
Exploiting Global Properties in

Path-Consistency Applied on SAT

Pavel SURYNEK
a

a
 Charles University in Prague

Faculty of Mathematics and Physics

Malostranské náměstí 25, Praha, 118 00, Czech Republic

pavel.surynek@mff.cuni.cz

Abstract. The task of enforcing certain level of consistency in Boolean

satisfiability problem (SAT problem) is addressed in this paper. The concept of

path-consistency known from the constraint programming paradigm is revisited in
this context. Augmentations how to make path-consistency more suitable for SAT

are specifically studied. A stronger variant of path-consistency is described and its

theoretical properties are investigated. It combines the standard path consistency
on the literal encoding of the given SAT instance with global properties calculated

from constraints imposed by the instance – namely with the maximum number of

visits of a certain set by the path. Unfortunately, the problem of enforcing this
variant of path-consistency turned out to be NP hard. Hence, various types of

relaxations of this stronger version of path-consistency were proposed. The relaxed

version of the proposed consistency represents a trade-off between the inference
strength and the complexity of its propagation algorithm. A presented theoretical

analysis shows that computational costs of the proposed consistency are kept

reasonably low. Performed experiments show that the new consistency
outperforms the standard path-consistency in terms of the inference strength as

well.

Keywords. local consistency, global consistency, path-consistency, CSP, SAT

Introduction and Motivation

A method how to increase the inference strength of path-consistency [14, 15] is

described in this paper. It combines the standard path-consistency on the literal

encoding model [19] of the given Boolean satisfiability (SAT) instance [5] with global

properties calculated from the instance. The existence of a path in a certain graph

interpretation of the instance is being checked by the standard path-consistency. In the

augmented variants, additional requirements are imposed on the path being checked to

exist. Unfortunately, the problem of checking the existence of a path according to

augmented requirements turned out to be NP-complete [17]. Hence, various relaxations

that still preserve the inference strength of augmented variants above the level of the

standard path-consistency were proposed. An evaluation of the benefit of the new path-

This work is supported by The Czech Science Foundation (Grantová agentura České republiky -

GAČR) under the contract number 201/09/P318 and by The Ministry of Education, Youth and Sports,
Czech Republic (Ministerstvo školství, mládeže a tělovýchovy ČR – MŠMT ČR) under the contract

number MSM 0021620838.

mailto:pavel.surynek@mff.cuni.cz

consistency has been done through a simple SAT preprocessing tool which is based on

it. The result is that preprocessing can reduce the number of decisions of the SAT

solver as well as the overall runtime significantly on a set of representative instances.

1. Notations and Definitions

Concepts of constraint satisfaction problem (CSP) [7] and Boolean satisfiability (SAT)

[5] need to be established first to make reasoning about path-consistency in the context

of SAT easier to understand.

Definition 1 (Constraint satisfaction problem - CSP). Let be a finite set

representing domain universe. A constraint satisfaction problem [7] is a triple

where is a finite set of variables, is a finite set of constraints, and is

a function that defines domains of individual variables from (that is, is a

set of values that can be assigned to the variable). Each constraint from is

of the form

 where is called an arity of the constraint ,

the tuple

 with

 for is called a scope of the

constraint, and the relation

 defines the set of

tuples of values for that the constraint is satisfied. The task is to find a valuation of

variables such that and

 . □

A constraint with the scope

) will be denoted as

 ; this notation is useful when the ordering of variables in the scope is

not known from the context; when ordering of variables in the scope matters, then a

notation

 will be used instead.

A CSP is called binary if all the constraints have the arity of two. The expressive

power of a binary CSP is not reduced in comparison with a general one since every

CSP can be transformed into an equivalent binary CSP [16]. The key concept of path-

consistency [15] that is addressed in this paper is defined for binary CSPs only. It is

also convenient to suppose, that each pair of variables is constrained by at most one

constraint.

Definition 2 (Boolean satisfiability problem - SAT). Let be a finite set of Boolean

variables; that is, a set of variables that can be assigned either or . A

Boolean formula over the set of variables in a so called conjunctive normal form

(CNF) [13] is the construct of the form

 where

 with either
 or

 for some for ; is called a literal and

 for is called a clause. The task is to find a valuation of Boolean

variables such that evaluates to under while

(negation), (disjunction), and (conjunction) are interpreted commonly in the

Boolean algebra. A formula for that such a satisfying valuation exists is called

satisfiable. □

It is a well known result that the language consisting of satisfiable formulas in CNF

as well as general ones is an NP-complete problem [5, 10]. It is not difficult to observe

that the language of solvable instances of CSP is NP-complete as well since it just

generalizes SAT in fact (constraints are represented by clauses) while membership of

CSP into the NP class is preserved by the generalization.

2. Path-consistency in CSP

The standard definition of path-consistency in CSP will be recalled before the

augmented versions and their relaxations are introduced. The following definition

refers to general paths of variables which is not necessary in fact. However, this style

of definition will be more suitable for making intended augmentations.

Definition 3 (Path-consistency - PC). Let be a binary CSP and let
 with for be a sequence of variables called a path.

A pair of values and is path-consistent with respect to if

there exists a valuation with such

that constraints are satisfied by for every . The path

 is said to be path-consistent if all the pairs of values from and

respectively are path-consistent with respect to . Finally, the CSP is said to

be path-consistent if it is path-consistent for every path. □

Notice that variables forming the path in the definition do not need to be necessarily

distinct. Although the notion of path-consistency seems to be computationally

infeasible since there are typically too many paths, it is sufficient to check path-

consistency for all the paths consisting of triples of variables only to ensure that the

given CSP is path-consistent [14, 15]. In other words, although it seems that path-

consistency captures the problem globally (a path can go through large portion of

variables of the instance), it merely defines a local property.

There exist many algorithms for enforcing path-consistency in a CSP such as PC-4

[11] and PC-6 [1, 3]. They differ in the representation of auxiliary data structures and

the efficiency. The common feature of path-consistency algorithms is however the

process how the consistency is enforced. It is done by eliminating pairs of inconsistent

values until a path-consistent state is reached (the smallest set of pairs of values such

that their elimination makes the problem path-consistent is being pursued). The process

of elimination of pairs of values is typically done by pruning extensional representation

of constraints (lists of allowed tuples) to forbid more pairs of values.

3. Standard Path-consistency in SAT

The aim of this work is to modify path-consistency to make it applicable on SAT and

to increase its inference strength by incorporating certain global reasoning into it. The

easier task is to make path-consistency applicable on SAT - it is sufficient to model

SAT as CSP. A so called literal encoding [19], which of the result is a binary CSP, is

particularly used. This kind of encoding is especially suitable since it allows natural

expressing of path-consistency in terms of graph constructs.

Let

 be a Boolean formula in CNF over a set of Boolean variables

 . Let

 be a domain universe; that is, a constant symbol with the

stripe is introduced into for each literal occurrence in (notice that, each occurrence

of a literal corresponds to a different constant symbol). The corresponding CSP

 using literal encoding is built as follows: ; that is, a

variable is introduced for each clause of ; it holds for that

 ; that is, the domain of an -th clause contains constant symbols corresponding

to all its literals. A constraint
 is introduced over every

pair of variables with where a variable such that

either

 or

 exists. Such a

constraint then forbids every tuple of values

 such that there exists

 for that either

 or

 (that is, the tuple

 is removed from which has been initially set to

). A

solution of the resulting CSP corresponds to the valuation of Boolean

variables of that satisfies and vice versa [19].

Figure 1. An illustration of path-consistency in the CSP model of a SAT problem. The SAT

problem represented by a formula shown here is a representation of the requirement of

selecting an odd number of variables from every of the following sets to be true: ,

 , . Observe, that there is no satisfying valuation of . However, the pair of literals

 and from the left most variable and from the right most variable respectively are path-

consistent with respect to a depicted path since they are non-conflicting and there exists a path

from the left to the right consisting of edges between neighboring variables connecting allowed

pairs of values (the path is marked by bold edges and by darker vertices).

Having the CSP model of SAT it is possible to check path-consistency for the

corresponding CSP model and proclaim the original SAT path-consistent or path-

inconsistent accordingly. If elements of variable domains are interpreted as vertices and

allowed tuples of values as directed edges connecting them, then path-consistency with

respect to a given path can be interpreted as existence of paths in the resulting directed

graph.

More precisely, let

 with for be

a sequence of variables in the literal encoding CSP model . A directed graph

 , in which path-consistency can be interpreted as the existence of

paths, is defined as follows: let

 be a set of vertices and if

 then a directed edge

 is included

into the set of edges . A pair of values
 and

 is path-

consistent with respect to the path if there is an edge

 in
 and there

exists a path from the vertex
 to the vertex

 in
 . The graph

 will be

called a graph interpretation of path-consistency – see Figure 1 for illustration.

Notice that path-consistency is incomplete in the sense that a pair of values may be

path-consistent even if there is no solution of the problem that contains this pair of

values (see Figure 1 again). Analogically, the problem may be path-consistent (that is,

path-consistent with respect to all the paths) even if it has no solution actually. The

partial reason for this weakness of path-consistency is that many constraints are

ignored when a pair of values is checked. This is especially apparent if a longer path of

variables is considered. Only constraints over pairs of variables neighboring in the path

are considered while many constraints such as that for example over the first and the

third variable in the path are ignored. This property is disadvantageous especially in

SAT where stronger reasoning is typically more beneficial.

For further augmentation of path-consistency, it is also convenient to prepare a so

called auxiliary constraint graph for the model with respect to the path that reflects

all the constraints over the variables of the path . It is an undirected graph
 and it is defined as follows:

 ; an edge

 is added to if

; and all the edges

 for all and

 . Observe that the auxiliary constraint graph subsumes the graph

interpretation with respect to the same path. Notice also, that there is a complete

subgraph over vertices corresponding to values from the domain of the same variable.

4. Making Path-consistency Stronger

A modification of path-consistency has been proposed to overcome mentioned

limitations of the standard version. To increase inference strength of path-consistency

additional requirements on the path in the graph model are imposed. These additional

requirements reflect constraints over non-neighboring variables in the path of variables.

As the auxiliary constraint graph represents an explicit representation of constraints, it

is exploited for determining additional requirements.

4.1. An Initial Augmentation of Path-consistency

An approach adopted in this work restricts the size of the intersection of the

constructed path with certain subsets of vertices in the graph interpretation of path-

consistency. More precisely, let
 be a graph interpretation of path-

consistency in a CSP model of SAT . The set of vertices is partitioned into

disjoint sequences called layers (that is,

 and

 ; where denotes the union of the sequence , that is

for). The maximum size of the intersection of the path being

checked to exist with individual layers is determined using the set of constraints

(notice that all the constraints over are considered – not only constraints over

neighboring variables in). This proposal will be called an initial augmentation of

path-consistency in the rest of the text.

The concept of the initial augmentation of path-consistency comes from [17]. The

process of decomposition of the set of vertices into layers is done over the

corresponding auxiliary constraint graph . Vertices of are

decomposed into vertex disjoint stable sets (a stable set is a subset of vertices of a

graph where no two vertices are adjacent with respect to edges). The knowledge of

such decomposition can be then used to partition vertices into layers that directly

correspond to found stable sets. However, determining a stable subset is a difficult task

itself. Hence, a greedy approach has been used to obtain an acceptable solution. More

details about how to decompose vertices into layers greedily for the initial

augmentation can be found in [17].

Since it is possible to assign to a variable at most one value from values

corresponding to vertices of the stable set in , the maximum size of the

intersection of the path with a layer is thus at most . Notice, that at most one value

from vertices corresponding to the domain of a variable can be selected (this is due to

the presence of the complete subgraph over the set of vertices corresponding to the

domain of a variable in). Notice further, that if a value corresponding to a

vertex in a stable set is selected than all the values corresponding to other vertices of

the stable set are ruled out since they are in conflict with the selected value with respect

to constraints.

A quite negative result has been obtained in [17]. It has been shown that finding a

path, which conforms to the calculated maximum size of the intersection with

individual layers, corresponds to finding a Hamiltonian path [4]. This is known to be an

NP-hard problem. Hence, it is not tractable to find a path that satisfies defined

requirements exactly. Moreover, initial experiments showed that it is almost impossible

to make any reasonable relaxation of proposed requirements. Every relaxation of

requirements on the path being constructed proposed by the author leads to weakening

the modified path-consistency down to the level of the standard version of path-

consistency (specifically, several adaptations of the algorithm for finding single source

shortest paths [6] have been evaluated by the author).

These initial findings founded an effort to further augment requirements on the

constructed path in order to allow developing stronger and more efficient relaxations.

The result of this effort is a concept of a so called modified version of path-consistency.

4.2. A Modified Version of Path-consistency

Again, partitioning of vertices of
 into layers is supposed. In addition, the

sequencing of variables in the path is exploited for defining the maximum size of the

intersection of the constructed path with layers. Particularly, the path being constructed

is required to conform to the calculated maximum size of the intersection with vertices

of the layer preceding a given vertex of the path with respect to the sequencing of

variables in . The maximum size of the intersection is again imposed by the set of

constraints . More precisely, let be layers of
 ; let a function

 defines requirements on the maximum size of intersections imposed by

constraints as follows:
 is the maximum size of the intersection of the constructed

path with a set of vertices

 where

 with

 and . Let a consistency defined by this new requirement on

the constructed path be called a modified path-consistency. Observe that this new

concept is a generalization of the initial augmentation described above (see Figure 2 for

illustration).

It is intractable to construct a path conforming to the maximum sizes of

intersections determined by as in the case of the initial augmentation. Nevertheless, it

is possible to make a tractable relaxation of these requirements which does not collapse

down to the level of the standard path-consistency.

Let us now briefly describe such a tractable relaxation. Suppose that is already

known (the process of calculation of will be described in the following section). Let

 and

 be a pair of values for that a consistency is being

checked. Two assignments will be maintained: and

where
 denotes matrices of the size over . The assignment

will express the total number of distinct paths in
 starting in and

ending in a given vertex. Observe, that it is easy to calculate . It is determined

recursively by the expression: , while . The

assignment expresses statistical information about paths in
 starting in

and ending in a given vertex regarding the size of the intersection with layers. More

precisely, an element of at -th row and -th column (that is,) with ,

 , and represents the number of distinct paths starting in

 and ending in intersecting with the layer in exactly vertices that conform to

relaxed requirements (that is, the size of the intersection of these paths with is). If
the mentioned conformation to relaxed requirements is omitted, the information

maintained in is not difficult to be calculated recursively for every vertex of
 .

A pseudo-code for the above calculation is given in [18].

Figure 2. An illustration of modified path-consistency in the CSP model of a SAT problem. The

maximum size of the intersection of the constructed path with vertices preceding the given vertex

(including) in its layer is calculated using constraints for each vertex - these maximum sizes are

denoted as the function . For example, having
 then the constructed path can intersect

the subset of vertices

 (first occurrences of literals in first four variables of the path

) of the layer in at most two vertices. Observe, that these requirements on the path being

constructed rules out its existence for connecting a pair of vertices
 from the left most variable

(occurrence of literal) and
 from the right most variable (occurrence of literal).

Compare it with the standard path-consistency in Figure 1 where the corresponding path

connecting the same pair of vertices exists.

Requirements on the size of the intersection of the constructed path with layers

represented by are relaxed in the following way. If it is detected that all the paths

staring in and ending in intersects the layer containing in more vertices than it is

allowed by , then it is possible to conclude that there is no path connecting and

that conforms to calculated maximum sizes of intersections with layers. Hence, is

unreachable from under given circumstances. The described relaxation can be

expressed using defined assignments and . Let be a layer containing (that is,

). If there is some > such that , then there is no path

connecting and conforming to the maximum sizes of intersection with layers.

Observe, that although there is no > such that , the required path

still need not to exist. This is the principle which is called the relaxation in the context

of this paper.

If it is detected that there is no path connecting and that conforms to relaxed

requirements on the maximum sizes of intersections with layers, the pair of values

and is said to be inconsistent with respect to the modified path-consistency.

5. A Note on Modified Path-Consistency Enforcing Algorithms

Several essential steps have to be done in order to be able to enforce modified path-

consistency according to the suggestion in the previous section. These essential steps

are: how to construct layer decomposition of the graph interpretation of path

consistency, then we need to know how to determine maximum sizes of intersections

with layers, and finally how to perform modified path-consistency checking.

Constructions carried out in all these steps must regard the objective that the

inference ability of the resulting modified path-consistency should as strong as possible

(since every step induces a possible relaxation, this means that all these relaxations

should not relax the original constraints too much).

The detailed description of how to perform mentioned essential steps is given in

[18]. Let us briefly note that layer decomposition is made greedily while the most

constrained parts of the graph interpretation are preferably included into the currently

constructed layer. To estimate maximum sizes of intersections with layers, vertices in

the given layer are ordered with correspondence to the selected path. Then vertices of

the layer are processed in the given ordering. It is checked for every vertex whether it

can increase the size of the intersection.

Having maximum sizes of intersections, it is possible to check the modified path-

consistency according to the computation described in the previous section. The

pseudo-code of consistency checking algorithm is given in [18]. Let us finally note that

worst-case time complexity of all the algorithms necessary to carry out consistency

checking is polynomial.

6. Experimental Evaluation

We have performed an experimental evaluation of the modified path-consistency on a

set of Boolean satisfiability instances from the Satisfiability Library (SATLib) [12] and

from [1]. The evaluation is aimed on the comparison of preprocessing abilities of the

standard path-consistency and the modified version. Results are reported in Table 1

(types of instances with non-trivial behavior of consistencies are reported only).

We have measured the number of binary clauses inferred by the standard path-

consistency and by the modified path-consistency. The runtime needed for this

computation has been measured as well. It is possible to conclude that modified path

consistency typically infers substantially more binary clauses than the standard version.

This is especially true for instances with relatively clustered graph interpretations (fpga,

hole, and chnl instances). Next, we have evaluated whether the application of

consistencies as a preprocessing technique can reduce the number of decisions made by

the SAT solver. The Minisat2 solver [9] has been used for this test. It is possible to

observe that modified-path consistency can reduce the number of decisions of the

solver significantly while it makes greater reduction of decisions than the standard path

consistency in most cases.

Table 1. Comparison of the standard path-consistency (PC) and modified path-consistency

(mPC). The number of newly inferred clauses by both tested consistencies and runtime* are

reported. The comparison of preprocessing abilities is shown in terms of the number of decisions

made by the Minisat2 SAT solver of instances augmented by inferred clauses.

SAT

instance

Instance

characteristics
Inferred clauses Minisat2 decisions

Variables Clauses PC mPC
Runtime
PC (sec.)

Runtime
mPC (sec.)

Original PC mPC

ais6 61 581 0 37 0 0.22 27 27 2

ais12 265 5666 0 216 1.94 14.58 117 117 1

anomaly 48 261 94 103 0.09 0.14 5 1 1

hole6 42 133 0 42 0.01 0.04 1777 1777 1

hole7 56 204 0 56 0.02 0.14 10123 10123 1

hole8 72 297 0 72 0.04 0.32 40554 40554 1

hole9 90 415 0 90 0.07 0.64 202160 202160 1

par8-1-c 64 254 5 10 0.04 0.08 12 3 2

par8-2-c 68 270 0 2 0.04 0.08 17 17 5

par8-3-c 75 298 0 1 0.05 0.09 43 43 9

par8-4-c 67 266 0 2 0.04 0.08 13 13 6

par16-1-c 317 1264 0 4 0.26 0.39 1729 1729 2

par16-2-c 349 1292 0 4 0.27 0.4 5993 5993 2

par16-3-c 334 1332 0 4 0.27 0.39 4280 4280 2

par16-4-c 324 1292 0 4 0.26 0.39 338 338 2

chnl10_11 220 1122 0 220 0.23 2.38 N/A N/A 1

chnl10_12 240 1344 0 240 0.25 2.6 N/A N/A 1

chnl10_13 260 1586 0 260 0.27 2.82 N/A N/A 1

chnl11_12 264 1476 0 264 0.36 4.18 N/A N/A 1

chnl11_13 286 1742 0 286 0.39 4.54 N/A N/A 1

chnl11_20 440 4220 0 440 0.63 7.05 N/A N/A 1

fpga10_8_sat 120 448 0 80 0.14 1.23 264 264 1

fpga10_9_sat 135 549 0 90 0.19 1.67 250 250 1

fpga12_8_sat 144 560 0 96 0.25 2.6 390 390 1

fpga12_9_sat 162 684 0 108 0.31 3.26 383 383 1

fpga12_11_sat 198 968 0 132 0.5 5.19 421 421 1

fpga12_12_sat 216 1128 0 144 0.63 6.5 403 403 1

fpga13_10_sat 195 905 0 130 0.49 5.43 499 499 1

fpga13_12_sat 234 1242 0 156 0.76 8.31 335 335 1

fpga10_12_uns_rcr 240 1344 0 240 0.25 2.61 N/A N/A 1

fpga10_13_uns_rcr 260 1586 0 260 0.28 2.82 N/A N/A 1

fpga10_15_uns_rcr 300 2130 0 300 0.32 3.27 N/A N/A 1

fpga10_20_uns_rcr 400 3840 0 400 0.45 4.37 N/A N/A 1

fpga11_11_uns_rcr 264 1476 0 264 0.36 4.18 N/A N/A 1

fpga11_12_uns_rcr 286 1742 0 286 0.39 4.54 N/A N/A 1

fpga11_13_uns_rcr 308 2030 0 308 0.43 4.93 N/A N/A 1

fpga11_15_uns_rcr 330 2340 0 330 0.46 5.26 N/A N/A 1

huge 459 7054 359 399 8.52 13.66 41 2 2

jnh1 100 850 37 37 1.1 14.8 48 2 1

jnh2 100 850 157 157 1.04 11.62 12 1 1

jnh3 100 850 15 16 1.07 13.26 92 1 1

jnh4 100 850 4 6 1.17 11.57 26 6 7

logistics.a 828 6718 344 371 1.71 7.3 1731 1 1

medium 116 953 73 83 0.58 0.92 11 2 2

s3-3-3-8 912 8356 3 10 0.56 1.27 10871 11932 17

7. Conclusions and Future Work

A new consistency for Boolean satisfiability has been proposed in this paper. The new

type of consistency augments the standard path-consistency by exploiting global

properties of the input instance. Particularly, stronger requirements are imposed on the

path being checked to exist compared to the situation in the standard path-consistency –

* All the experiments were run on an dual AMD Opteron 1600 MHz, with 1GB RAM under Mandriva

Linux 10.1, 32-bit edition; gcc 3.4.3 with optimization level –o3 was used for compilation.

namely, the size of the intersection of the path with certain sets called layers is

restricted. The experimental evaluation has shown that it is possible to use the modified

path-consistency as a preprocessing tool for SAT solving.

For future work we plan to enhance the modified path-consistency in terms of

inference strength as well as in terms of efficiency of its propagation algorithms.

Currently, the biggest limitation of the proposed concept is absence of a fine tuned

implementation of propagation algorithms for modified path-consistency which

precludes making experimental evaluation on large satisfiability instances. Our future

work will be mainly targeted on overcoming this limitation.

References

[1] Aloul, F. A., Ramani, A., Markov, I. L., Sakallah, K. A.: Solving Difficult SAT Instances in the Presence
of Symmetry. Proceedings of the 39th Design Automation Conference (DAC 2002), 731-736, USA,

ACM Press, 2002, http://www.aloul.net/benchmarks.html, [March 2011] .

[2] Chmeiss, A., Jégou, P.: Two New Constraint Propagation Algorithms Requiring Small Space Complexity.
Proceedings of the 8th International Conference on Tools with Artificial Intelligence (ICTAI 1996), pp.

286-289, IEEE Computer Society, 1996.

[3] Chmeiss, A., Jégou, P.: Efficient Constraint Propagation with Good Space Complexity. Proceedings of
the Second International Conference on Principles and Practice of Constraint Programming (CP 1996),

pp. 533-534, LNCS 1118, Springer, 1996.

[4] Chvátal, V.: Tough Graphs and Hamiltonian Circuits. Discrete Mathematics 306, Volume 10-11, pp.
910-917, Elsevier, 2006.

[5] Cook, S. A.: The Complexity of Theorem Proving Procedures. Proceedings of the 3rd Annual ACM

Symposium on Theory of Computing (STOC 1971), pp. 151-158, ACM Press, 1971.
[6] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.: Introduction to Algorithms (Second edition),

MIT Press and McGraw-Hill, 2001.

[7] Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, 2003.
[8] Dowling, W., Gallier, J.: Linear-time algorithms for testing the satisfiability of proposi-tional Horn

formulae. Journal of Logic Programming, Volume 1 (3), 267-284, Elsevier Science Publishers, 1984.

[9] Eén, N., Sörensson, N.: MiniSat — A SAT Solver with Conflict-Clause Minimization. Poster, 8th
International Conference on Theory and Applications of Satisfiability Testing (SAT 2005), 2005.

[10] Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP Completeness.

W. H. Freeman & Co., 1979, ISBN: 978-0716710455.
[11] Han, C. C., Lee, C. H.: Comments on Mohr and Henderson's Path Consistency Algorithm. Artificial

Intelligence, Volume 36(1), pp. 125-130, Elsevier, 1988.

[12] Holger, H. H., Stützle, T.: SATLIB: An Online Resource for Research on SAT. Proceed-ings of

Theory and Applications of Satisfiability Testing, 4th International Conference (SAT 2000), pp.283-

292, IOS Press, 2000, http://www.satlib.org, [March 2011].

[13] Jackson, P., Sheridan, D.. Clause Form Conversions for Boolean Circuits. Theory and Applications of
Satisfiability Testing, 7th International Conference (SAT 2004), Revised Selected Papers, pp. 183–198,

Lecture Notes in Computer Science 3542, Springer 2005.

[14] Mohr, R., Henderson, T. C.: Arc and Path Consistency Revisited. Artificial Intelligence, Volume 28 (2),
225-233, Elsevier Science Publishers, 1986.

[15] Montanari, U.: Networks of constraints: Fundamental properties and applications to picture processing.

Information Sciences, Volume 7, pp. 95-132, Elsevier, 1974.
[16] Rossi, F., Dhar, V., Petrie, C.: On the Equivalence of Constraint Satisfactions Problems. Proceedings of

the 9th European Conference on Artificial Intelligence (ECAI 1990), pp. 550-556, 1990.

[17] Surynek, P.: Making Path Consistency Stronger for SAT. Proceedings of the Annual ER-CIM
Workshop on Constraint Solving and Constraint Logic Programming (CSCLP 2008), ISTC-CNR, 2008.

[18] Surynek, P.: An Adaptation of Path Consistency for Boolean Satisfiability: a Theoretical View of the

Concept, Proceedings of the Annual ERCIM Workshop on Constraint Solving and Constraint Logic
Programming, 2010 (CSCLP 2010), pp. 16-30, Berlin, Germany, Fraunhofer FIRST, 2010.

[19] Walsh, T.: SAT vs. CSP. Proceedings of the 6th International Conference on Principles and Practice of

Constraint Programming, 441-456, LNCS 1894, Springer Verlag, 2000.

http://www.aloul.net/benchmarks.html
http://www.satlib.org/

