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Abstract.  The task of enforcing certain level of consistency in Boolean 

satisfiability problem (SAT problem) is addressed in this paper. The concept of 

path-consistency known from the constraint programming paradigm is revisited in 
this context. Augmentations how to make path-consistency more suitable for SAT 

are specifically studied. A stronger variant of path-consistency is described and its 

theoretical properties are investigated. It combines the standard path consistency 
on the literal encoding of the given SAT instance with global properties calculated 

from constraints imposed by the instance – namely with the maximum number of 

visits of a certain set by the path. Unfortunately, the problem of enforcing this 
variant of path-consistency turned out to be NP hard. Hence, various types of 

relaxations of this stronger version of path-consistency were proposed. The relaxed 

version of the proposed consistency represents a trade-off between the inference 
strength and the complexity of its propagation algorithm. A presented theoretical 

analysis shows that computational costs of the proposed consistency are kept 

reasonably low. Performed experiments show that the new consistency 
outperforms the standard path-consistency in terms of the inference strength as 

well. 
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Introduction and Motivation 

A method how to increase the inference strength of path-consistency  [14, 15] is 

described in this paper. It combines the standard path-consistency on the literal 

encoding model [19] of the given Boolean satisfiability (SAT) instance [5] with global 

properties calculated from the instance. The existence of a path in a certain graph 

interpretation of the instance is being checked by the standard path-consistency. In the 

augmented variants, additional requirements are imposed on the path being checked to 

exist. Unfortunately, the problem of checking the existence of a path according to 

augmented requirements turned out to be NP-complete [17]. Hence, various relaxations 

that still preserve the inference strength of augmented variants above the level of the 

standard path-consistency were proposed. An evaluation of the benefit of the new path-
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consistency has been done through a simple SAT preprocessing tool which is based on 

it. The result is that preprocessing can reduce the number of decisions of the SAT 

solver as well as the overall runtime significantly on a set of representative instances. 

1. Notations and Definitions 

Concepts of constraint satisfaction problem (CSP) [7] and Boolean satisfiability (SAT) 

[5] need to be established first to make reasoning about path-consistency in the context 

of SAT easier to understand. 

Definition 1 (Constraint satisfaction problem - CSP). Let   be a finite set 

representing domain universe. A constraint satisfaction problem [7] is a triple         

where   is a finite set of variables,   is a finite set of constraints, and          is 

a function that defines domains of individual variables from   (that is,        is a 

set of values that can be assigned to the variable    ). Each constraint from     is 

of the form     
    

       
       where      is called an arity of the constraint  , 

the tuple    
    

       
   with   

    for            is called a scope of the 

constraint, and the relation        
       

          
   defines the set of 

tuples of values for that the constraint   is satisfied. The task is to find a valuation of 

variables       such that                and      
       

          
    

       . □ 

A constraint     with the scope    
    

       
 ) will be denoted as 

     
    

       
   ; this notation is useful when the ordering of variables in the scope is 

not known from the context; when ordering of variables in the scope matters, then a 

notation     
    

       
   will be used instead. 

A CSP is called binary if all the constraints have the arity of two. The expressive 

power of a binary CSP is not reduced in comparison with a general one since every 

CSP can be transformed into an equivalent binary CSP [16]. The key concept of path-

consistency [15] that is addressed in this paper is defined for binary CSPs only. It is 

also convenient to suppose, that each pair of variables is constrained by at most one 

constraint. 

Definition 2 (Boolean satisfiability problem - SAT). Let   be a finite set of Boolean 

variables; that is, a set of variables that can be assigned either       or     . A 

Boolean formula   over the set of variables   in a so called conjunctive normal form 

(CNF) [13] is the construct of the form      
   

     
    where   

  with either   
    or 

  
     for some     for          ;            is called a literal and 

    
   

     for           is called a clause. The task is to find a valuation of Boolean 

variables                  such that   evaluates to      under   while   

(negation),   (disjunction), and   (conjunction) are interpreted commonly in the 

Boolean algebra. A formula for that such a satisfying valuation exists is called 

satisfiable. □ 

It is a well known result that the language consisting of satisfiable formulas in CNF 

as well as general ones is an NP-complete problem [5, 10]. It is not difficult to observe 

that the language of solvable instances of CSP is NP-complete as well since it just 

generalizes SAT in fact (constraints are represented by clauses) while membership of 

CSP into the NP class is preserved by the generalization. 



2. Path-consistency in CSP 

The standard definition of path-consistency in CSP will be recalled before the 

augmented versions and their relaxations are introduced. The following definition 

refers to general paths of variables which is not necessary in fact. However, this style 

of definition will be more suitable for making intended augmentations. 
 

Definition 3 (Path-consistency - PC). Let         be a binary CSP and let   
             with      for           be a sequence of variables called a path. 

A pair of values          and          is path-consistent with respect to   if 

there exists a valuation                  with                   such 

that constraints                      are satisfied by   for every          . The path 

  is said to be path-consistent if all the pairs of values from       and       

respectively are path-consistent with respect to  . Finally, the CSP         is said to 

be path-consistent if it is path-consistent for every path. □ 
 

Notice that variables forming the path in the definition do not need to be necessarily 

distinct. Although the notion of path-consistency seems to be computationally 

infeasible since there are typically too many paths, it is sufficient to check path-

consistency for all the paths consisting of triples of variables only to ensure that the 

given CSP is path-consistent [14, 15]. In other words, although it seems that path-

consistency captures the problem globally (a path can go through large portion of 

variables of the instance), it merely defines a local property. 

There exist many algorithms for enforcing path-consistency in a CSP such as PC-4 

[11] and PC-6 [1, 3]. They differ in the representation of auxiliary data structures and 

the efficiency. The common feature of path-consistency algorithms is however the 

process how the consistency is enforced. It is done by eliminating pairs of inconsistent 

values until a path-consistent state is reached (the smallest set of pairs of values such 

that their elimination makes the problem path-consistent is being pursued). The process 

of elimination of pairs of values is typically done by pruning extensional representation 

of constraints (lists of allowed tuples) to forbid more pairs of values. 

3. Standard Path-consistency in SAT 

The aim of this work is to modify path-consistency to make it applicable on SAT and 

to increase its inference strength by incorporating certain global reasoning into it. The 

easier task is to make path-consistency applicable on SAT - it is sufficient to model 

SAT as CSP. A so called literal encoding [19], which of the result is a binary CSP, is 

particularly used. This kind of encoding is especially suitable since it allows natural 

expressing of path-consistency in terms of graph constructs. 

Let        
   

     
    be a Boolean formula in CNF over a set of Boolean variables 

 . Let          
  

  
     

    be a domain universe; that is, a constant symbol with the 

stripe is introduced into   for each literal occurrence in   (notice that, each occurrence 

of a literal corresponds to a different constant symbol). The corresponding CSP 

        using literal encoding is built as follows:               ; that is, a 

variable is introduced for each clause of  ; it holds for          that       
     

  
  
   ; that is, the domain of an  -th clause contains constant symbols corresponding 

to all its literals. A constraint                          
   is introduced over every 

pair of variables with                       where a variable     such that 



either        
          

  or         
         

  exists. Such a 

constraint              then forbids every tuple of values      
       

    such that there exists 

    for that either     
         

      or     
          

     (that is, the tuple 

     
       

    is removed from    which has been initially set to      
        

 ). A 

solution of the resulting CSP         corresponds to the valuation of Boolean 

variables of   that satisfies   and vice versa [19]. 
 

 

Figure 1. An illustration of path-consistency in the CSP model of a SAT problem. The SAT 

problem represented by a formula   shown here is a representation of the requirement of 

selecting an odd number of variables from every of the following sets to be true:        , 

       ,        . Observe, that there is no satisfying valuation of  . However, the pair of literals 

    and    from the left most variable and from the right most variable respectively are path-

consistent with respect to a depicted path   since they are non-conflicting and there exists a path 

from the left to the right consisting of edges between neighboring variables connecting allowed 

pairs of values (the path is marked by bold edges and by darker vertices). 

 

Having the CSP model of SAT it is possible to check path-consistency for the 

corresponding CSP model and proclaim the original SAT path-consistent or path-

inconsistent accordingly. If elements of variable domains are interpreted as vertices and 

allowed tuples of values as directed edges connecting them, then path-consistency with 

respect to a given path can be interpreted as existence of paths in the resulting directed 

graph. 

More precisely, let       
    

      
  with              for           be 

a sequence of variables in the literal encoding CSP model        . A directed graph 

   
          , in which path-consistency can be interpreted as the existence of 

paths, is defined as follows: let         
  

   be a set of vertices and if 

   
  

  
   

  

            
   

     
              

 
 then a directed edge    

  

  
   

  

            
  is included 

into the set of edges  . A pair of values     
          and     

          is path-

consistent with respect to the path   if there is an edge      
       

    in    
     and there 

exists a path from the vertex     
   to the vertex     

   in    
    . The graph    

     will be 

called a graph interpretation of path-consistency – see Figure 1 for illustration. 

    

    
  
    

    

                                                                  

                  

   

   
  

   
  

   

   
  
   

   

   

   
  

   
  

    

    
  
    

    

   

   
  

   
  

   

   
  
   

   

   

   
  

   
  

    

    
  
    

    

   

   
  

   
  

   

   
  
   

   

   

   
  

   
  

                         
           



Notice that path-consistency is incomplete in the sense that a pair of values may be 

path-consistent even if there is no solution of the problem that contains this pair of 

values (see Figure 1 again). Analogically, the problem may be path-consistent (that is, 

path-consistent with respect to all the paths) even if it has no solution actually. The 

partial reason for this weakness of path-consistency is that many constraints are 

ignored when a pair of values is checked. This is especially apparent if a longer path of 

variables is considered. Only constraints over pairs of variables neighboring in the path 

are considered while many constraints such as that for example over the first and the 

third variable in the path are ignored. This property is disadvantageous especially in 

SAT where stronger reasoning is typically more beneficial. 

For further augmentation of path-consistency, it is also convenient to prepare a so 

called auxiliary constraint graph for the model with respect to the path   that reflects 

all the constraints over the variables of the path  . It is an undirected graph         
      and it is defined as follows:         

  
   ; an edge    

  

  
     

    is added to    if 
   

  

  
     

     
     

    
 

; and all the edges    
  

  
   

  

  
  for all           and       

              . Observe that the auxiliary constraint graph subsumes the graph 

interpretation with respect to the same path. Notice also, that there is a complete 

subgraph over vertices corresponding to values from the domain of the same variable. 

4. Making Path-consistency Stronger 

A modification of path-consistency has been proposed to overcome mentioned 

limitations of the standard version. To increase inference strength of path-consistency 

additional requirements on the path in the graph model are imposed. These additional 

requirements reflect constraints over non-neighboring variables in the path of variables. 

As the auxiliary constraint graph represents an explicit representation of constraints, it 

is exploited for determining additional requirements. 

4.1.  An Initial Augmentation of Path-consistency 

An approach adopted in this work restricts the size of the intersection of the 

constructed path with certain subsets of vertices in the graph interpretation of path-

consistency. More precisely, let    
           be a graph interpretation of path-

consistency in a CSP model of SAT        . The set of vertices   is partitioned into 

disjoint sequences            called layers (that is,     
 
      and              

             ; where denotes the union of the sequence   , that is         
 
    

for               ). The maximum size of the intersection of the path being 

checked to exist with individual layers is determined using the set of constraints   

(notice that all the constraints over   are considered – not only constraints over 

neighboring variables in  ). This proposal will be called an initial augmentation of 

path-consistency in the rest of the text. 

The concept of the initial augmentation of path-consistency comes from [17]. The 

process of decomposition of the set of vertices into layers is done over the 

corresponding auxiliary constraint graph        . Vertices of         are 

decomposed into vertex disjoint stable sets (a stable set is a subset of vertices of a 

graph where no two vertices are adjacent with respect to edges). The knowledge of 

such decomposition can be then used to partition vertices into layers that directly 

correspond to found stable sets. However, determining a stable subset is a difficult task 



itself. Hence, a greedy approach has been used to obtain an acceptable solution. More 

details about how to decompose vertices into layers greedily for the initial 

augmentation can be found in [17].  

Since it is possible to assign to a variable at most one value from values 

corresponding to vertices of the stable set in        , the maximum size of the 

intersection of the path with a layer is thus at most  . Notice, that at most one value 

from vertices corresponding to the domain of a variable can be selected (this is due to 

the presence of the complete subgraph over the set of vertices corresponding to the 

domain of a variable in        ). Notice further, that if a value corresponding to a 

vertex in a stable set is selected than all the values corresponding to other vertices of 

the stable set are ruled out since they are in conflict with the selected value with respect 

to constraints. 

A quite negative result has been obtained in [17]. It has been shown that finding a 

path, which conforms to the calculated maximum size of the intersection with 

individual layers, corresponds to finding a Hamiltonian path [4]. This is known to be an 

NP-hard problem. Hence, it is not tractable to find a path that satisfies defined 

requirements exactly. Moreover, initial experiments showed that it is almost impossible 

to make any reasonable relaxation of proposed requirements. Every relaxation of 

requirements on the path being constructed proposed by the author leads to weakening 

the modified path-consistency down to the level of the standard version of path-

consistency (specifically, several adaptations of the algorithm for finding single source 

shortest paths [6] have been evaluated by the author). 

These initial findings founded an effort to further augment requirements on the 

constructed path in order to allow developing stronger and more efficient relaxations. 

The result of this effort is a concept of a so called modified version of path-consistency. 

4.2. A Modified Version of Path-consistency 

Again, partitioning of vertices of    
     into layers is supposed. In addition, the 

sequencing of variables in the path   is exploited for defining the maximum size of the 

intersection of the constructed path with layers. Particularly, the path being constructed 

is required to conform to the calculated maximum size of the intersection with vertices 

of the layer preceding a given vertex of the path with respect to the sequencing of 

variables in  . The maximum size of the intersection is again imposed by the set of 

constraints  . More precisely, let            be layers of    
    ; let a function 

      defines requirements on the maximum size of intersections imposed by 

constraints as follows:     
   is the maximum size of the intersection of the constructed 

path with a set of vertices    
    

     
   where       

    
     

  
   with   

          and             . Let a consistency defined by this new requirement on 

the constructed path be called a modified path-consistency. Observe that this new 

concept is a generalization of the initial augmentation described above (see Figure 2 for 

illustration). 

It is intractable to construct a path conforming to the maximum sizes of 

intersections determined by   as in the case of the initial augmentation. Nevertheless, it 

is possible to make a tractable relaxation of these requirements which does not collapse 

down to the level of the standard path-consistency. 

Let us now briefly describe such a tractable relaxation. Suppose that   is already 

known (the process of calculation of   will be described in the following section). Let 

        
  and         

  be a pair of values for that a consistency is being 



checked. Two assignments will be maintained:        and       
        

where   
        denotes matrices of the size         over   . The assignment   

will express the total number of distinct paths in    
           starting in    and 

ending in a given vertex. Observe, that it is easy to calculate     . It is determined 

recursively by the expression:                      , while        . The 

assignment   expresses statistical information about paths in     
     starting in    

and ending in a given vertex regarding the size of the intersection with layers. More 

precisely, an element of      at  -th row and  -th column (that is,        ) with    , 

           , and             represents the number of distinct paths starting in 

   and ending in   intersecting with the layer    in exactly   vertices that conform to 

relaxed requirements (that is, the size of the intersection of these paths with    is  ). If 
the mentioned conformation to relaxed requirements is omitted, the information 

maintained in   is not difficult to be calculated recursively for every vertex of    
    . 

A pseudo-code for the above calculation is given in [18]. 

 

 

Figure 2. An illustration of modified path-consistency in the CSP model of a SAT problem. The 

maximum size of the intersection of the constructed path with vertices preceding the given vertex 

(including) in its layer is calculated using constraints for each vertex - these maximum sizes are 

denoted as the function  . For example, having      
     then the constructed path can intersect 

the subset of vertices     
     

     
     

   (first occurrences of literals in first four variables of the path 

 ) of the layer    in at most two vertices. Observe, that these requirements on the path being 

constructed rules out its existence for connecting a pair of vertices    
  from the left most variable 

(occurrence of literal    ) and    
  from the right most variable (occurrence of literal   ). 

Compare it with the standard path-consistency in Figure 1 where the corresponding path 

connecting the same pair of vertices exists. 

 

Requirements on the size of the intersection of the constructed path with layers 

represented by   are relaxed in the following way. If it is detected that all the paths 

staring in    and ending in   intersects the layer containing   in more vertices than it is 

allowed by  , then it is possible to conclude that there is no path connecting    and   

that conforms to calculated maximum sizes of intersections with layers. Hence,   is 

unreachable from    under given circumstances. The described relaxation can be 

expressed using defined assignments   and  . Let     be a layer containing   (that is, 

      ). If there is some  >      such that              , then there is no path 

connecting    and   conforming to the maximum sizes of intersection with layers. 

Observe, that although there is no  >      such that              , the required path 

still need not to exist. This is the principle which is called the relaxation in the context 

of this paper. 

   

    

    

   

   

   

   

    

    

   

   

   

   

    

    

   

   

   

   

                         
           

   

 

  

 
  

 

  

 

  

 

  

 

  

 

    

 
  

 
  

 
  

 
  

 

  

 



If it is detected that there is no path connecting    and    that conforms to relaxed 

requirements on the maximum sizes of intersections with layers, the pair of values    

and    is said to be inconsistent with respect to the modified path-consistency. 

5. A Note on Modified Path-Consistency Enforcing Algorithms 

Several essential steps have to be done in order to be able to enforce modified path-

consistency according to the suggestion in the previous section. These essential steps 

are: how to construct layer decomposition of the graph interpretation of path 

consistency, then we need to know how to determine maximum sizes of intersections 

with layers, and finally how to perform modified path-consistency checking. 

Constructions carried out in all these steps must regard the objective that the 

inference ability of the resulting modified path-consistency should as strong as possible 

(since every step induces a possible relaxation, this means that all these relaxations 

should not relax the original constraints too much). 

The detailed description of how to perform mentioned essential steps is given in 

[18]. Let us briefly note that layer decomposition is made greedily while the most 

constrained parts of the graph interpretation are preferably included into the currently 

constructed layer. To estimate maximum sizes of intersections with layers, vertices in 

the given layer are ordered with correspondence to the selected path. Then vertices of 

the layer are processed in the given ordering. It is checked for every vertex whether it 

can increase the size of the intersection. 

Having maximum sizes of intersections, it is possible to check the modified path-

consistency according to the computation described in the previous section. The 

pseudo-code of consistency checking algorithm is given in [18]. Let us finally note that 

worst-case time complexity of all the algorithms necessary to carry out consistency 

checking is polynomial. 

6. Experimental Evaluation 

We have performed an experimental evaluation of the modified path-consistency on a 

set of Boolean satisfiability instances from the Satisfiability Library (SATLib) [12] and 

from [1]. The evaluation is aimed on the comparison of preprocessing abilities of the 

standard path-consistency and the modified version. Results are reported in Table 1 

(types of instances with non-trivial behavior of consistencies are reported only). 

We have measured the number of binary clauses inferred by the standard path-

consistency and by the modified path-consistency. The runtime needed for this 

computation has been measured as well. It is possible to conclude that modified path 

consistency typically infers substantially more binary clauses than the standard version. 

This is especially true for instances with relatively clustered graph interpretations (fpga, 

hole, and chnl instances). Next, we have evaluated whether the application of 

consistencies as a preprocessing technique can reduce the number of decisions made by 

the SAT solver. The Minisat2 solver [9] has been used for this test. It is possible to 

observe that modified-path consistency can reduce the number of decisions of the 

solver significantly while it makes greater reduction of decisions than the standard path 

consistency in most cases. 



Table 1. Comparison of the standard path-consistency (PC) and modified path-consistency 

(mPC). The number of newly inferred clauses by both tested consistencies and runtime* are 

reported. The comparison of preprocessing abilities is shown in terms of the number of decisions 

made by the Minisat2 SAT solver of instances augmented by inferred clauses. 

SAT 

instance 

Instance 

characteristics 
Inferred clauses Minisat2 decisions 

Variables Clauses PC mPC 
Runtime 
PC (sec.) 

Runtime 
mPC (sec.) 

Original PC mPC 

ais6 61 581 0 37 0 0.22 27 27 2 

ais12 265 5666 0 216 1.94 14.58 117 117 1 

anomaly 48 261 94 103 0.09 0.14 5 1 1 

hole6 42 133 0 42 0.01 0.04 1777 1777 1 

hole7 56 204 0 56 0.02 0.14 10123 10123 1 

hole8 72 297 0 72 0.04 0.32 40554 40554 1 

hole9 90 415 0 90 0.07 0.64 202160 202160 1 

par8-1-c 64 254 5 10 0.04 0.08 12 3 2 

par8-2-c 68 270 0 2 0.04 0.08 17 17 5 

par8-3-c 75 298 0 1 0.05 0.09 43 43 9 

par8-4-c 67 266 0 2 0.04 0.08 13 13 6 

par16-1-c 317 1264 0 4 0.26 0.39 1729 1729 2 

par16-2-c 349 1292 0 4 0.27 0.4 5993 5993 2 

par16-3-c 334 1332 0 4 0.27 0.39 4280 4280 2 

par16-4-c 324 1292 0 4 0.26 0.39 338 338 2 

chnl10_11 220 1122 0 220 0.23 2.38 N/A N/A 1 

chnl10_12 240 1344 0 240 0.25 2.6 N/A N/A 1 

chnl10_13 260 1586 0 260 0.27 2.82 N/A N/A 1 

chnl11_12 264 1476 0 264 0.36 4.18 N/A N/A 1 

chnl11_13 286 1742 0 286 0.39 4.54 N/A N/A 1 

chnl11_20 440 4220 0 440 0.63 7.05 N/A N/A 1 

fpga10_8_sat 120 448 0 80 0.14 1.23 264 264 1 

fpga10_9_sat 135 549 0 90 0.19 1.67 250 250 1 

fpga12_8_sat 144 560 0 96 0.25 2.6 390 390 1 

fpga12_9_sat 162 684 0 108 0.31 3.26 383 383 1 

fpga12_11_sat 198 968 0 132 0.5 5.19 421 421 1 

fpga12_12_sat 216 1128 0 144 0.63 6.5 403 403 1 

fpga13_10_sat 195 905 0 130 0.49 5.43 499 499 1 

fpga13_12_sat 234 1242 0 156 0.76 8.31 335 335 1 

fpga10_12_uns_rcr 240 1344 0 240 0.25 2.61 N/A N/A 1 

fpga10_13_uns_rcr 260 1586 0 260 0.28 2.82 N/A N/A 1 

fpga10_15_uns_rcr 300 2130 0 300 0.32 3.27 N/A N/A 1 

fpga10_20_uns_rcr 400 3840 0 400 0.45 4.37 N/A N/A 1 

fpga11_11_uns_rcr 264 1476 0 264 0.36 4.18 N/A N/A 1 

fpga11_12_uns_rcr 286 1742 0 286 0.39 4.54 N/A N/A 1 

fpga11_13_uns_rcr 308 2030 0 308 0.43 4.93 N/A N/A 1 

fpga11_15_uns_rcr 330 2340 0 330 0.46 5.26 N/A N/A 1 

huge 459 7054 359 399 8.52 13.66 41 2 2 

jnh1 100 850 37 37 1.1 14.8 48 2 1 

jnh2 100 850 157 157 1.04 11.62 12 1 1 

jnh3 100 850 15 16 1.07 13.26 92 1 1 

jnh4 100 850 4 6 1.17 11.57 26 6 7 

logistics.a 828 6718 344 371 1.71 7.3 1731 1 1 

medium 116 953 73 83 0.58 0.92 11 2 2 

s3-3-3-8 912 8356 3 10 0.56 1.27 10871 11932 17 

7. Conclusions and Future Work 

A new consistency for Boolean satisfiability has been proposed in this paper. The new 

type of consistency augments the standard path-consistency by exploiting global 

properties of the input instance. Particularly, stronger requirements are imposed on the 

path being checked to exist compared to the situation in the standard path-consistency – 

                                                           
* All the experiments were run on an dual AMD Opteron 1600 MHz, with 1GB RAM under Mandriva 

Linux 10.1, 32-bit edition; gcc 3.4.3 with optimization level –o3 was used for compilation. 



namely, the size of the intersection of the path with certain sets called layers is 

restricted. The experimental evaluation has shown that it is possible to use the modified 

path-consistency as a preprocessing tool for SAT solving. 

For future work we plan to enhance the modified path-consistency in terms of 

inference strength as well as in terms of efficiency of its propagation algorithms. 

Currently, the biggest limitation of the proposed concept is absence of a fine tuned 

implementation of propagation algorithms for modified path-consistency which 

precludes making experimental evaluation on large satisfiability instances. Our future 

work will be mainly targeted on overcoming this limitation. 
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