

C5

C7

C4

C2

C12 C8

C1

C10 C11 C9

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 89

3.4.2 Experimental Evaluation

We evaluated the proposed approach using our experimental implementation written in

C++. The integration of the proposed consistency enforcing algorithm into the solving algo-

rithm is similar as that in the case of maintaining arc-consistency and maintaining projec-

tion consistency. The algorithm follows the standard GraphPlan algorithm except the part

for solving the problem of finding supporting actions for a goal. For this we use maintain-

ing (weak) projection consistency with the heuristic for preferring the tractable case (action

from a clique of the highest degree is preferably selected) and when the tractable case is

reached we switch to the strong projection consistency as it is described in above para-

graphs. Specifically, the tractable case preferring heuristic is used for value selection order-

ing (selection of the action). For variable ordering we use the standard first fail (smallest

domain) heuristic.

 We used the same set of planning problems as in the previous sections for the experi-

ments. This allows a direct comparison of performance of all the proposed method. The set

of planning problems consists of several instances of various difficulties of Dock Worker

Robots, Towers of Hanoi and Refueling Planes planning domain.

 We compared the proposed method for solving the tractable case of the problem with

the standard GraphPlan, with the variant C which maintains arc-consistency and with the

version which maintains pure projection consistency. The experiments were again run on

the same machine (two AMD Opteron 242 processors - 1600 MHz, with 1GB of memory

under Mandriva Linux 10.2). The code was again compiled by the gcc compiler 3.4.3 with

maximum optimization for the machine (-O3 -mtune=opteron).

 The comparison of the overall solving time (planning graph building time + time of

plan extraction phases) of the proposed method based on tractable case with the standard

GraphPlan, maintaining arc-consistency method - variant C, and the method using projec-

tion consistency is shown in figure 3.13. The comparison of times spent in plan extraction

phases is shown in figure 3.14. Again the same methods as in figure 3.13 were compared.

The comparison of the number of backtracks is shown in figure 3.15. In all the figures 3.13,

3.14, and 3.15 problems along the horizontal axis are ordered according to the ascending

solving time of the method with maintaining projection consistency.

 The improvement in overall problem solving time is up to 200% compared to the ver-

sion which uses projection consistency. The improvement in plan extraction time is up to

1000% . The improvement in the number of backtracks is also substantive. Even some pro-

blems were solved without backtracking. The improvements are better for problems with

more interacting objects and higher action parallelism (for example dwr05). On the other

hand there is almost no improvement on problems with no action parallelism (for example

han07), which is expectable.

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 90

Figure 3.13. COMPARISON OF OVERALL SOLVING TIMES (LOGARITHMIC SCALE) - (STD, VARC, PRJ,

TRACT). Comparison of the overall solving time of the standard GraphPlan algorithm and enhanced

versions which use maintaining arc-consistency of variant C, maintaining projection consistency,

and maintaining projection consistency with preference of tractable case for solving the problem of

finding supports. Problems on the horizontal axis are listed in the ascending order according to the

solving time consumed by the maintaining projection consistency algorithm. Time limit of 1 hour

for each problem is used.

Figure 3.14. COMPARISON OF PLAN EXTRACTION PHASE TIMES (LOGARITHMIC SCALE) - (STD, VARC,

PRJ, TRACT). Comparison of time spent in plan extraction phases of the standard GraphPlan algo-

rithm and enhanced versions which use maintaining arc-consistency of variant C, maintaining pro-

jection consistency, and maintaining projection consistency with preference of tractable case for

solving the problem of finding supports. Problems on the horizontal axis are listed in the ascending

order according to the solving time consumed by the pure maintaining projection consistency algo-

rithm.

Overall solving time (logarithmic scale)

0.01

0.1

1

10

100

1000

10000

h
a

n
0

1

d
w

r0
3

d
w

r0
4

h
a

n
0

2

p
ln

0
4

d
w

r0
2

d
w

r0
1

h
a

n
0

4

h
a

n
0

3

p
ln

0
1

p
ln

1
0

p
ln

1
6

p
ln

2
2

h
a

n
1

5

h
a

n
1

7

p
ln

1
4

h
a

n
0

7

d
w

r2
7

p
ln

1
7

p
ln

2
1

p
ln

1
9

h
a

n
1

1

d
w

r2
2

p
ln

0
5

d
w

r2
6

d
w

r0
5

p
ln

0
6

p
ln

2
0

d
w

r2
3

p
ln

1
1

h
a

n
1

6

d
w

r2
1

p
ln

2
3

h
a

n
1

8

p
ln

1
3

d
w

r0
7

h
a

n
0

8

d
w

r2
4

d
w

r2
5

h
a

n
0

9

d
w

r1
6

h
a

n
1

3

d
w

r2
0

d
w

r1
7

h
a

n
1

2

h
a

n
1

0

h
a

n
1

4

p
ln

1
5

Problem identifier

T
im

e
 (

s
e
c
o
n
d
s
)

Standard

MAC Variant C

Projection

Tractable

Plan extraction phases time (logarithmic scale)

0.01

0.1

1

10

100

1000

10000

h
a

n
0

1

d
w

r0
3

d
w

r0
4

h
a

n
0

2

p
ln

0
4

d
w

r0
2

d
w

r0
1

h
a

n
0

4

h
a

n
0

3

p
ln

0
1

p
ln

1
0

p
ln

1
6

p
ln

2
2

h
a

n
1

5

h
a

n
1

7

p
ln

1
4

h
a

n
0

7

d
w

r2
7

p
ln

1
7

p
ln

2
1

p
ln

1
9

h
a

n
1

1

d
w

r2
2

p
ln

0
5

d
w

r2
6

d
w

r0
5

p
ln

0
6

p
ln

2
0

d
w

r2
3

p
ln

1
1

h
a

n
1

6

d
w

r2
1

p
ln

2
3

h
a

n
1

8

p
ln

1
3

d
w

r0
7

h
a

n
0

8

d
w

r2
4

d
w

r2
5

h
a

n
0

9

d
w

r1
6

h
a

n
1

3

d
w

r2
0

d
w

r1
7

h
a

n
1

2

h
a

n
1

0

h
a

n
1

4

p
ln

1
5

Problem identifier

T
im

e
 (

s
e
c
o
n
d
s
)

Standard

MAC Variant C

Projection

Tractable

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 91

Figure 3.15. COMPARISON OF NUMBER OF BACKTRACKS (LOGARITHMIC SCALE) - (STD, VARC, PRJ,

TRACT). Comparison of time spent in plan extraction phases of the standard GraphPlan algorithm

and enhanced versions which use maintaining arc-consistency of variant C, maintaining projection

consistency, and maintaining projection consistency with preference of tractable case for solving the

problem of finding supports. Problems on the horizontal axis are listed in the ascending order ac-

cording to the solving time consumed by the pure maintaining projection consistency algorithm.

Figure 3.16. COMPARISON OF IMPROVEMENTS WITH RESPECT TO STANDARD GRAPHPLAN - (VARC,

PRJ, TRACT). Comparison of the standard GraphPlan and enhanced versions based on constraint

model with maintaining arc-consistency of variant C and projection consistency for solving the

problems of finding supports in terms of improvement ratio of the plan extraction phase depending

on the average action parallelism (number of actions in the plan divided by the length of the result-

ing concurrent plan). Improvements are computed with respect to the standard GraphPlan (which

has the ratio 1).

Backtracks (logarithmic scale)

1

10

100

1000

10000

100000

1000000

10000000

h
a

n
0
1

d
w

r0
3

d
w

r0
4

h
a

n
0
2

p
ln

0
4

d
w

r0
2

d
w

r0
1

h
a

n
0
4

h
a

n
0
3

p
ln

0
1

p
ln

1
0

p
ln

1
6

p
ln

2
2

h
a

n
1
5

h
a

n
1
7

p
ln

1
4

h
a

n
0
7

d
w

r2
7

p
ln

1
7

p
ln

2
1

p
ln

1
9

h
a

n
1
1

d
w

r2
2

p
ln

0
5

d
w

r2
6

d
w

r0
5

p
ln

0
6

p
ln

2
0

d
w

r2
3

p
ln

1
1

h
a

n
1
6

d
w

r2
1

p
ln

2
3

h
a

n
1
8

p
ln

1
3

d
w

r0
7

h
a

n
0
8

d
w

r2
4

d
w

r2
5

h
a

n
0
9

d
w

r1
6

h
a

n
1
3

d
w

r2
0

d
w

r1
7

h
a

n
1
2

h
a

n
1
0

h
a

n
1
4

p
ln

1
5

Problem identifier

N
u
m

b
e
r

o
f

b
a
c
k
tr

a
c
k
s

Standard

MAC Variant C

Projection

Tractable

Improvement of Plan Extraction Phase w.r.t. Standard GraphPlan

(logarithmic scale)

0.1

1

10

100

1000

1

1
.2

1
.4

1
.6

1
.8 2

2
.2

2
.4

2
.6

2
.8 3

Average action paralellism

Im
p
ro

v
e
m

e
n
t

ra
ti
o

MAC Variant C w.r.t. Standard

Projection w.r.t. Standard

Tractable w.r.t. Standard

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 92

 We evaluated the hypothesis that the benefit of preference of the proposed tractable

class and the associated specialized algorithm is better on problems with higher action par-

allelism experimentally. The results of this evaluation are shown in figure 3.16 - improve-

ment ratio of the time of plan extraction phase is shown here. The figure 3.16 shows the

improvements of the advanced methods for solving the problem of finding supporting ac-

tions with respect to the standard GraphPlan.

 The results show that the improvement gained by using the tractable class of the prob-

lem of finding supporting actions is more significant for problems higher than zero action

parallelism. However, the action parallelism seems not to be the only factor influencing the

possible gain of using the tractable class.

3.4.3 Discussion of Results

We described the tractable class of the supports problem using the projection global consis-

tency. Our experiments showed that this class is also useful for practical solving of plan-

ning problems since problems of this class arises (with some help) frequently. Using the

projection consistency the time spent by solving the problem of finding supports is no more

a limiting factor of the planning algorithm. The limiting factor is rather the time spent by

building planning graphs and by search across the layers of the planning graph. We con-

sider that it would be interesting to reformulate planning graphs in order to be friendlier to

the backward search.

3.5 Difficult Planning Problems

Although our experimental implementation of the enhancements of the GraphPlan algo-

rithm is not designed to compete with today’s state-of-the-art planning systems there are

planning problems on which our approach is competitive despite its not well optimized im-

plementation.

 In previous sections we showed that plan extraction enhanced by the integration of the

algorithm for the tractable class improves the plan extraction process significantly. More-

over, we found that our approach is especially successful on difficult problems which force

the planner to really perform search to find the solution or to prove that there is no solution

(Urquhart, 1987). Such problems encapsulates for example an instance of the Dirichlet’s

box principle (place 1n - pigeons into holes n so that no two pigeons are placed in the

same hole). Although these problems are short in length of the input, they are hard to be

answered. The solver does not see the principle encoded in the problem formulation. This

property of the box principle makes the solver to perform exhaustive search to prove that

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 93

the problem has no solution. The algorithm for the problem of finding supports of the trac-

table class has an advantage in such situation. It can detect insolvability of some sub-

problems quickly in polynomial time and can prune large parts of the search space in this

way.

 The performed competitive comparison of our experimental planning system imple-

menting the algorithm for the tractable class with several state-of-the-art planners on the

mentioned difficult problems showed surprising results. We chose several planners partici-

pating in the International Planning Competition (IPC) (Gerevini et al., 2006) for our ex-

perimental evaluation. Although it was not our goal to compete with planners from the IPC

by our experimental planner, the result was that our experimental planner performs better

than some of the winners of the IPC on selected problems. Moreover, one of the most suc-

cessful planners in IPC - SGPlan 5 (Hsu et al., 2006, 2007) - solved several unsolvable

problems (which indicates that the planner is not correct). Another successful planner in

IPC - SATPlan (Kautz et al., 2006, 2007) - seems to be unable to prove nonexistence of the

solution.

 On the other hand, on the standard benchmark problems our experimental planning

system performs worse than planners from IPC. Nevertheless, this is expected because our

implementation is not so well optimized and does not use any domain specific heuristic.

Moreover, it seems that many of the standard benchmark problems can be solved by guess-

ing the solution by some kind of a heuristic mechanism without search. This is allowed by

the fact that a solution represents something that may be called a witness. Having the wit-

ness for existence of the solution the planning task is finished. In contrast, this approach

cannot be used on the mentioned difficult problems. There is no such witness giving evi-

dence that the underlying box principle has no solution. Therefore exhaustive search must

be performed.

3.5.1 Experiments

For the competitive evaluation we used several problems encoding (insolvable) Dirichlet’s

box principle. The set of testing problems is described in appendix A. We compared our

version of the GraphPlan algorithm that prefers tractable class with several state-of-the-art

planners. The planners were selected according to results of the last two IPCs and accord-

ing to their availability. We were trying to evaluate our approach with respect to the win-

ning planners. However not all planners participating in the IPC are available. Finally we

selected optimal planners MaxPlan (Zhao et al., 2006, 2007), SATPlan (Kautz et al., 2006,

2007), CPT 1.0 (Vidal and Geffner, 2006, 2007), and IPP 4.1 (Koehler et al., 1997,

Koehler, 2007) and satisfying planners SGPlan 5.1 (Hsu et al., 2006, 2007) and LPG-td 1.0

(Gerevini and Serina, 2002, 2007). The results are shown in tables 3.6 and 3.7. All the tests

were performed on the same testing machine (two AMD Opteron 242 processors - 1600

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 94

MHz, with 1GB of memory under Mandriva Linux 10.2). Where source code of the planner

was available the system was newly compiled by gcc 3.4.3 with the maximum optimization

compilation options for the testing machine (-O3 -mtune=opteron). Otherwise provided

executable was used.

Instance Solvable
SGPlan

5.1
(seconds)

IPP 4.1

(seconds)

MaxPlan/
miniSat 2
(seconds)

SATPlan/
Siege 4

(seconds)

CPT 1.0

(seconds)

LPG-td
1.0

(seconds)

ujam-02_01 no N/A 0.00 + 0.00 ı 0.06 + 0.00

ujam-03_02 no t 0.01 0.01 + 0.02 ı ı + 5.00

ujam-04_03 no t 0.01 0.64 + 1.03 ı ı + 6.00

ujam-05_04 no t 0.02 83.63 + 8.58 ı ı + 9.00

ujam-06_05 no t 0.02 > 600 > 600 ı ı > 600

ujam-07_06 no t 0.04 > 600 > 600 ı ı > 600

ujam-08_07 no t 0.06 > 600 > 600 ı ı > 600

ujam-09_08 no t 0.10 > 600 > 600 ı ı > 600

ujam-10_09 no t 0.16 > 600 > 600 ı ı > 600

jam-02_01 yes r 0.00 0.00 0.26 0.17 0.03 r 0.02

jam-03_02 yes r 0.00 0.00 0.25 0.16 0.04 r 0.01

jam-04_03 yes r 0.00 0.02 0.44 0.17 0.17 r 0.02

jam-05_04 yes r 0.00 0.65 1.10 0.23 5.03 r 0.02

jam-06_05 yes r 0.01 25.8 2.77 0.92 228.75 r 0.01

jam-07_06 yes r 0.01 > 600 30.92 3.01 > 600 r 0.02

jam-08_07 yes r 0.01 > 600 228.01 14.67 > 600 r 0.02

jam-09_08 yes r 0.01 > 600 > 600 152.01 > 600 r 0.03

jam-10_09 yes r 0.01 > 600 > 600 > 600 > 600 r 0.02

holes-02_01 no t 0.00 0.00 + 0.00 ı ı 0.00

holes-03_02 no t 0.00 0.00 + 0.01 ı ı 4.00

holes-04_03 no t 0.00 0.00 + 1.04 ı ı 5.00

holes-05_04 no t 0.00 0.01 + 15.00 ı ı 5.00

holes-06_05 no t 0.01 0.12 + 270.00 ı ı 5.00

holes-07_06 no t 0.01 1.89 > 600 ı ı 6.00

holes-08_07 no t 0.01 30.34 > 600 ı ı 14.00

holes-09_08 no t 0.02 574.60 > 600 ı ı > 600

holes-10_09 no t 0.02 > 600 > 600 ı ı > 600

Table 3.6. PERFORMANCE COMPARISON OF PLANNERS ON DIFFICULT PROBLEMS - PART I. Per-

formance of several selected state-of-the-art planners on hard problems encoding Dirichlet’s box

principle. Overall solving time in seconds is shown. The symbol t indicates that a planner incor-

rectly solved an insolvable problem, the symbol r indicates non-optimal solution, the symbol +

indicates possible inaccuracy (in order of tenths of second) of the measurement, the symbol ı indi-

cates divergence of planning process (possible infinite loop). Timeout was 10 minutes for all plan-

ners and problems.

 The improvement obtained by using tractable class preference algorithm is in order of

magnitude compared to the selected state-of-the-art planners on the selected problems. Ex-

periments showed that current planners do not cope well on the selected insolvable prob-

lems. Even some planners seems to be falling into an infinite loop (SATPlan and CPT),

another planner incorrectly solved insolvable problems (SGPlan). We consider this prop-

erty as a major obstacle for practical usage of these planners (a user does not get the answer

whether the problem can be solved). Although the selected class of testing problems is

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 95

rather limited, it represents an important class of difficult problems (Urquhart, 1987) which

intrinsically require search to be answered (the solution cannot be guessed).

Instance
Our

planner
(seconds)

Speedup
ratio w.r.t
SGPlan

5.1

Speedup
ratio w.r.t

IPP 4.1

Speedup
ratio w.r.t.

MaxPlan

Speedup
ratio w.r.t.

SATPlan

Speedup
ratio w.r.t.

CPT

Speedup
ratio w.r.t.

LPG-td

ujam-02_01 0.06 N/A N/A N/A N/A 1.00 N/A

ujam-03_02 0.54 N/A 0.02 + 0.04 N/A N/A + 9.25

ujam-04_03 3.39 N/A 0.19 + 0.30 N/A N/A + 1.76

ujam-05_04 23.88 N/A 3.50 + 0.35 N/A N/A + 0.37

ujam-06_05 177.9 N/A > 3.37 > 3.37 N/A N/A > 3.37

ujam-07_06 > 600 N/A N/A N/A N/A N/A N/A

ujam-08_07 > 600 N/A N/A N/A N/A N/A N/A

ujam-09_08 > 600 N/A N/A N/A N/A N/A N/A

ujam-10_09 > 600 N/A N/A N/A N/A N/A N/A

jam-02_01 0.03 N/A N/A 8.66 5.66 1.00 N/A

jam-03_02 0.09 N/A N/A 2.77 1.77 0.44 N/A

jam-04_03 0.25 N/A 0.08 1.76 0.68 0.68 N/A

jam-05_04 0.60 N/A 1.08 1.80 0.38 8.38 N/A

jam-06_05 1.29 N/A 20.00 2.14 0.71 177.32 N/A

jam-07_06 2.48 N/A > 241.93 12.46 1.21 > 241.93 N/A

jam-08_07 4.60 N/A > 130.43 49.56 3.19 > 130.43 N/A

jam-09_08 8.77 N/A > 68.42 > 68.42 17.33 > 68.42 N/A

jam-10_09 17.05 N/A > 35.19 > 35.19 > 35.19 > 35.19 N/A

holes-02_01 0.00 N/A N/A N/A N/A N/A N/A

holes-03_02 0.02 N/A N/A + 0.50 N/A N/A 200.00

holes-04_03 0.04 N/A N/A + 26.00 N/A N/A 125.00

holes-05_04 0.12 N/A 0.08 + 125.00 N/A N/A 41.66

holes-06_05 0.27 N/A 0.44 + 1000.00 N/A N/A 18.51

holes-07_06 0.55 N/A 3.44 > 1090.00 N/A N/A 10.90

holes-08_07 1.08 N/A 28.09 > 555.55 N/A N/A 12.96

holes-09_08 2.08 N/A 276.25 > 288.46 N/A N/A > 288.46

holes-10_09 4.06 N/A > 147.78 > 147.78 N/A N/A > 147.78

Table 3.7. PERFORMANCE COMPARISON OF PLANNERS ON DIFFICULT PROBLEMS - PART II. Com-

parison of selected state-of-the-art planner with our experimental planning system on several hard

planning problems encoding Dirichlet’s box principle. The symbol N/A indicates that a comparison

cannot be made.

 In our minor experiments we also measured memory consumed by planners. While our

experimental planner together with SGPlan fit below 16MB of memory, other tested plan-

ners consume more than 100MB of memory on tested problems (approximate consumption

was IPP - 300MB, MaxPlan - 600MB, SATPlan - 400MB, CPT - 150MB, LPG-td -

700MB - even on larger problems exceeded the whole 1GB of the testing machine). Next

we did some experiments on comparison of pure performance of planners. We found that

our experimental implementation is quite uncompetitive since for example IPP is able to

examine approximately 300000 actions per second while our implementation can examine

no more than 1000 actions per second.

 These results show that the algorithm for solving the tractable class is competitive to

the state-of-the-art planners on a certain set of difficult problems. The result is especially

interesting due to the fact that we did not use any heuristics or optimization to further in-

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 96

crease the performance. Our method was implemented exactly according to the described

symbolic codes and propositions.

 The results show that structural properties of the solved problems play an important

role and if it is possible to uncover them and utilize them in the solving algorithm the per-

formance benefit may be significant. We particularly showed this in case of projection con-

sistency which is based on the structures of complete graphs encoded in the problem formu-

lation.

3.6 Summary and Conclusion

We were dealing with solving planning problems using planning graphs in this chapter. We

discovered certain inefficiencies of the standard algorithm for solving planning problems

over planning graphs - GraphPlan. Particularly we found that the standard GraphPlan solves

inefficiently the problem of finding supporting actions for a certain goal. We proposed sev-

eral methods how to improve the solving of this problem of supports.

 First, we proposed a method based on maintaining arc-consistency. We designed a

special constraint model for modeling the problem of finding supporting actions. We pro-

posed several variants of maintaining arc-consistency in the model. The performed experi-

mental evaluation of the usage of constraint model with maintaining arc-consistency with

the standard GraphPlan algorithm showed that maintaining arc-consistency improved the

solving process significantly in terms of overall solving time.

 The overall improvement obtained by the application of arc-consistency inspired us to

develop stronger consistency specially designed for the solved problem. The principal ob-

servation is that arc-consistency is a local method only (that is only the variables neighbor-

ing closely through constraints interact). So, we were interested in a more global method

which eventually takes into account structural properties of the problem.

 According to these guidelines we proposed a consistency method which we called pro-

jection consistency. The projection consistency is a consistency technique specially de-

signed to enforce certain level of consistency within the problem of finding supporting ac-

tions for a goal. This type of consistency is global, that is it takes into account the whole

problem, and it exploits the structural properties of the problem. As the useful structural

properties the technique exploits the sets of actions that form complete sub-graphs in the

graph of mutually excluded actions (the set of actions form a clique of mutexes). The im-

portant property of the set of actions from a single clique is that at most one of these actions

can be selected into the solution. This property allows us to introduce special counting that

are used to determine whether a certain action contributes enough to the solution (to the

goal) and if this is not the case the action can be ruled out. This allows us to reduce the

search space significantly.

CHAPTER 3. CONTRIBUTIONS TO PLANNING USING PLANNING GRAPHS 97

 Our experimental evaluation showed that projection consistency performs yet better

than arc-consistency of all the proposed propagation variants.

 The final result in this chapter is a so called tractable class of the problem of finding

supporting actions. We found that projection consistency can be used to solve certain in-

stances of the problem of supports completely without search. We defined the tractable

class of the problem of supports and we proposed a heuristic which transforms the general

problem of supports to the problem belonging into the tractable class.

 We again performed experiments devoted to the comparison of all the proposed meth-

ods. The result is that the version in which tractable class of the problem was preferred and

solved by the specialized algorithm performs best. Some of the planning problems were

even solved without backtracking.

 Finally, we performed competitive comparison of our method based on the tractable

class of the problem of supports with today’s state-of-the-art planners on a set of difficult

planning problems. The performed experiments showed that our method is better in terms

of overall solving time than the tested planners on selected difficult problem. However, the

set of problems in this final experiment comprise only a limited class of problems which

does not allow us to state that our method based on tractable class is better generally.

98

CHAPTER 4

CONTRIBUTIONS TO BOOLEAN

SATISFIABILITY

In the previous chapter we studied the problem of finding supporting actions for a sub-goal

in artificial intelligence planning context. This is some kind of an important sub-problem

which must be solved many times when solving AI planning problems using the planning

graphs (Blum and Furst, 1997). It was shown in the previous chapter that the problem of

finding supporting actions is NP-complete. In doing so a conversion of an instance of the

SAT problem to the instance of the problem of finding supports was used. This proof un-

covered some interesting similarities between the SAT problem and the supports problem.

The positive experience made with the method on planning problems and the observed

similarity lead us to the idea of adapting the technique of the greedy clique decomposition

to solve SAT problems.

 Results presented in this chapter were published in (Surynek, 2007f, 2007g). We adapt

here the previously developed projection consistency for Boolean satisfaction. To distin-

guish between the original projection consistency and its new adaptation we call the new

concept clique consistency.

 Boolean formula satisfaction problems and SAT solving techniques play an extremely

important role in theoretical computer science as well as in practice. The question of

whether there exist a complete polynomial time SAT solver is a key question for theoretical

computer science and is open for many years (the P vs. NP problem - Cook, 1971). On the

other hand the practical use of SAT problems and SAT solvers in real life applications is

also very intensive. Applications of SAT solving techniques range from microprocessor

verification (Velev and Bryant, 2003) and field-programmable gate array design (Nam et

al., 2002) to solving AI planning problems by translating them into Boolean formulas

(Kautz and Selman, 1992).

 An excellent performance breakthrough was done in solving SAT problems over the

past years. Thanks to new algorithms and implementation techniques focused on real life

SAT problems many of the today’s benchmark problems (Le Berre and Simon, 2005; Sinz,

CHAPTER 4. CONTRIBUTIONS TO BOOLEAN SATISFIABILITY 99

2006) are solved by state-of-the-art solvers (EÉn and SÖrensson, 2005, 2007; Fu et al.,

2007; Gershman and Strichman, 2007; Moskewicz et al., 2001; Gershman and Strichman,

2005) in time proportional to the size of the input. It seems that the difficulty of many SAT

benchmark problems consists in their size only. A lot of smaller benchmark problems are

solved in real-time by today’s state-of-the-art SAT solvers. The observation that can be

deduced upon these facts is that there is almost no chance to compete with the best SAT

solvers by a newly written SAT solver on these problems. That is why we are concentrating

on difficult instances of SAT problems only, where the word difficult means difficult for

today’s state-of-the-art SAT solvers.

 A valuable set of difficult (in the mentioned sense) problems was collected by Aloul

(2007). Although these problems are small in the length of the input formula they are diffi-

cult to be answered. The detailed discussion about hardness of these problems is given in

(Aloul et al., 2002). One of the aspects of problem difficulty is that these problems are

mostly unsatisfiable (and this fact is well hidden in the problem). The solver cannot guess a

solution using its advanced techniques and heuristics in such a case and it must really per-

form some search in order to prove that there is no solution. In the case of a positive answer

the satisfying valuation of variables serves a witness (of small size) certifying the existence

of at least one solution. If the solver obtains (possibly by guessing) a witness its task is fin-

ished. In contrast to this, there is no such small witness in the case of a negative answer so

the search must be performed.

 Our contribution to solving SAT problems consists of preprocessing and reformulating

the input Boolean formula in the CNF (conjunctive normal form - conjunction of disjunc-

tions). The result of this processing is either the answer whether the input formula is unsat-

isfiable or a new formula (hopefully simpler) with the same set of satisfying valuations as

that of the input one. If the input formula is not decided by the preprocessing phase then the

preprocessed formula is sent to the SAT solver of the user’s choice. The idea behind this

process is to make the task for the SAT solver easier by deciding the input formula within

the fast preprocessing phase or by providing an equivalent but simpler formula to the SAT

solver. Experiments showed that the solving process over the above mentioned difficult

SAT benchmarks speeds up by the order of magnitude after using our approach.

 The reformulation within the preprocessing phase itself is simple. We are viewing the

input Boolean formula in a CNF as a graph. For each literal (variable or its negation) of the

input formula we consider a vertex and for each conflict between literals we consider an

edge. Conflicting literals are those that cannot be both satisfied in a single valuation of

variables, for example positive and negative literals of the same variable are conflicting.

Generally, a set of literals of a formula is conflicting if the formula entails that at most one

of the literals can be true . To be able to use our reasoning based on the clique decomposi-

tion we need a graph with appropriately large complete sub-graphs (cliques). That is, we

need some kind of a good approximation of the sets of conflicting literals. Unfortunately

the graph arising from the above interpretation of the Boolean formula in CNF is rather

CHAPTER 4. CONTRIBUTIONS TO BOOLEAN SATISFIABILITY 100

sparse (the largest clique is of size 2). That is why we apply further inference by which we

deduce more conflicts between the literals and which allow us to introduce more edges into

the graph. We are using singleton arc-consistency (BessiÈre and Debruyne, 2005) as the

inference technique for deducing new edges.

 Having the graph constructed from the input CNF formula, a clique decomposition of

this graph is found by a greedy algorithm (we do not need an optimal clique decomposition;

we need just some of the reasonable quality). The important property of the constructed

clique decomposition is that at most one literal from each clique can be assigned the value

true . In this situation we perform certain kind of literal contribution counting to rule out

the literals that can never be true . To do this, the maximum number of satisfied clauses by

literals of each clique is calculated. Then a literal of a certain clique can be ruled out if the

literals from the other cliques together with the selected literal do not satisfy enough clauses

to satisfy the input formula.

 Although this problem reformulation seems weak it provides strong reasoning about

the dependencies among clauses of the CNF Boolean formula and about the effect of the

selection of a value for a variable on the overall satisfiability of the formula. Moreover if all

the literals are ruled out during the preprocessing phase, the input formula is obviously un-

satisfiable. Experimental evaluation showed that this happen frequently on difficult SAT

problems. For other cases a new formula in the CNF equivalent to the input formula is pro-

duced. The new formula is constructed from the original one by adding clauses that capture

all the dependencies inferred by the initial singleton arc-consistency stage and by the literal

contribution counting based on the clique decomposition.

 The chapter is organized as follows. A detailed formal description of the reformulation

of a SAT instance using the greedy clique decomposition is given in section 4.1. The sub-

sequent section 4.2 is devoted to some experimental comparison of our approach with the

existing state-of-the-art SAT solvers. We are discussing the contribution of our method

within this section too. Finally we put our work in relation to similar works in the field of

Boolean satisfiability and we propose some future research directions of the studied topic.

4.1 SAT Reformulation Using Clique Decomposition

We formally describe the details of the process of SAT problem reformulation in this sec-

tion. Let 1 1
imn i

i j jB x? ?? ® ° be the input Boolean formula in CNF where i

jx is a literal (vari-

able or its negation) for all possible i and j . A sub-formula 1
im i

j jx?° of the input formula B

for every possible i is called a clause. The thi clause of the formula B will be denoted as

iC in the following paragraphs. As it was mentioned in the introduction, the basic idea of

the SAT problem reformulation consists in viewing the input formula as an undirected

graph in which the internal structure of the formula is captured in some way. To be more

CHAPTER 4. CONTRIBUTIONS TO BOOLEAN SATISFIABILITY 101

specific, the graph will capture the pairs of conflicting literals and it will be constructed in

several stages as the following section shows.

4.1.1 Inference of Conflicting Literals

Let us start by the construction of an undirected graph 1 1 1(,)B B BG V E? which will represent

trivially conflicting literals in the given CNF formula B . The graph will be called a graph

of trivial conflicts. The graph 1

BG will then undergo some further inference process by

which the additional conflicts will be inferred. We will denote the resulting undirected

graph as 2 2 2(,)B B BG V E? and call it an intermediate graph of conflicts.

 The construction of the undirected graph 1

BG is simple. A vertex is introduced into the

graph 1

BG for each literal occurring in the formula B , that is 1

1 1
{ }in m i

B ji j
V x? ?? I I (notice that

1

BV is typically smaller than the length of the formula, since literals may occur many times

in the formula while only once in the graph). The construction of the set of edges 1

BE is also

straightforward. An edge { , }i k

j lx x is introduced into the graph 1

BG if the literals i

jx and k

lx

are trivially conflicting, that is if one is a variable v and the other is v¬ for some Boolean

variable v . The graph 1

BG is completed by performing the above step for all possible pairs

of conflicting literals. The interpretation of the graph of conflicts is that if a literal corre-

sponding to a vertex is selected to be assigned the value true all literals corresponding to

the neighboring vertices must be assigned the value false .

 An example graph resulting from the described process over a selected benchmark

problem is shown in the left part of figure 4.1. The resulting graph is visibly sparse, since

there are edges only between the literals of the same variable. Hence it is not a good start-

ing point for our method and a further inference mechanism for discovering more conflict-

ing pairs of literals (more edges for the graph) must be applied. This further inference

mechanism takes the already constructed graph 1

BG and augments it by adding new edges.

The result of this stage is an intermediate graph of conflicts 2

BG .

 The process of construction of graph 2

BG exploits techniques known from standard

SAT resolution approaches and from constraint programming (Dechter, 2003) - unit propa-

gation (Dowling and Gallier, 1984; Zhang and Stickel, 1996), arc-consistency (AC)

(Mackworth, 1977) and singleton arc-consistency (SAC) (BessiÈre and Debruyne, 2005).

Before describing the construction of the graph 2

BG let us recall these notions. We modify

the above concepts slightly for the SAT domain to prepare them for our purposes. The fol-

lowing definitions assume the input formula B in CNF and a corresponding graph of con-

flicts BG (for example the graph 1

BG expressing the trivial conflicts).

Definition 4.1 (ARC-CONSISTENCY IN SAT INSTANCE W.R.T. THE GRAPH OF CONFLICTS).

Consider two clauses iC and kC for , {1,2, , }i k nŒ @ , i k” of the formula B . A literal i

jx

({1,2, , }ij mŒ @) from the clause iC is supported by the clause kC with respect to the

CHAPTER 4. CONTRIBUTIONS TO BOOLEAN SATISFIABILITY 102

given graph of conflicts BG if there exists a literal k

lx ({1,2, , }kl mŒ @) from the clause kC ,

such that the literals i

jx and k

lx are not in a conflict with respect to the graph BG (not con-

nected by an edge). An ordered pair of clauses (,)i kC C of the formula B is called an arc in

this context. An arc (,)i kC C for some , {1,2, , }i k nŒ @ is consistent (or arc-consistent) with

respect to the graph of conflicts BG if all the literals of the clause iC are supported by the

clause kC with respect to the graph of conflicts BG . The formula B is called arc-consistent

with respect to the graph of conflicts BG if all the arcs (,)i kC C for all , 1,2, ,i k n? @ are

arc-consistent with respect to the graph of conflicts BG . ゴ

 Let us note that our definition is based on a dual view of the satisfaction problem. That

is, we use the clauses of the formula as the CSP variables (Dechter, 2003) instead of the

original Boolean variables. Having these CSP variables, (CSP) constraints necessary for the

definition of arc-consistency arise naturally.

 The reason for the definition of arc-consistency is that the literals which are not sup-

ported according to the definition cannot be assigned the value true (this means that the

corresponding variable cannot be assigned the value false in the case of a negative literal).

So the solver can rule out such literals from further attempts to assign them the value true ,

which may reduce the size of the search space. Notice that the definition has the graph of

conflicts BG as a parameter. It is possible to put any correct graph of conflicts as a parame-

ter of this definition, whereas correct means, that if { , }y z is the edge of the graph then

B y zµ ” must be a tautology. This is obviously true for the graph of trivial conflicts 1

BG .

Notice also that if we use the graph of trivial conflicts 1

BG the definition becomes identical

to unit propagation (Dowling and Gallier, 1984; Zhang and Stickel, 1996).

 Having the Boolean formula B the question is how to make it arc-consistent with re-

spect to the given graph of conflicts. For this purpose we adopt techniques developed in

constraint programming and by SAT community, namely the arc-consistency enforcing

algorithms (Dechter, 2003; Mackworth, 1977) and unit propagation (Dowling and Gallier,

1984; Zhang and Stickel, 1996). There is a great variety of such algorithms; however their

common feature is the search for supports for every value (literal) which is suspected of not

being supported. The main difference among these algorithms is the efficiency of the search

for supports. If an unsupported literal is detected it is ruled out. Ruling out an unsupported

literal may cause that some other literal loses its only support. This chain-like propagation

of changes continues until a stable state is reached. For purposes of the SAT domain this

propagation process is usually augmented by an additional simplification rule. If the consis-

tency enforcing algorithm detects that within some clause there is only one literal that can

be selected to be true , it is fixed to value true and the corresponding clause is cut out from

further reasoning (this is exactly the simplification rule from unit propagation).

 Unfortunately, the defined arc-consistency over Boolean formulas in the CNF form is

too weak to infer significantly more conflicts than those already present in the graph of triv-

ial conflicts. Therefore we need to make the consistency stronger. Perhaps the simplest way

CHAPTER 4. CONTRIBUTIONS TO BOOLEAN SATISFIABILITY 103

to do this is to make the selected consistency technique singleton (BessiÈre and Debruyne,

2005). The following definition again assumes the Boolean formula B and the correspond-

ing graph of conflicts BG (again the graph of trivial conflicts 1

BG can be used).

Definition 4.2 (SINGLETON ARC-CONSISTENCY IN A SAT INSTANCE W.R.T. THE GRAPH OF

CONFLICTS). A literal k

lx ({1,2, , }kl mŒ @) from a clause kC for {1,2, , }k nŒ @ of the for-

mula B is singleton arc-consistent with respect to the given graph of conflicts BG if the

formula obtained from B by replacing the clause kC by the literal k

lx (the resulting for-

mula is 1

1 1 1 1() ()i im mk i k n i

i j j l i k j jx x x/

? ? ? - ?® ° ® ® ® °) is arc-consistent with respect to the graph of

conflicts BG . ゴ

 Unsupported literals in the formula modified by replacing the clause kC by the literal
k

lx are in conflict with the literal k

lx . This is quite intuitive, the selection of the literal k

lx to

be assigned the value true rules out some other literals. Hence these literals are in conflict

with the selected literal k

lx . Having singleton arc-consistency we are ready to infer new

edges for the graph of conflicts.

Figure 4.1. GRAPH OF TRIVIAL CONFLICTS AND INTERMEDIATE GRAPH OF CONFLICTS. The left

part of the figure shows a graph of trivial conflicts for the SAT benchmark problem pigeon-hole

principle number 6 (hole06.cnf). Vertices represents literals, edges are between pairs of positive and

negative literals of the same variable. The right part of the figure shows an intermediate graph of

conflicts inferred from the original graph of the left by singleton arc-consistency. The graph con-

tains edges from the original graph plus the inferred edges. Six non-trivial cliques each containing

seven vertices are clearly visible and can be found by a simple greedy algorithm.

 The intermediate graph of conflicts 2

BG is constructed from the graph of trivial con-

flicts 1

BG in the following way. Initially the graph 2

BG is identical to the graph 1

BG , that is

we start with the initialization 2 1

B BV V« and 2 1

B BE E« . Then for every literal 2

By VŒ single-

ton arc-consistency with respect to the graph of conflicts 1

BG is enforced. If the consistency

discovers some unsupported literals, say literals 1 2, , , mz z z@ , edges { , }iy z for all

CHAPTER 4. CONTRIBUTIONS TO BOOLEAN SATISFIABILITY 104

1,2, ,i m? @ are added into the set of edges 2

BE . Enforcing singleton arc-consistency has

the worst case time complexity of 2 3()O B k m if we use AC-3 algorithm as the core of con-

sistency enforcing procedure where m is the maximum size of the clause of the formula

(that is, 1,2, ,maxk n km m??
@

). We need to enforce arc-consistency by the AC-3 algorithm at

most B times where B is the size of the formula B . The AC-3 algorithm itself has the

worst case time complexity of 2 3()O k m .

 An example of the resulting graph of conflicts is shown in the right part of the figure

4.1. It is constructed from the original graph of trivial conflicts from the left part of the fig-

ure 4.1. The cliques in the graph are clearly visible.

 The described process of inference of conflicting literals is relatively generic. Both

different initial graphs of trivial conflicts as well as consistency techniques different from

arc-consistency and singleton arc-consistency for inference of new edges can be used. Both

entities, graphs and consistency techniques, may be considered as parameters of the

method.

4.1.2 Clique Decomposition and Literal Contribution Counting

To deduce yet more information from the graph of conflicts 2 2 2(,)B B BG V E? a clique decom-

position of the graph is constructed. Formally, a partition of vertices
2

1 2B sV K K K? ̌ ̌ ̌@ such that each set of vertices iK for 1,2, ,i s? @ induces a clique

over the set of edges 2

BE and i jK K̨ ?¸ for all , 1,2, ,i j s i j? ® ”@ . Let
iKE denotes the

set of edges induced by the clique iK , let RE denotes the set of edges outside the clique

decomposition, that is 2

1 i

s

R B Ki
E E E?? /I . The inference method based on literal contribu-

tion counting performs best if cliques of the decomposition are large. The better the quality

of the decomposition is the stronger results are produced by the inference method. How-

ever, the problem of finding the optimal clique decomposition with respect to the above

criterion is NP-complete (Golumbic, 1980). Experiments showed that the simple greedy

algorithm can find a clique decomposition of acceptable quality (with respect to clique sizes

and the number of edges outside the decomposition - see algorithm 3.5).

 The greedy algorithm performed over the graph from the right part of the figure 4.1

finds the clique decomposition consisting of six non-trivial cliques of size seven (there are

also trivial cliques consisting of a single vertex). The fact that at most one literal from a

clique can be selected to be assigned the value true is used in our inference method.

 For the following definitions we assume a Boolean formula 1 1
imn i

i j jB x? ?? ® ° and the

corresponding clique decomposition 2

1 2B sV K K K? ̌ ̌ ̌@ of the intermediate graph of

conflicts 2 2 2(,)B B BG V E? . Next let {1,2, , }I nØ @ be a set of indexes of some clauses of the

formula B . The set I defines a sub-formula IB of the formula B , where I i I iB CŒ? ® .

CHAPTER 4. CONTRIBUTIONS TO BOOLEAN SATISFIABILITY 105

Definition 4.3 (LITERAL CONTRIBUTION). A contribution of a literal y to the sub-formula

IB is defined as the number of clauses of IB in which the literal y occurs and it is denoted

as (,)c y I . ゴ

Definition 4.4 (CLIQUE CONTRIBUTION). A contribution of a clique 1 2{ , , , }sK K K KŒ @ to

the sub-formula IB is defined as max ((,))y K c y IŒ and it is denoted as (,)c K I . ゴ

 The concept of clique contribution is helpful when we are trying to decide whether it is

possible to satisfy the sub-formula IB using the literals from the clique decomposition. If

for instance (,)i I ic K I IŒ >Â holds then the sub-formula IB cannot be satisfied and hence

also B cannot be satisfied. Moreover, we can handle a more general case as it is described

in the following definitions.

Definition 4.5 (CLIQUE-CONSISTENT LITERAL). A literal iy KŒ for {1,2, , }i nŒ @ is said

to be clique-consistent with respect to the sub-formula IB if , (,)j I j i jc K IŒ ”Â

(,)I c y I‡ / . ゴ

Definition 4.6 (CLIQUE-CONSISTENT FORMULA). A formula B is clique-consistent with

respect to the sub-formula IB if all the literals of the formula B are clique-consistent with

respect to IB . ゴ

 A clique-inconsistent literal with respect to some sub-formula of B cannot be selected

to be assigned the value true . Thus such literals can be ruled out from further reasoning.

Proposition 4.1 (CORRECTNESS OF CLIQUE-CONSISTENCY). Clique-consistency with respect

to a sub-formula IB is correct. That is, the set of solutions of the formula B is the same as

the set of solutions of the B| which we obtain from B by enforcing clique-consistency with

respect to a sub-formula IB . ﾐ

Proof. We show that an inconsistent literal cannot be assigned the value true . Let iy KŒ

be an inconsistent literal for some {1,2, , }i sŒ @ . That is , (,)j I j i jc K IŒ ”Â (,)I c y I> /

holds. After selection of y there remain (,)I c y I/ clauses in IB to be satisfied. However,

by selecting at most one literal from the remaining cliques we satisfy at most

, (,)j I j i jc K IŒ ”Â clauses in IB . ﾐ

 The remaining question is how to select the described sub-formulas IB of B which

are used for computation of the clique-inconsistent literals. This selection is crucial for the

strength of the proposed clique-consistency. It is clear that we need to rule out as many as

possible inconsistent literals. As it is impossible to compute the defined consistency with

respect to all such sub-formulas of B , because there are too many sub-formulas, we need to

CHAPTER 4. CONTRIBUTIONS TO BOOLEAN SATISFIABILITY 106

select a subset of them carefully. We use sub-formulas
r rI i I iB CŒ? ® of B , where

{ {1,2, , } | }r iI i n m r? Œ ?@ for all possible rŒ’ for which
rIB is not empty (we suppose

that a clause of B does not contain an individual literal more than once). Let us note that

we do not know whether this selection is the best possible.

Proposition 4.2 (COMPLEXITY OF CLIQUE-CONSISTENCY ENFORCING ALGORITHM). There

exists a polynomial time algorithm for enforcing clique-consistency with respect to a

sub-formula of a given input formula. ﾐ

Proof. We use a slight adaptation of algorithm 3.6. Its time complexity is ()IO B B which

is
2

()O B , where B denotes the size of the formula. ﾐ

 Having such an algorithm it is possible to extend it for multiple sub-formulas
rIB sim-

ply by running the algorithm for each rŒ’ for which
rIB is non-empty. Since r is linear

in size of the input the resulting algorithm is also polynomial.

4.1.3 Output of the Reformulation Process

At this point everything is ready to introduce the final step of our reformulation method.

We will be constructing a modified formula d which is initially set to be identical to B .

We will further preprocess B by the singleton version of the defined clique-consistency.

Conflicts inferred by this further preprocessing will be stored in a new graph of conflicts
3 3 3(,)B B BG V E? which is initially set to be the same as the graph 2

BG . The graph 3

BG will be

called a final graph of conflicts in this context.

 Singleton clique-consistency is computed in the following way. For each literal y of

the input formula B we enforce clique-consistency for the formula obtained from B by

selecting a literal y to be assigned the value true . More precisely, clauses containing y

are removed and the negation of the literal y is removed from remaining clauses of B (re-

moval of a literal i

kx from the clause 1
im i

i j jC x?? ° of the formula B is defined as replace-

ment of the clause iC by the clause 1

1 1() ()imk i i

j j j k jx x/

? ? -° ° °). The clique-consistency is then

enforced for the resulting formula. Some literals may be found inconsistent during consis-

tency enforcing. These literals are in conflict with the literal y . If for some clause all its

literals are found inconsistent with y then the literal y cannot be selected to be true and a

new clause y¬ is added to d (yd d« ®¬). Otherwise the conflicting literals are stored

in the graph of conflicts 3

BG as new edges (that is, if literal y is in conflict with literal z ,

the edge { , }y z is added to 3

BG). The graph of conflicts 3

BG resulting from processing the

intermediate graph of conflicts 2

BG for the SAT benchmark problem from figure 4.1 is

shown in figure 4.2.

CHAPTER 4. CONTRIBUTIONS TO BOOLEAN SATISFIABILITY 107

 If for some clause it is discovered by the clique-consistency that none of its literals can

be assigned the value true the process terminates with the answer that the formula B can-

not be satisfied. This outcome is ensured by the correctness of the method. Our experiments

showed that this situation is the most successful case, because an answer to the satisfiability

problem is obtained in polynomial time without further expensive search for a solution.

 If the process does not terminate with the negative answer then all the edges of the

graph of conflicts 3

BG are translated into new clauses of the formula d . That is, for every

edge 3{ , } By z EŒ we add a clause y z¬ °¬ into the formula d (()y zd d« ® ¬ °¬) (it is

possible to omit edges 3{ , } Bx x E¬ Œ). The resulting formula d is equivalent with the origi-

nal input formula B . Notice that the conflicts inferred by the preceding reformulation

stages are also reflected in the formula d , since the graph 3

BG subsumes the preceding

graphs of conflicts 1

BG and 2

BG . The formula d is finally sent to the SAT solver of the

user’s choice.

Figure 4.2. FINAL GRAPH OF CONFLICTS. A final graph of conflicts for the SAT benchmark prob-

lem pigeon-hole principle number 6 (hole06.cnf). The graph contains edges from the intermediate

graph of conflicts from figure 4.1 plus the edges inferred by singleton clique-consistency.

4.2 Experimental Results

We chose three state-of-the-art SAT solvers for comparison with our reformulation method.

The SAT solvers of our choice were zChaff (Fu et al., 2007; Moskewicz et al., 2001), Hai-

CHAPTER 4. CONTRIBUTIONS TO BOOLEAN SATISFIABILITY 108

faSAT (Gershman and Strichman, 2005, 2007) and MiniSAT (a version with SATElite pre-

processing integrated) - (EÉn and SÖrensson, 2005, 2007) - (we used the latest available

versions to the time of writing this thesis). Our choice was guided by the results of several

last SAT competitions - SAT Competition 2005 and SAT Race 2006 (Le Berre and Simon,

2005; Sinz, 2006) in which these solvers belonged to the winners. The secondary guidance

was that complete source code (in C/C++) for all these solvers is available on web pages of

their authors. As we implemented our method in C++ too, this fact allowed us to compile

all source codes by the same compiler with the same optimization options which guarantees

more equitable conditions for the comparison (a complete source code implementing our

method in C++ is available on the attached removable medium). All the tests were run on

the machine with two AMD Opteron 242 processors (1600 MHz) with 1GB of memory

under Mandriva Linux 10.2. Our method as well as the listed SAT solvers were compiled

by the gcc compiler version 3.4.3 with options provided maximum optimization for the

target testing machine (-O3 -mtune=opteron). Although the testing machine has two proc-

essors no parallel processing was used.

4.2.1 Difficult SAT Instances Selected for Experiments

The testing set consisted of several difficult unsatisfiable SAT instances. This set of

benchmark problems was collected by Aloul (Aloul, 2007) and it is provided at his research

web page. The details about hardness and construction of these instances are discussed in

(Aloul et al., 2002), but let us briefly introduce the problems here too.

Pigeon Holes Instances. [holes] This is a standard SAT benchmark encoding the pigeon

hole principle problem. The problem asks whether it is possible to place 1n - pigeons into

n holes without two pigeons being in the same hole. The problem is obviously unsatisfi-

able. We used seven instances of this problem ranging from 6 to 12 holes. ズ

Randomized Urquhart Instances. [urq] This set of benchmark problems contains several

artificially constructed hard unsatisfiable instances. More details about these problems are

provided in (Urquhart, 1987). In addition, the problems were randomized for our testing

purposes. We used four instances of the problems of this type. ズ

Field Programmable Gate Array Routing Instances. [fpga, chnl] This benchmark prob-

lem resembles the pigeon holes problem. The question is whether it is possible to route n

connections through m tracks provided by the field programmable gate array component. If

n m@ the problem cannot be satisfied. We used sixteen unsatisfiable instances of this prob-

lem for various numbers of required routes and connections. Two different encodings of the

CHAPTER 4. CONTRIBUTIONS TO BOOLEAN SATISFIABILITY 109

problem are used - denoted fpga and chnl. More details about the encoding of this problem

are provided in (Nam et al., 2002). ズ

4.2.2 Effect of Problem Reformulation

For each benchmark SAT instance we measured the overall time necessary to decide its

satisfiability. The results are shown in table 4.1 and table 4.2. The speedup obtained by us-

ing our method compared to tested SAT solvers is also shown.

Instance Satisfiable
Number of vari-
ables / number

of clauses

MiniSAT
(seconds)

zChaff
(seconds)

HaifaSAT
(second)

chnl10_11 unsat 220/1122 34.30 7.54 > 600.00

chnl10_12 unsat 240/1344 101.81 9.11 > 600.00

chnl10_13 unsat 260/1586 200.30 11.47 > 600.00

chnl11_12 unsat 264/1476 > 600.00 33.49 > 600.00

chnl11_13 unsat 286/1472 > 600.00 187.08 > 600.00

chnl11_20 unsat 440/4220 > 600.00 329.57 > 600.00

urq3_5 unsat 46/470 95.04 > 600.00 > 600.00

urq4_5 unsat 74/694 > 600.00 > 600.00 > 600.00

urq5_5 unsat 121/1210 > 600.00 > 600.00 > 600.00

urq6_5 unsat 180/1756 > 600.00 > 600.00 > 600.00

hole6 unsat 42/133 0.01 0.01 0.01

hole7 unsat 56/204 0.09 0.04 0.02

hole8 unsat 72/297 0.49 0.23 0.94

hole9 unsat 90/415 3.64 1.46 478.16

hole10 unsat 110/561 39.24 7.53 > 600.00

hole11 unsat 132/738 > 600.00 32.36 > 600.00

hole12 unsat 156/949 > 600.00 372.18 > 600.00

fpga10_11 unsat 220/1122 44.77 12.58 > 600.00

fpga10_12 unsat 240/1344 119.26 33.82 > 600.00

fpga10_13 unsat 260/1586 362.24 76.15 > 600.00

fpga10_15 unsat 300/2130 > 600.00 274.84 > 600.00

fpga10_20 unsat 400/3840 > 600.00 546.00 > 600.00

fpga11_12 unsat 264/1476 > 600.00 55.70 > 600.00

fpga11_13 unsat 286/1742 > 600.00 237.54 > 600.00

fpga11_14 unsat 308/2030 > 600.00 > 600.00 > 600.00

fpga11_15 unsat 330/2340 > 600.00 > 600.00 > 600.00

fpga11_20 unsat 440/4220 > 600.00 > 600.00 > 600.00

Table 4.1. EXPERIMENTAL COMPARISON OF SAT SOLVERS - PART I. Experimental comparison of

three SAT solvers over the selected difficult benchmark SAT instances. We used the timeout of

10.0 minutes (600.00 seconds) for all the tests.

 As it is evident from our experiments the proposed method brings significant im-

provement in terms of time necessary for the decision of the selected difficult benchmark

problems (Pigeon holes, FPGA routing instances). The improvements are in the order of

magnitude in comparison to all tested state-of-the-art SAT solvers. It seems that the im-

provement on selected benchmarks is exponential with respect to the best tested SAT

solver. The conclusion is that there is still a space to improve SAT solvers. However, the

CHAPTER 4. CONTRIBUTIONS TO BOOLEAN SATISFIABILITY 110

domain of the improvement is more likely in the difficult instances of SAT problems which

are typically unsatisfiable.

Instance
Decided by

preprocessing
Cliques

(count x size)
Decision
(seconds)

Speedup
ratio w.r.t.
MiniSAT

Speedup
ratio w.r.t
zChaff

Speedup
ratio w.r.t
HaifaSAT

chnl10_11 yes 20 x 11 0.43 79.76 17.53 > 1395.34

chnl10_12 yes 20 x 12 0.60 169.68 8.51 > 1000.00

chnl10_13 yes 20 x 13 0.78 256.79 14.70 > 769.23

chnl11_12 yes 22 x 12 0.70 > 857.14 47.84 > 857.14

chnl11_13 yes 22 x 13 0.92 > 652.17 203.34 > 652.17

chnl11_20 yes 22 x 20 5.74 > 104.42 57.41 > 104.42

urq3_5 no 47 x 2 130.15 0.73 N/A N/A

urq4_5 no 73 x 2 > 600.00 N/A N/A N/A

urq5_5 no 120 x 2 > 600.00 N/A N/A N/A

urq6_5 no 179 x 2 > 600.00 N/A N/A N/A

hole6 yes 6 x 7 0.01 1.0 1.0 1.0

hole7 yes 7 x 8 0.02 4.5 2.0 1.0

hole8 yes 8 x 9 0.04 12.25 5.75 23.5

hole9 yes 9 x 10 0.08 45.5 18.25 5977.00

hole10 yes 10 x 11 0.13 301.84 57.92 > 4615.38

hole11 yes 11 x 12 0.20 > 3000.00 161.8 > 3000.00

hole12 yes 12 x 13 0.30 > 2000.00 1240.6 > 2000.00

fpga10_11 yes 20 x 11 0.46 97.32 27.34 > 1304.34

fpga10_12 yes 20 x 12 0.64 186.34 52.84 > 937.50

fpga10_13 yes 20 x 13 0.84 431.23 90.65 > 714.28

fpga10_15 yes 20 x 15 1.39 > 431.65 197.72 > 431.65

fpga10_20 yes 20 x 20 4.72 > 127.11 115.67 > 127.11

fpga11_12 yes 22 x 12 0.76 > 789.47 73.28 > 789.47

fpga11_13 yes 22 x 13 1.01 > 594.05 235.18 > 594.05

fpga11_14 yes 22 x 14 1.30 > 461.53 > 461.53 > 461.53

fpga11_15 yes 22 x 15 1.67 > 359.28 > 359.28 > 359.28

fpga11_20 yes 22 x 20 5.96 > 100.67 > 100.67 > 100.67

Table 4.2. EXPERIMENTAL COMPARISON OF SAT SOLVERS - PART II. Experimental comparison of

three SAT solvers with the method using clique-consistency over the selected difficult benchmark

SAT instances. Again timeout of 10.0 minutes (600.00 seconds) for all the tests was used.

 It is also evident that the clique-consistency is not an universal method for difficult

SAT instances. There is no improvement on instances where no cliques of reasonable size

are found (randomized Urquhart instances). The interesting feature of the tested SAT in-

stances is that they contain non-trivial cliques of the same size (there are also trivial cliques

consisting of a single literal). This may be accounted to the symmetrical formulation of the

problems.

 In our further experiments we also performed the comparison with the RSAT solver

(Pipatsrisawat and Darwiche, 2007). The results were very similar in the sense that the

solver does not cope well with these problems. Unfortunately the solver is provided without

the source code so we do not consider this test as a relevant one. Another SAT solver which

worth consideration for our tests (achieved good results in the SAT Race competition (Sinz,

2006)) - Eureka (Nadel, 2007) - is not provided (neither source code nor executables are

provided).

CHAPTER 4. CONTRIBUTIONS TO BOOLEAN SATISFIABILITY 111

 We also tested our approach on SAT instances where the preprocessing stage does not

terminate by the answer that the given SAT instance cannot be satisfied. This is the situa-

tion when the problem is not decided by the preprocessing stage and a new equivalent SAT

instance is produced and sent to the solver. In such situations our method does not provide

competitive results. The resulting formula is typically solved faster by the SAT solver but

the preprocessing stage takes too much time. The unaffordable time consumption in the

preprocessing stage is caused by extensive propagation performed by the method by which

huge numbers of conflicts are inferred. It seems that on these problems the proposed ap-

proach is too strong and represents an overhead only. The numbers of inferred conflicts is

not proportional to the time saved in the search of the solution stage. However, this disad-

vantage may be overcome firstly by a better implementation of our technique (our current

implementation is an experimental prototype and the quality of our code is uncompetitive

with the quality of code of the tested SAT solvers) and secondly by making the propagation

less extensive on problems with many conflicts (that is, not to infer all the conflicts).

 The question may now be what to do with the method at the current stage of imple-

mentation when we have a new problem of unknown difficulty. That is, shall we use the

method or the SAT solver of our choice directly? Technically we can answer this question

as follows. We can run both the preprocessing method and the SAT solver in parallel. On a

machine with more than one processor we obtain an exponential speedup (the method suc-

ceeds) or no improvement. On a machine with only one processor we may obtain an expo-

nential speedup at the expense of constant slowdown. However, the ultimate goal of our

implementing efforts is to answer this question automatically within the preprocessing

phase.

4.3 Related Works

Our method for SAT problem reformulation was originally proposed for solving planning

problems using planning graphs. Clique-consistency described in this chapter is an adapta-

tion of projection consistency for the SAT domain.

 The idea of exploiting structural information for solving problems is not new. There is

a lot of works concerning this topic. Many of these works are dealing with methods for bre-

aking symmetries (Aloul et al., 2002; Benhamou and Sais, 1994; Crawford et al., 1996).

We share the goal with these methods, which is to reduce the search space. However, we

differ in the way how we are doing this. We are rather trying to infer what would happen if

the search over the problem proceeds in some way. And if that direction seems to be un-

promising the corresponding part of the search space is skipped. Symmetry breaking meth-

ods are rather trying not to do the same work twice (or more times) by a clever transforma-

tion of the original problem.

CHAPTER 4. CONTRIBUTIONS TO BOOLEAN SATISFIABILITY 112

 Our work was much influenced by the paper of Aloul, Markov and Sakallah (2002).

We are studying the same set of difficult SAT problems. Nevertheless, it seems that our

method is simpler to implement and more effective on the set of selected testing problems.

 Another original approach to solving SAT problems is to exploit integer programming

(IP) techniques. An interesting combination of IP and SAT techniques is given in (Li et al.,

2004). The proposed IP approach is especially successful on difficult SAT problems.

 Finally let us note that the detection of cliques in the structure of the problem is not

new. A work dealing with a consistency based on cliques of inequalities was published by

Sqalli and Freuder (1996). They use information about cliques to reach more global reason-

ing about the problem. Another work dealing with the similar ideas is (Frisch et al., 2002)

in which the authors use a graph structure of the problem to transform it into another for-

mulation based on global constraints, which provide stronger propagation than the original

formulation.

4.4 Summary and Conclusion

We proposed a method for preprocessing difficult (unsatisfiable) SAT instances based on

the greedy clique decomposition of the transformed input CNF formula. Although the

method is not universal it provides improvements in the order of magnitude compared to

the state-of-the-art SAT solvers on tested SAT instances. Moreover, our method can be

easily integrated into a SAT solver (new or existing) which may significantly improve its

performance on difficult SAT instances.

 For future we plan to further tune the method to be able to cope better with the prob-

lems having few edges in the graphs of conflicts (for example Urquhart instances). This

may be done by some alternative consistency technique instead of singleton

arc-consistency. We also plan to investigate the possibility to make the preprocessing itera-

tive. That is to further preprocess the formula resulting from the previous preprocessing.

 Another issue worth a deeper study is how the cliques of the clique decomposition

should look like in order to our method can succeed. Our further experiments showed that

better results can be obtained by using a clique decomposition where sizes of the individual

cliques differ little (having several cliques of the similar size is better than having one large

clique and several much smaller cliques).

 We also plan to write an experimental SAT solver which would utilize the clique-con-

sistency during search. This may be useful for early determining that a certain part of the

search space does not contain a solution.

 Finally, an interesting research direction is some kind of a combination of existing

symmetry breaking methods and the proposed clique-consistency.

113

CHAPTER 5

CONCLUSIONS

AND FUTURE WORKS

This thesis represents contribution to the areas of solving planning problems and solving

Boolean satisfiability problems. The main results of this thesis are the improvements of the

process of solving problem of supporting actions for a goal within the context of GraphPlan

algorithm and special preprocessing method for solving Boolean satisfiability problems.

 We gradually describe several variants of solving the problem of finding supporting

actions for a goal within the GraphPlan algorithm. Solving of this problem is one of the

weakest points of the whole algorithm. The hypothesis was that the improvement of this

weak point may improve the algorithm as a whole. First, we proposed to model the problem

as a constraint satisfaction problem and to maintain arc-consistency throughout the process

of search for solution of the problem of finding supports. Several variants of propagation of

arc-consistency were proposed. The GraphPlan algorithm enhanced by every variant of

propagation of arc-consistency proved to be better than the original version in all the major

measurable characteristics. The improvements were significant in terms of the overall solv-

ing time, in the number of constraint checks, and in the number of backtracks. These im-

provements were showed using experimental evaluation.

 The promising results obtained by maintaining arc-consistency served as an inspiration

for developing a specialized global consistency. This consistency exploits some structural

properties of the problem of supports. Arc-consistency performs propagations only in a

local neighborhood of currently explored part of the problem which seems to be weak. The

idea was therefore to develop global consistency that would take into account the whole

problem at once. These ideas put into reality are represented by the definition of projection

consistency. This is a special type of consistency which exploits the structure of graphical

representation of the problem of finding supporting actions. Namely, the consistency ex-

ploits the decomposition of the graph of the problem into several complete graphs - cliques.

The knowledge of cliques decomposition allows us to use special counting arguments to

rule out the actions from further considerations. It was theoretically shown that this ap-

CHAPTER 5. CONCLUSION AND FUTURE WORKS 114

proach can be stronger than local consistency such as arc-consistency. The performed ex-

perimental evaluation showed significant improvements compared to the best version that

uses arc-consistency. The improvements were in the overall solving time as well as in other

characteristics.

 The final enhancement of the consistencies for solving the problem of finding support-

ing actions was the definition of a so called tractable class of the problem. It is in fact the

class of problems defined using the proposed projection consistency that can be solved in

polynomial time. This tractable class together with the heuristics that transform the general

problem (not belonging to the class) to the problem belonging to the class forms the best

performing algorithmic technique for solving the problem. The experimental evaluation

showed that some planning problems can be solved even without backtracking using this

enhancement within the GraphPlan algorithm. Compared to the previously developed tech-

niques for solving the problem, the tractable class brings further improvements in compari-

son to the version which uses pure projection consistency.

 The results achieved in solving Boolean satisfiability problems are represented by the

special preprocessing technique which can be used to simplify the problems before they are

passed to the general solving system. The success of exploiting the structural properties of

the problem by projection consistency was an inspiration for finding similar structures in

the Boolean satisfaction problems. The situation here was complicated by the fact that raw

Boolean satisfaction problem lacks structures when it is interpreted graphically. Therefore

several inference stages were proposed to make the structures visible and allow their detec-

tion and usage. The resulting consistency technique was called clique consistency since it

again exploits cliques of the graphical interpretation of the problem. The clique consistency

is in fact adaptation of projection consistency for Boolean satisfaction problems. The ex-

perimental evaluation showed that usage of clique consistency can outperform today’s best

Boolean satisfaction solvers (SAT solvers) on the selected set of difficult problems.

 Despite the above described progress there is still a work for future. First, there is a

possibility that projection consistency can be extended from a single layer of the planning

graph on the whole planning graph during the search. Some preliminary experiments show

a significant reduction of the number of backtracks but the overall solving time did not im-

prove or yet worsened. The reasons were definitely in the implementation since the effec-

tive implementation of this algorithm requires non-trivial efforts. These preliminary tests

were done with an implementation that extensively performs inefficient re-computations.

 The next interesting research relates to the definition of projection consistency. We

found that the consistency can be made stronger by more careful calculation of counting

arguments. To be more precise, it is possible to compute counting argument as a maximum

network flow which is more accurate than calculating ordinary sum (sum relaxes the prob-

lem more). Computing counting arguments as maximum network flows still relaxes the

problem but not that much as the original version. The open question that remains is what

an improvement can be gained by using this more accurate computation.

115

BIBLIOGRAPHY

Harold Abelson, Gerald Jay Sussman, and Julie Sussman (1985). Structure and Interpre-

tation of Computer Programs. McGraw-Hill Book Company.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin (1993). Network Flows:

Theory, Algorithms and Applications. Prentice Hall.

Mitch Ai-Chang, John Bresina, Leonard Charest, Jennifer Hsu, Ari K. JÓnsson, Bob

Kanefsky, Pierre Maldague, Paul Morris, Kanna Rajan, and Jeffrey Yglesias (2004).

MAPGEN: Mixed-Initiative Planning and Scheduling for the Mars Exploration Rover Mis-

sion. IEEE Intelligent Systems, Volume 19(1), 8-12, IEEE Press.

James F. Allen (1983). Maintaining Knowledge about Temporal Intervals. Communica-

tions of the ACM (CACM), Volume 26 (11), 832-843, ACM Press.

James F. Allen and Johannes A. G. M. Koomen (1983). Planning Using a Temporal World

Model. In Proceedings of the 8th International Joint Conference on Artificial Intelligence.

(IJCAI 1983), Karlsruhe, West Germany, 741-747, William Kaufmann.

James F. Allen, James A. Hendler, and Austin Tate (editors). (1990). Readings in Plan-

ning. Morgan Kaufmann Publishers.

James F. Allen (1991). Planning as Temporal Reasoning. In Proceedings of the 2nd Inter-

national Conference on Principles of Knowledge Representation and Reasoning (KR 1991),

Cambridge, MA, USA, 3-14, Morgan Kaufmann Publishers.

Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah (2002). Solving

difficult SAT instances in the presence of symmetry. Proceedings of the 39th Design Auto-

mation Conference (DAC 2002), New Orleans, LA, USA, 731-736, ACM Press.

Fadi A. Aloul (2007). Fadi Aloul's Home Page - SAT Benchmarks. Personal Web Page.

http://www.eecs.umich.edu/~faloul/benchmarks.html, University of Michigan, MI, USA,

(March 2007).

BIBLIOGRAPHY 116

Fahiem Bacchus and Michael Ady (2001). Planning with Resources and Concurrency: A

Forward Chaining Approach. In Proceedings of the 17th International Joint Conference on

Artificial Intelligence (IJCAI 2001), Seattle, WA, USA, 417-424, Morgan Kaufmann Pub-

lishers.

Christer BÄckstrÖm and Bernhard Nebel (1992). On the Computational Complexity of

Planning and Story Understanding. In Proceedings of the 10th European Conference on

Artificial Intelligence (ECAI 1992), Vienna, Austria, 349-353, John Wiley and Sons.

Marco Baioletti, Stefano Marcugini, and Alfredo Milani (1998). An Extension of SAT-

PLAN for Planning with Constraints. Proceedings of Artificial Intelligence: Methodology,

Systems, and Applications, 8th International Conference, (AIMSA 1998), Sozopol, Bul-

garia, 39-49, LNCS 1480, Springer Verlag.

Andrew B. Baker (1995). Intelligent Backtracking on Constraint Satisfaction Problems:

Experimental and Theoretical Results. Doctoral Thesis, University of Oregon, Eugene, OR,

USA.

Philippe Baptiste, Claude Le Pape, and Wim Nuijten (2001). Constraint-Based Schedul-

ing. Kluwer Academic Publishers.

Roman BartÁk and Radek Erben (2004). A New Algorithm for Singleton Arc Consistency.

Proceedings of the 17th International Florida Artificial Intelligence Research Society Con-

ference (FLAIRS 2004), Miami Beach, FL, USA, AAAI Press.

Belaid Benhamou and Lakhdar Sais (1994). Tractability through Symmetries in Proposi-

tional Calculus. Journal of Automated Reasoning (JAR), Volume 12 (1), 89-102, Springer

Verlag.

Christian BessiÈre (1992). Arc-Consistency for Non-Binary Dynamic CSPs. Proceedings of

the 10th European Conference on Artificial Intelligence (ECAI 1992), Vienna, Austria, 23-

27, John Wiley and Sons.

Christian BessiÈre and Marie-Odile Cordier (1993). Arc-Consistency and Arc-Consistency

Again. Proceedings of the 11th National Conference on Artificial Intelligence (AAAI

1993), Washington, DC, USA, 108-113, AAAI Press/MIT Press.

BIBLIOGRAPHY 117

Christian BessiÈre and Romuald Debruyne (2005). Optimal and Suboptimal Singleton Arc

Consistency Algorithms. Proceedings of the 19th International Joint Conference on Artifi-

cial Intelligence (IJCAI 2005), Edinburgh, Scotland, United Kingdom, 54-59, Professional

Book Center.

Christian BessiÈre and Jean-Charles RÉgin (1996). MAC and Combined Heuristics: Two

Reasons to Forsake FC (and CBJ?) on Hard Problems. Proceedings of the 2nd Interna-

tional Conference on Principles and Practice of Constraint Programming (CP 1996), Cam-

bridge, MA, USA, 61-75, LNCS 1118, Springer Verlag.

Christian BessiÈre and Jean-Charles RÉgin (2001). Refining the Basic Constraint Propaga-

tion Algorithm. Proceedings of the 17th International Joint Conference on Artificial Intelli-

gence (IJCAI 2001), Seattle, WA, USA, 309-315, Morgan Kaufmann Publishers.

Avrim L. Blum and Merrick L. Furst (1997). Fast planning through planning graph

analysis. Artificial Intelligence, Volume 90 (1-2), 281-300, AAAI Press.

Avrim L. Blum and John Langford (2000). Probabilistic Planning in the Graphplan

Framework. Recent Advances in AI Planning, Proceedings of the 5th European Conference

on Planning (ECP 1999), Durham, UK, 319-332, LNCS 1809, Springer Verlag.

Boeing Corporation (2003a). UCAV-N Naval Unmanned Combat Air Vehicle. Commercial

web page. http://www.boeing.com/defense-space/military/unmanned/ucav-n.html, Boeing

Co., USA, (May 2007).

Boeing Corporation (2003b). Unmanned Combat Air Vehicle (X-45). Commercial web

page. http://www.boeing.com/phantom/ucav.html, Boeing Co., USA, (May 2007).

Blai Bonet and Hector Geffner (2001a). Planning as heuristic search. Artificial Intelli-

gence, Volume 129 (1-2), 5-33, Elsevier Science Publishers.

Blai Bonet and Hector Geffner (2001b). Heuristic Search Planner 2.0. AI Magazine, Vol-

ume 22 (3), 77-80, AAAI Press.

Tom Bylander (1994). The Computational Complexity of Propositional STRIPS Planning.

Artificial Intelligence, Volume 69 (1-2), 165-204, Elsevier Science Publishers.

CHOCO (2007). CHOCO Solver. Project web page, http://choco-solver.net, (July 2007).

BIBLIOGRAPHY 118

Stephen A. Cook (1971). The Complexity of Theorem-Proving Procedures. Proceedings of

the 3rd Annual ACM Symposium on Theory of Computing (STOC 1971), Shaker Heights,

OH, USA, 151-158, ACM Press.

James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy (1996).

Symmetry-Breaking Predicates for Search Problems. Proceedings of the 5th International

Conference on Principles of Knowledge Representation and Reasoning (KR 1996), Cam-

bridge, MA, USA, 148-159, Morgan Kaufmann.

Ken Currie and Austin Tate (1991). O-Plan: The open Planning Architecture. Artificial

Intelligence, Volume 52 (1), 49-86, Elsevier Science Publishers.

The Defense Advanced Research Projects Agency - DARPA (2007a). DARPA Grand

Challenge. Competition web page, http://www.darpa.mil/GrandChallenge/index.asp,

DARPA, USA, (June 2007).

The Defense Advanced Research Projects Agency - DARPA (2007b). DARPA Urban

Challenge. Competition web page, http://www.darpa.mil/GrandChallenge/overview.asp,

DARPA, USA, (June 2007).

Martin Davis and Hilary Putnam (1960). A Computing Procedure for Quantification The-

ory. Journal of the ACM, Volume 7 (3), 201-215, ACM Press.

Rina Dechter, Itay Meiri, and Judea Pearl (1989). Temporal Constraint Networks. In Pro-

ceedings of the 1st International Conference on Principles of Knowledge Representation

and Reasoning (KR 1989), Toronto, Canada, 83-93, Morgan Kaufmann Publishers.

Rina Dechter (2003). Constraint Processing. Morgan Kaufmann Publishers.

Minh Binh Do and Subbarao Kambhampati (2001). Planning as constraint satisfaction:

Solving the planning graph by compiling it into CSP. Artificial Intelligence, Volume 132

(2), 151-182, Elsevier Science Publishers.

William F. Dowling and Jean H. Gallier (1984). Linear-Time Algorithms for Testing the

Satisfiability of Propositional Horn Formulae. Journal of Logic Programming, Volume 1

(3), 267-284, Elsevier Science Publishers.

BIBLIOGRAPHY 119

Stefan Edelkamp, JÖrg Hoffmann, Michael Littman, Hakan Younes, Fahiem Bacchus,

Drew McDermott, Maria Fox, Derek Long, Jussi Rintanen, David Smith, Sylvie Thie-

baux, and Daniel Weld (2004). The 2004 International Planning Competition. Event in the

context of the 14th International Conference on Automated Planning and Scheduling

(ICAPS 2004), Whistler, British Columbia, Canada, http://andorfer.cs.uni-dortmund.de/

~edelkamp/ipc-4/, University of Dortmund, Germany, (June 2007).

Niklas EÉn and Niklas SÖrensson (2005). MiniSat — A SAT Solver with Conflict-Clause

Minimization. Poster in 8th International Conference on Theory and Applications of Satis-

fiability Testing (SAT 2005), Scotland, 2005.

Niklas EÉn and Niklas SÖrensson (2007). The MiniSat Page. Research web page,

http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/Main.html, Chalmers

University, Sweden, (March 2007).

Amin El-Kholy and Barry Richards (1996). Temporal and Resource Reasoning in Plan-

ning: the parcPLAN approach. In Proceedings of the 12th European Conference on Artifi-

cial Intelligence (ECAI 1996), Budapest, Hungary, 614-618, John Wiley and Sons.

Kutluhan Erol, James A. Hendler, and Dana S. Nau (1994a). UMCP: A Sound and Com-

plete Procedure for Hierarchical Task-network Planning. In Proceedings of the 2nd Inter-

national Conference on Artificial Intelligence Planning Systems (AIPS 1994), Chicago, IL,

USA, 249-254, AAAI Press.

Kutluhan Erol, James A. Hendler, Dana S. Nau (1994b). HTN Planning: Complexity and

Expressivity. In Proceedings of the 12th National Conference on Artificial Intelligence

(AAAI 1994), Seattle, WA, USA, Volume 2, 1123-1128, AAAI Press.

Kutluhan Erol, Dana S. Nau, V. S. Subrahmanian (1995). Complexity, Decidability and

Undecidability Results for Domain-Independent Planning. Artificial Intelligence, Volume

76 (1-2), 75-88, Elsevier Science Publishers.

Kutluhan Erol, James A. Hendler, and Dana S. Nau (1996). Complexity Results for HTN

Planning. Annals of Mathematics and Artificial Intelligence, Volume 18 (1), 69-93,

Springer Verlag.

Richard Fikes and Nils J. Nilsson (1971). STRIPS: A New Approach to the Application of

Theorem Proving to Problem Solving. Artificial Intelligence, Volume 2 (3/4), 189-208,

Elsevier Science Publishers.

BIBLIOGRAPHY 120

Maria Fox and Derek Long (2003). PDDL2.1: An Extension to PDDL for Expressing Tem-

poral Planning Domains. Journal of Artificial Intelligence Research (JAIR), Volume 20,

61-124, AAAI Press.

Jeremy Frank, Ari K. Jonsson, Robert Morris, and David E. Smith (2001). Planning and

scheduling for fleets of earth observing satellites. In Proceedings of the 6th International

Symposium on AI, Robotics and Automation for Space (i-SAIRAS 2001),

http://robotics.estec.esa.int/i-SAIRAS, (May 2007).

Jeremy Frank and Ari K. JÓnsson (2003). Constraint-Based Attribute and Interval Plan-

ning. Constraints, Volume 8 (4), 339-364, Springer Verlag.

Alan M. Frisch, Ian Miguel, and Toby Walsh (2002). CGRASS: A System for Transform-

ing Constraint Satisfaction Problems. Recent Advances in Constraints, Proceedings of the

Joint ERCIM/CologNet International Workshop on Constraint Solving and Constraint Lo-

gic Programming (CSCLP 2002), Cork, Ireland, 15-30, LNCS 2627, Springer Verlag.

Zhaohui Fu, Yogesh Marhajan, and Sharad Malik (2007). zChaff. Research Web Page.

http://www.princeton.edu/ ~chaff/zchaff.html, Princeton University, USA, (March 2007).

Gecode (2007). generic constraint development environment. Project web page,

http://www.gecode.org/, (July 2007).

Alfonso Gerevini, Yannis Dimopoulos, Patrik Haslum, and Alessandro Saetti (2006). 5th

International Planning Competition. Event in the context of the 16th International Confer-

ence on Automated Planning and Scheduling (ICAPS 2006), Cumbria, UK,

http://ipc5.ing.unibs.it, University of Brescia, Italy, (May 2007).

Alfonso Gerevini and Ivan Serina (2002). LPG: a Planner based on Local Search for

Planning Graphs. In Proceedings of the 6th International Conference on Artificial Intelli-

gence Planning and Scheduling (AIPS-02), Toulouse, France, 13-22, AAAI Press, 2002.

Alfonso Gerevini and Ivan Serina (2007). Homepage of LPG. Research web page,

http://zeus.ing.unibs.it/lpg/, University of Brescia, Italy, (April 2007).

Roman Gershman and Ofer Strichman (2005). HaifaSat: A New Robust SAT Solver.

Hardware and Software Verification and Testing, First International Haifa Verification

Conference (Haifa Verification Conference 2005), Haifa, Israel, 76-89, LNCS 3875,

Springer Verlag.

BIBLIOGRAPHY 121

Roman Gershman and Ofer Strichman (2007). HaifaSat – a new robust SAT solver. Re-

search Web Page. http://www.cs.technion.ac.il/~gershman/HaifaSat.htm, Technion Haifa,

Israel, (March 2007).

Malik Ghallab, Dana S. Nau, and Paolo Traverso (2004). Automated Planning: theory

and practice. Morgan Kaufmann Publishers.

GNU Project (2008). GCC, the GNU Compiler Collection. Project Web Page.

http://gcc.gnu.org/, (March 2008).

Martin C. Golumbic (1980). Algorithmic Graph Theory and Perfect Graphs. Academic

Press.

William D. Harvey (1995). Nonsystematic Backtracking Search. Doctoral Thesis, Univer-

sity of Oregon, Eugene, OR, USA.

Malte Helmert (2003). Complexity results for standard benchmark domains in planning.

Artificial Intelligence, Volume 143 (2), 219-262, Elsevier Science Publishers.

Malte Helmert (2006). New Complexity Results for Classical Planning Benchmarks. In

Proceedings of the 16th International Conference on Automated Planning and Scheduling

(ICAPS 2006), Cumbria, UK, 52-61, AAAI Press.

Chih-Wei Hsu, Benjamin W. Wah, Ruoyun Huang, and Yixin Chen (2006). Handling

Soft Constraints and Preferences in SGPlan. In Proceedings of the ICAPS Workshop on

Preferences and Soft Constraints in Planning, event in the context of the 16th International

Conference on Automated Planning and Scheduling (ICAPS 2006), Cumbria, UK, 2006.

Chih-Wei Hsu, Benjamin W. Wah, Ruoyun Huang, and Yixin Chen (2007). SGPlan 5:

Subgoal Partitioning and Resolution in Planning. Research web page.

http://manip.crhc.uiuc.edu/programs/SGPlan/index.html, University of Illinois, USA, (April

2007).

ILOG SA (2007). ILOG Solver. Commercial web page, http://www.ilog.com, ILOG SA,

France, (July 2007).

Ari K. JÓnsson, Paul H. Morris, Nicola Muscettola, Kanna Rajan, and Benjamin D.

Smith (2000). Planning in Interplanetary Space: Theory and Practice. In Proceedings of

the 5th International Conference on Artificial Intelligence Planning Systems (AIPS 2000),

Breckenridge, CO, USA, 177-186, AAAI Press.

BIBLIOGRAPHY 122

Narendra Jussien, Romuald Debruyne, and Patrice Boizumault (2000). Maintaining Arc-

Consistency within Dynamic Backtracking. Proceedings of the 6th International Conference

on Principles and Practice of Constraint Programming (CP 2000), Singapore, 249-261,

LNCS 1894, Springer Verlag.

Leslie Pack Kaelbling, Michael L. Littman, Anthony R. Cassandra (1995). Partially Ob-

servable Markov Decision Processes for Artificial Intelligence. Advances in Artificial Intel-

ligence, Proceedings of the 19th Annual German Conference on Artificial Intelligence

(KI 1995), Bielefeld, Germany, 1-17, LNCS 981, Springer Verlag.

Leslie Pack Kaelbling, Michael L. Littman, Anthony R. Cassandra (1998). Planning and

Acting in Partially Observable Stochastic Domains. Artificial Intelligence, Volume 101

(1-2), 99-134, Elsevier Science Publishers.

Subbarao Kambhampati, Eric Parker, and Eric Lambrecht (1997). Understanding and

Extending Graphplan. Proceedings of the 4th European Conference on Planning (ECP

1997), Toulouse, France, 260-272, LNCS 1348, Springer Verlag.

Subarao Kambhampati (2000). Planning Graph as a (Dynamic) CSP: Exploiting EBL,

DDB and other CSP Search Techniques in GraphPlan. Journal of Artificial Intelligence

Research 12 (JAIR 12), 1-34, AAAI Press.

Henry A. Kautz, David A. McAllester, and Bart Selman (1996). Encoding Plans in Pro-

positional Logic. Proceedings of the 5th International Conference on Principles of Knowl-

edge Representation and Reasoning (KR 1996), Cambridge, MA, USA, 374-384, Morgan

Kaufmann Publishers.

Henry A. Kautz and Bart Selman (1992). Planning as Satisfiability. Proceedings of the

10th European Conference on Artificial Intelligence (ECAI 1992), Vienna, Austria, 359-

363, John Wiley and Sons.

Henry A. Kautz and Bart Selman (1999). Unifying SAT-based and Graph-based Planning.

In Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI

1999), Stockholm, Sweden, 318-325, Morgan Kaufmann Publishers.

Henry A. Kautz, Bart Selman, and JÖrg Hoffmann (2006). SATPlan: Planning as Satisfi-

ability. Abstracts of the 5th International Planning Competition, event in the context of the

16th International Conference on Automated Planning and Scheduling (ICAPS 2006),

Cumbria, UK, http://ipc5.ing.unibs.it, University of Brescia, Italy, (May 2007).

BIBLIOGRAPHY 123

Henry A. Kautz, Bart Selman, and JÖrg Hoffmann (2007). SATPLAN. Research web page.

http://www.cs.rochester.edu/u/kautz/satplan/index.htm, University of Rochester, NY, USA,

(April 2007).

Jana Koehler (2007). Homepage of IPP. Research web page, http://www.informatik.uni-

freiburg.de/~koehler/ipp.html, University of Freiburg, Germany, (April 2007).

Jana Koehler, Bernhard Nebel, JÖrg Hoffmann, and Yannis Dimopoulos (1997). Extend-

ing Planning Graphs to an ADL Subset. In Proceedings of the 4th European Conference on

Planning (ECP-97), Toulouse, France, 273-285, LNAI 1348, Springer-Verlag.

Satish Kumar Thittamaranahalli (2005). Contributions to Algorithmic Techniques in

Automated Reasoning about Physical Systems. Doctoral Dissertation, Stanford University,

CA, USA.

Philippe Laborie and Malik Ghallab (1995). Planning with Sharable Resource Con-

straints. In Proceedings of the 14th International Joint Conference on Artificial Intelligence

(IJCAI 1995), MontrÉal, QuÉbec, Canada, 1643-1651, Morgan Kaufmann Publishers.

Daniel Le Berre and Laurent Simon (2005). SAT Competition 2005. Competition Web

Page, http://www.satcompetition.org/2005/, Scotland, (March 2007).

Ruiming Li, Dian Zhou, and Donglei Du (2004). Satisfiability and integer programming as

complementary tools. Proceedings of the 2004 Conference on Asia South Pacific Design

Automation: Electronic Design and Solution Fair 2004 (ASP-DAC 2004), 879-882, Japan,

IEEE Press.

Vassilis Liatsos and Barry Richards (1999). Scaleability in Planning. Recent Advances in

AI Planning, 5th European Conference on Planning (ECP 1999), Durham, UK, 49-61,

LNCS 1809, Springer Verlag.

Iain Little, Douglas Aberdeen, and Sylvie ThiÉbaux (2005). Prottle: A Probabilistic Tem-

poral Planner. In Proceedings of the 20th National Conference on Artificial Intelligence

(AAAI 2005) and the 17th Innovative Applications of Artificial Intelligence Conference

(IAAI 2005), Pittsburgh, PA, USA, 1181-1186, AAAI Press / The MIT Press.

Iain Little and Sylvie ThiÉbaux (2006). Concurrent Probabilistic Planning in the Graph-

plan Framework. In Proceedings of the 16th International Conference on Automated Plan-

ning and Scheduling (ICAPS 2006), Cumbria, UK, 263-272, AAAI Press.

BIBLIOGRAPHY 124

Derek Long and Maria Fox (1999). Efficient Implementation of the Plan Graph in STAN.

Journal of Artificial Intelligence Research, Volume 10, 87-115, AAAI Press.

Derek Long and Maria Fox (2003). Exploiting a Graphplan Framework in Temporal Plan-

ning. Proceedings of the 13th International Conference on Automated Planning and Sched-

uling (ICAPS 2003), Trento, Italy, 52-61, AAAI Press.

Derek Long, Maria Fox, David E. Smith, Drew McDermott, Fahiem Bacchus, and Hector

Geffner (2002). The 2002 International Planning Competition. Event in the context of the

6th International Conference on AI Planning & Scheduling (AIPS 2002), Toulouse, France,

2002, http://planning.cis.strath.ac.uk/competition/, University of Strathclyde, UK,

(June 2007).

Adriana Lopez and Fahiem Bacchus (2003). Generalizing GraphPlan by Formulating

Planning as a CSP. Proceedings of the 18th International Joint Conference on Artificial

Intelligence (IJCAI 2003), Acapulco, Mexico, 954-960, Morgan Kaufmann Publishers.

Alan K. Mackworth (1977). Consistency in Networks of Relations. Artificial Intelligence, ,

Volume 8 (1), 99-118, Elsevier Science Publishers.

Mandriva (2008). Mandriva 10th Year of Innovation. Commercial Web page.

http://www.mandriva.com/, (March, 2008).

Drew McDermott (1998). PDDL: the Planning Domain Definition Language. Technical

Report. Yale Center for Computational Vision and Control, Yale University, CT, USA,

1998.

Roger Mohr and Thomas C. Henderson (1986). Arc and Path Consistency Revisited. Arti-

ficial Intelligence, Volume 28 (2), 225-233, Elsevier Science Publishers.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik (2001). Chaff: Engineering an Efficient SAT Solver. Proceedings of the 38th Design

Automation Conference (DAC-2001), Las Vegas, NV, USA, 530-535, ACM Press.

HÉctor MuÑoz-Avila, David W. Aha, Dana S. Nau, Rosina Weber, Len Breslow, and

Fusun Yaman (2001). SiN: Integrating Case-based Reasoning with Task Decomposition.

In Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI

2001), Seattle, WA, USA, 999-1004, Morgan Kaufmann Publishers.

BIBLIOGRAPHY 125

Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian Williams (1998). Remote

Agent: To Boldly Go Where No AI System Has Gone Before. Artificial Intelligence, Volume

103 (1-2), 5-48, Elsevier Science Publishers.

Alexander Nadel (2007). Alexander Nadel's Page. Research Web Page.

http://www.cs.tau.ac.il/~ale1/, Tel Aviv University, Israel, (March 2007).

Gi-Joon Nam, Karem A. Sakallah, and Rob A. Rutenbar (2002). A new FPGA detailed

routing approach via search-based Boolean satisfiability. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, Volume 21 (6), 674-684, IEEE Press.

Alexander Nareyek, Eugene C. Freuder, Robert Fourer, Enrico Giunchiglia, Robert P.

Goldman, Henry A. Kautz, Jussi Rintanen, and Austin Tate (2005). Constraints and AI

Planning. IEEE Intelligent Systems, Volume 20 (2), 62-72, 2005, IEEE Press.

Dana S. Nau, Satyandra K. Gupta, William C. Regli (1995). AI Planning Versus Manufac-

turing-Operation Planning: A Case Study. In Proceedings of the 14th International Joint

Conference on Artificial Intelligence (IJCAI 1995), MontrÉal, QuÉbec, Canada, 1670-1676,

Morgan Kaufmann Publishers.

Dana S. Nau, HÉctor MuÑoz-Avila, Yue Cao, Amnon Lotem, and Steven Mitchell (2001).

Total-Order Planning with Partially Ordered Subtasks. In Proceedings of the 17th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI 2001), Seattle, WA, USA, 425-

430, Morgan Kaufmann Publishers.

P. Pandurang Nayak, Douglas E. Bernard, Gregory Dorais, Edward B. Gamble Jr., Bob

Kanefsky, James Kurien, William Millar, Nicola Muscettola, Kanna Rajan, Nicolas

Rouquette, Benjamin D. Smith, William Taylor, and Yu-wen Tung (1999). Validating

the Deep Space 1 Remote Agent Experiment. In Proceedings of the 5th International Sym-

posium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS 1999),

http://robotics.estec.esa.int/i-SAIRAS, (June 2007).

XuanLong Nguyen, Subbarao Kambhampati, and Romeo Sanchez Nigenda (2002). Plan-

ning Graph as the Basis for Deriving Heuristics for Plan Synthesis by State Space and CSP

Search. Artificial Intelligence, Volume 135 (1-2), 73-123, Elsevier Science Publishers.

Christos H. Papadimitriou (1994). Computational Complexity. Addison Wesley.

BIBLIOGRAPHY 126

Knot Pipatsrisawat and Adnan Darwiche (2007). RSat - ...veRSATile... Research Web

Page. http://reasoning.cs.ucla.edu/rsat/, University of California Los Angeles, CA, USA,

(March 2007).

Edwin P. D. Pednault (1989). ADL: Exploring the Middle Ground Between STRIPS and

the Situation Calculus. In Proceedings of the 1st International Conference on Principles of

Knowledge Representation and Reasoning (KR 1989), Toronto, Canada, 324-332, Morgan

Kaufmann Publishers.

Jean-Charles RÉgin (1994). A Filtering Algorithm for Constraints of Difference in CSPs.

Proceedings of the 12th National Conference on Artificial Intelligence (AAAI 1994), Seat-

tle, WA, USA, 362-367, AAAI Press.

Stuart Russell and Peter Norvig (2003). Artificial Intelligence: A Modern Approach (sec-

ond edition). Prentice Hall.

Lawrence Ryan (2007). the siege sat solver. Research web page, http://www.cs.sfu.ca/~cl/

software/siege/, Computational Logic Laboratory, Simon Fraser University, British Colum-

bia, Canada (June 2007).

Christian Schulte (2002). Programming Constraint Services: High-Level Programming of

Standard and New Constraint Services. Springer Verlag.

SICStus (2007). SICStus Prolog - Leading Prolog Technology. Commercial web page,

http://www.sics.se/isl/sicstuswww/site/index.html, Swedish Institute of Computer Science,

Sweden, (July 2007).

Carsten Sinz (2006). SAT-Race 2006. Competition Web Page, http://fmv.jku.at/sat-race-

2006/, USA, (March 2007).

David E. Smith and Daniel S. Weld (1999). Temporal Planning with Mutual Exclusion

Reasoning. In Proceedings of the 16th International Joint Conference on Artificial Intelli-

gence (IJCAI 1999), Stockholm, Sweden, 326-337, Morgan Kaufmann Publishers.

Mohammed H. Sqalli and Eugene C. Freuder (1996). Inference-Based Constraint Satis-

faction Supports Explanation. Proceedings of the 13th National Conference on Artificial

Intelligence and the 8th Innovative Applications of Artificial Intelligence Conference,

(AAAI/IAAI 1996), Portland, OR, USA, 318-325, AAAI Press / The MIT Press.

Bjarne Stroustrup (1986). The C++ Programming Language. Addison-Wesley.

BIBLIOGRAPHY 127

Pavel Surynek (2003). Solving Dynamic Constraint Satisfaction Problems. Diploma thesis,

100 pages, Faculty of Mathematics and Physics, Charles University, Prague, Czech Repub-

lic.

Pavel Surynek (2005). Dynamic Constraint Satisfaction Problems. Thesis to fulfill re-

quirements of the degree of Doctor of Natural Sciences (RNDr.), 180 pages, Faculty of

Mathematics and Physics, Charles University, Prague, Czech Republic.

Pavel Surynek (2006). Constraint Based Reasoning over Mutex Relations in GraphPlan

Algorithm. In Proceedings of the 11th Annual ERCIM Workshop on Constraint Solving

and Constraint Programming (CSCLP 2006), Caparica, Portugal, 231-245, University of

Lisbon.

Pavel Surynek (2007a). Constraint Based Reasoning over Mutex Relations in Planning

Graphs during Search. Technical Report, ITI Series, 2007-329, Faculty of Mathematics and

Physics, Charles University, Prague, Czech Republic.

Pavel Surynek (2007b). Maintaining Arc-consistency over Mutex Relations in Planning

Graphs during Search. Technical Report, ITI Series, 2007-328, Faculty of Mathematics and

Physics, Charles University, Prague, Czech Republic.

Pavel Surynek (2007c). Projection Global Consistency: An Application in AI Planning.

Proceedings of the 12th Annual ERCIM Workshop on Constraint Solving and Constraint

Logic Programming (CSCLP 2007), Rocquencourt, France, 61-75, INRIA, 2007.

Pavel Surynek (2007d). Projection Global Consistency: An Application in AI Planning.

Technical Report, ITI Series, 2007-333, Faculty of Mathematics and Physics, Charles Uni-

versity, Prague, Czech Republic.

Pavel Surynek (2007e). Tractable Classes of a Problem of Finding Supporting Actions for

a Goal in AI Planning. Technical Report, ITI Series, 2007-338, Faculty of Mathematics and

Physics, Charles University, Prague, Czech Republic.

Pavel Surynek (2007f). Solving Difficult SAT Instances Using Greedy Clique Decomposi-

tion. Proceedings of the 7th International Symposium Abstraction, Reformulation, and Ap-

proximation (SARA 2007), Whistler, Canada. 359-374, Lecture Notes in Computer Science

4612, Springer Verlag.

BIBLIOGRAPHY 128

Pavel Surynek (2007g). Solving Difficult SAT Instances Using Greedy Clique Decomposi-

tion. Technical Report, ITI Series, 2007-340, Faculty of Mathematics and Physics, Charles

University, Prague, Czech Republic.

Pavel Surynek (2008a). A Global Filtration for Satisfying Goals in Mutual Exclusion Net-

works. Recent Advances in Constraints 2007 (RAC-2007), Post-proceedings of CSCLP

2007 Workshop, Lecture Notes in Artificial Intelligence, 5129, Springer Verlag.

Pavel Surynek (2008b). Tractable Class of a Problem of Goal Satisfaction in Mutual Ex-

clusion Network. In Proceedings of the 21st International Florida Artificial Intelligence

Research Society Conference (FLAIRS-2008), Miami, FL, USA, 561-566, AAAI Press.

Pavel Surynek and Roman BartÁk (2005). Encoding HTN Planning as a Dynamic CSP. In

Proceedings Principles and Practice of Constraint Programming, 11th International Confer-

ence, (CP 2005), Sitges (Barcelona), Spain, 868, LNCS 3909, Springer Verlag.

Pavel Surynek and Roman BartÁk (2007a). Maintaining Arc-consistency over Mutex Rela-

tions in Planning Graphs during Search. In Proceedings of the 20th International Florida

Artificial Intelligence Research Society Conference (FLAIRS-2007), Key West, FL, USA,

134-139, AAAI Press.

Pavel Surynek and Roman BartÁk (2007b). Tractable Class of a Problem of Finding Sup-

ports. Proceedings of the Doctoral Programme of the 13th International Conference of

Principles and Practice of Constraint Programming, Providence, RI, 169-174, USA.

Pavel Surynek, LukÁŁ Chrpa, and JiUÍ Vysko7il (2007a). Solving Difficult Problems by

Viewing Them as Structured Dense Graphs. Proceedings of the 3rd Indian International

Conference on Artificial Intelligence (IICAI 2007), Pune, India.

Pavel Surynek, LukÁŁ Chrpa, and JiUÍ Vysko7il (2007b). Solving Difficult Problems by

Viewing Them as Structured Dense Graphs. Technical Report, ITI Series, 2007-350, Fac-

ulty of Mathematics and Physics, Charles University, Prague, Czech Republic.

Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron,

James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann, Kenny Lau,

Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascai Stang, Sven Strohband, Cedric Du-

pont, Lars-Erik Jendrossek, Christian Koelen, Charles Markey, Carlo Rummel, Joe van

Niekerk, Eric Jensen, Philippe Alessandrini, Gary Bradski, Bob Davies, Scott Ettinger,

Adrian Kaehler, Ara Nefian, and Pamela Mahoney (2006). Stanley, the robot that won the

DARPA Grand Challenge. Journal of Field Robotics,Volume 23, John Wiley and Sons.

BIBLIOGRAPHY 129

Alasdair Urquhart (1987). Hard examples for resolution. Journal of the ACM, Volume 34,

209-219, ACM Press.

Peter van Beek and Xinguang Chen (1999). CPlan: A Constraint Programming Approach

to Planning. In Proceedings of the 16th National Conference on Artificial Intelligence and

11th Conference on Innovative Applications of Artificial Intelligence (AAAI/IAAI 1999),

Orlando, Florida, USA, 585-590, AAAI Press / The MIT Press.

Miroslav N. Velev and Randal E. Bryant (2003). Effective use of Boolean satisfiability

procedures in the formal verification of superscalar and VLIW microprocessors. Journal of

Symbolic Computation (JSC), Volume 35 (2), 73-106, Elsevier.

Vincent Vidal and Hector Geffner (2004). Branching and Pruning: An Optimal Temporal

POCL Planner-based on Constraint Programming. In Proceedings of the AAAI Workshop

on Integrating Planning Into Scheduling, event in the context of the AAAI 2004 conference,

USA.

Vincent Vidal and Hector Geffner (2007). CPT Description. Research web page,

http://www.cril.univ-artois.fr/~vidal/cpt.html, UniversitÉ D’Artois, France, (April 2007).

Marc B. Vilain and Henry A. Kautz (1986). Constraint Propagation Algorithms for Tem-

poral Reasoning. In Proceedings of the 5th National Conference on Artificial Intelligence

(AAAI 1986), Philadelphia, PA, USA, 377-382, Morgan Kaufmann Publishers.

David L. Waltz (1975). Understanding line drawings of scenes with shadows. The Psy-

chology of Computer Vision, P. Winston (editor), 19–91, McGraw-Hill, New York.

Hantao Zhang and Mark E. Stickel (1996). An efficient algorithm for unit propagation.

Proceedings of the 4th International Symposium on Artificial Intelligence and Mathematics

(MATH 1996), Fort Lauderdale, FL, USA, 1996.

Yuanlin Zhang and Roland H. C. Yap (2001). Making AC-3 an Optimal Algorithm. Pro-

ceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001),

Seattle, WA, USA, 316-321, Morgan Kaufmann Publishers.

Xing Zhao, Yixin Chen, and Weixiong Zhang (2006). MaxPlan: Optimal Planning by

Decomposed Satisfiability and Backward Reduction. Abstracts of the 5th International

Planning Competition, Event in the context of the 16th International Conference on Auto-

mated Planning and Scheduling (ICAPS 2006), Cumbria, UK, http://ipc5.ing.unibs.it, Uni-

versity of Brescia, Italy, (May 2007).

BIBLIOGRAPHY 130

Xing Zhao, Yixin Chen, Weixiong Zhang, and Ruoyun Huang (2007). MaxPlan. Re-

search web page, http://www.cse.wustl.edu/~chen/maxplan/, Washington University in St.

Louis, MO, USA, (April 2007).

Terry Zimmerman and Subbarao Kambhampati (2005). Using Memory to Transform

Search on the Planning Graph. Journal of Artificial Intelligence Research (JAIR), Volume

23, 533-585, AAAI Press.

131

APPENDIX A

DIFFICULT

PLANNING PROBLEMS

This appendix describes the set of difficult planning problems used for competitive experi-

mentation in chapter 3. We used three classes of planning problems that encodes an unsolv-

able Dirichlet’s box principle in some form. At the same time we show encoding planning

problems using Planning Domain Description Language (PDDL). PDDL became a stan-

dard language for expressing planning problems (McDermott, 1998).

 The PDDL language in its basic form uses the classical representation of planning

problems (with some technical extensions). The problem is stated by the description of an

initial state and a goal and by the description of a set of allowed planning operators. The

description of the input planning problem consists of two files. One of these files contains

description of a planning domain. In the terminology of PDDL the planning domain is the

description of the language (the list of constants, the list of predicates etc.) and a set of al-

lowed planning operators. The second file contains the description of an initial state and a

goal. The splitting of the input into these two files is done because an initial state and a goal

represents a very variable part of the input while for a certain planning environment the

domain typically remains the same.

 The syntax of the PDDL language is based on the LISP language (Abelson et al.,

1985) which is a representative of the languages based on the functional paradigm. The

PDDL language itself became a standard for the inputs of many planning systems. It is also

the standard for the input of planning problems of the IPC - International Planning Compe-

tition (Gerevini et al., 2006).

 There are also extensions of the language for handling time and resources (Fox and

Long, 2003). The newer versions of the language also provide tools for expressing quality

of the solution plans which does not have to be the least number of time-steps. It is possible

for instance to write a planning problem where the objective is to spare certain type of re-

source (for example in planning of public transportation we would like to minimize the

number of transfers between individual means of transport).

APPENDIX A. DIFFICULT PLANNING PROBLEMS 132

 Finally, let us note that another attempt to define formalism for describing planning

problems is represented by Abstract Description Language (ADL) (Pednault, 1989). The

ADL represents a tradeoff between the expressiveness of general logical formulas and the

computational requirements. Most of the features of ADL were adopted by the PDDL lan-

guage.

HOLES problems. These planning problems encode the classical form of Dirichlet’s box

principle. That is, we have n holes and 1n - pigeons; the task is to place all the pigeons

into hole such that no two pigeons are in the same hole. The problem is insolvable. The

description of the set of planning operators is as follows in the PDDL language.

(define (domain holes)
 (:requirements :strips :typing)
 (:types type)
 (:predicates (empty ?hole) (out ?pigeon) (in ?pigeon ?hole)
 (placed ?pigeon))
 (:action fill
 :parameters (?hole ?pigeon)
 :precondition (and (empty ?hole)
 (out ?pigeon)
)
 :effect (and (in ?pigeon ?hole)
 (placed ?pigeon)
 (not (out ?pigeon))
 (not (empty ?hole))))
)
)

The description of the initial state and the description of the goal for 4 holes and 5 pigeons

are as follows in the PDDL language.

(define (problem holes-05_04)
 (:domain holes)
 (:objects p1 p2 p3 p4 p5
 h1 h2 h3 h4)
 (:init
 (out p1) (out p2) (out p3) (out p4) (out p5)
 (empty h1) (empty h2) (empty h3) (empty h4)
)
 (:goal (and (placed p1) (placed p2) (placed p3)
 (placed p4) (placed p5)))
)

ズ

JAM problems. This set of problems again encodes the Dirichlet’s box principle. How-

ever, now the whole problem is solvable. The Dirichlet’s box principle represents a bottle-

neck in the problem (problems are called according to this bottleneck - jam, according to

the traffic jam). To find a step optimal plan for the problem it is necessary to detect in-

APPENDIX A. DIFFICULT PLANNING PROBLEMS 133

solvability of the box principle which makes the problem difficult.

 More precisely, the problem consists of a Dirichlet’s box principle followed by a fur-

ther processing. We have 1n - different pigeons that must go through the set of n holes

(no two pigeons can be in the same hole - unsolvable in a single time-step but solvable in

two time-steps) before they can be further processed.

(define (domain jam)
 (:requirements :strips :typing)
 (:types type)
 (:predicates (empty ?hole) (out ?pigeon) (in ?pigeon ?hole)
 (placed ?pigeon) (color ?pigeon ?color)
 (next ?color1 ?color2))
 (:action fill
 :parameters (?hole ?pigeon)
 :precondition (and (empty ?hole)
 (out ?pigeon)
)
 :effect (and (in ?pigeon ?hole)
 (placed ?pigeon)
 (not (out ?pigeon))
 (not (empty ?hole))
)
)
 (:action switch
 :parameters (?pigeon ?color1 ?color2)
 :precondition (and (color ?pigeon ?color1)
 (placed ?pigeon)
 (next ?color1 ?color2)
)
 :effect (and (color ?pigeon ?color2)
 (not (color ?pigeon ?color1))
)
)
 (:action leave
 :parameters (?hole ?pigeon)
 :precondition (and (in ?pigeon ?hole)
 (placed ?pigeon))
 :effect (and (out ?pigeon)
 (empty ?hole)
 (not (in ?pigeon ?hole))
 (not (placed ?pigeon)))
)
)

The following PDDL code describes the initial state and the goal for the problem consisting

of 4 holes and 5 pigeons.

(define (problem jam-05_04)
 (:domain jam)
 (:objects p1 p2 p3 p4 p5 h1 h2 h3 h4 red blue)
 (:init
 (next red blue)

APPENDIX A. DIFFICULT PLANNING PROBLEMS 134

 (out p1) (out p2) (out p3) (out p4) (out p5)
 (empty h1) (empty h2) (empty h3) (empty h4)
 (color p1 red) (color p2 red) (color p3 red)
 (color p4 red) (color p5 red)
)
 (:goal (and (out p1) (out p2) (out p3) (out p4) (out p5)
 (color p1 blue) (color p2 blue) (color p3 blue)
 (color p4 blue) (color p5 blue)
)
)
)

ズ

UJAM problems. This set of problems represents unsolvable version of the problem from

the previous jam problem. Again the problem encodes Dirichlet’s box principle. The prin-

ciple is now present in two stages where the first stage is solvable while the second stage is

unsolvable. Both principles represent a bottleneck on the number of steps.

 More precisely, we have a set o 1n - pigeons and two sets of holes. Both sets consist

of n holes. The pigeons must go through the holes from the first stage before they can be

further processed (the principle is unsolvable in a single time-step but solvable in two

time-steps). After this processing the pigeons can continue to their final positions in the

second set of n holes (this principle is unsolvable).

(define (domain ujam)
 (:requirements :strips :typing)
 (:types type)
 (:predicates (empty ?hole) (out ?pigeon) (in ?pigeon ?hole)
 (placed ?pigeon) (picked ?pigeon) (remaining ?pick)
 (color ?pigeon ?color) (next ?color1 ?color2)
 (visible ?color))
 (:action fill
 :parameters (?hole ?pigeon)
 :precondition (and (empty ?hole)
 (out ?pigeon)
)
 :effect (and (in ?pigeon ?hole)
 (placed ?pigeon)
 (not (out ?pigeon))
 (not (empty ?hole))
)
)
 (:action switch
 :parameters (?pigeon ?color1 ?color2)
 :precondition (and (color ?pigeon ?color1)
 (placed ?pigeon)
 (next ?color1 ?color2)
)
 :effect (and (color ?pigeon ?color2)
 (not (color ?pigeon ?color1))
)
)

APPENDIX A. DIFFICULT PLANNING PROBLEMS 135

 (:action leave
 :parameters (?hole ?pigeon)
 :precondition (and (in ?pigeon ?hole)
 (placed ?pigeon))
 :effect (and (out ?pigeon)
 (empty ?hole)
 (not (in ?pigeon ?hole))
 (not (placed ?pigeon))
)
)
 (:action pick
 :parameters (?pick ?pigeon ?color)
 :precondition (and (remaining ?pick)
 (out ?pigeon)
 (visible ?color)
 (color ?pigeon ?color)
)
 :effect (and (picked ?pigeon)
 (not (out ?pigeon))
 (not (remaining ?pick))
)
)
)

The following PDDL code represents the problem consisting of 5 pigeons and 4+4 holes.

(define (problem ujam-05_04)
 (:domain ujam)
 (:objects p1 p2 p3 p4 p5 h1 h2 h3 h4 s1 s2 s3 s4 red blue)
 (:init
 (next red blue) (visible blue)
 (out p1) (out p2) (out p3) (out p4) (out p5)
 (color p1 red) (color p2 red) (color p3 red) (color p4 red)
 (color p5 red)
 (remaining s1) (remaining s2) (remaining s3) (remaining s4)
 (empty h1) (empty h2) (empty h3) (empty h4)
)
 (:goal (and (picked p1) (picked p2) (picked p3)
 (picked p4) (picked p5)
)
)
)

ズ

136

APPENDIX B

REMOVABLE MEDIUM

The thesis includes a removable medium (DVD-ROM) with additional material in the elec-

tronic form. The medium contains electronic version of the text of the thesis, the source

code of software used to produce the experimental results, the raw experimental data, and

additional tables with results that did not fit into the text of the thesis. The content of the

attached medium is summarized in the table B.1.

Content of the attached removable medium

Directory Brief description

plan
Source code and results concerning classical planning with plan-

ning graphs.

plan/experiments
Raw experimental data for planning problems. The results use a

xml-like format. Statistical characteristics are available in text form.

plan/problems
Planning problems described in a xml-like format. Problems of

three planning domains from chapter 3 are listed here.

plan/splan

Source code of the software used to produce experimental data in

planning (chapter 3). The directory contains three versions of the

SPlan - experimental planning system.

sat Source code and problems concerning Boolean satisfiability

sat/problems Boolean satisfaction problems.

sat/ssat

Source code of the software used to produce experimental data in

Boolean satisfiability (chapter 4). The directory contains SSat - Boo-

lean satisfaction problem experimental preprocessor.

tables
Additional tables and graphs with results that did not fit in the text

of the thesis.

text Text of the thesis in the electronic form.

tools Auxiliary software tools used for research of the thesis topic.

tools/ge
Source code of the Graph Explorer - experimental visualization tool

for graphs.

tools/graphs
Several problems concerning planning and Boolean satisfiability

reinterpreted as graphs. Graphs can be viewed in Graph Explorer.

Table B.1. CONTENT OF THE ATTACHED REMOVABLE MEDIUM. A brief summary of the content of

the attached removable medium.

