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Abstract— The approach to solving cooperative-path finding 

(CPF) as propositional satisfiability (SAT) is revisited in this 

paper. An alternative encoding that exploits multi-valued state 

variables representing locations where a given agent resides is 

suggested. This encoding employs the ALL-DIFFERENT con-

straint to model the requirement that agents must not collide 

with each other. The use of suggested state variables also al-

lowed us to incorporate certain heuristic reasoning to reduce 

the size of the propositional encoding of the problem. We show 

that our new domain-dependent encoding enables finding of 

optimal or near optimal solutions to CPFs in certain hard set-

ups where A*-based techniques such as WHCA* fail to do so. 

Our finding is also that the ALL-DIFFERENT encoding can be 

solved faster than the existent encoding. 

Keywords-cooperative path-finding; propositional satisfia-

bility (SAT); all-different constraint 

I. INTRODUCTION, CONTEXT, AND MOTIVATION 

HE problem of cooperative path-finding (CPF) [13] 

consists in finding non-colliding spatial-temporal paths 

for agents that need to relocate themselves from given initial 

locations to given goal locations. A generally adopted ab-

straction is that the environment is modeled as an undirected 

graph with agents placed in its vertices. At most one agent is 

placed in a vertex and at least one vertex remains unoccu-

pied to allow agents to move. The move is possible along an 

edge into a currently unoccupied vertex (an example in-

stance of CPF on a 4-connected grid is shown in Fig. 1). 

The problem attracts consid-

erable attention as there are 

many real-life situations that 

can be modeled as CPFs – 

container relocation, traffic 

optimization, or ship avoidance 

to name some. No less im-

portant are theoretical chal-

lenges that the problem offers. 

Although CPF has been studied 

for a long time, several im-

portant breakthroughs in its 

solving have been made recently. Here we are particularly 

interested in the quality of makespan of the resulting solu-
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tion which is the total number of time steps needed for its 

execution. Thus, related works are referred with this regard. 

A real-time makespan sub-optimal incomplete algorithm 

WHCA* (A*-based) was published by Silver [13]. It actually 

became the reference algorithm in the computer entertain-

ment industry (unit movement in RTS games). Several scal-

able complete algorithms for solving CPF sub-optimally 

have appeared recently – BIBOX [15] and PUSH-SWAP [7] 

represent two most important. 

The problem has been attacked from the other side as 

well. A technique for solving CPF optimally in the case of 

sparsely populated environments called ID+OD has been 

described in [14]. Several other methods exploiting structur-

al properties of the problem appeared in [12] and [18]. In the 

former case, graph modeling the environment is decomposed 

into simpler subgraphs; in the latter case, spatial properties 

of the current arrangement of agents are exploited. 

In our work we addressed the case of near optimal 

makespan and densely populated environments, which has 

not yet been addressed. We employ the SAT solving tech-

nology [3] to optimize the makespan of solutions generated 

by existent fast sub-optimal techniques such as BIBOX or 

PUSH-SWAP. In contrast to the approach adopted in domain 

independent SAT-based planning [4], [5] we do not encode 

the whole problem as a SAT instance but only sub-problems 

represented by subsequences of the original solution are 

encoded. These (sub-optimal) sub-solutions are subsequently 

replaced by optimal ones found by the SAT solver. In addi-

tion, we propose two compact domain dependent encodings 

for CPFs – called INVERSE and ALL-DIFFERENT encoding – as 

alternatives to domain independent encodings used in SAT-

based planning. The INVERSE encoding represents an im-

provement of the SAT encoding of CPFs introduced in [16]. 

The difference consists in more efficient translation of im-

plication constraints over integer variables into propositional 

version. The ALL-DIFFERENT encoding together with its 

heuristic enhancement has been designed from scratch with-

in this work. We also propose a new variant of the solution 

optimization process which first variant appeared in [16]. 

The new variant called iCOBOPT improves the previous one 

by adapting certain parameters. 

The organization of the paper is that CPF is introduced 

formally first. The INVERSE and the ALL-DIFFERENT encod-

ings of CPF are defined afterwards. Then a section is devot-
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 Fig. 1. An instance of CPF. 

Three agents need to relocate in 

the 4-connected grid 33. 

 

mailto:pavel.surynek@mff.cuni.cz


 

 

 

ed to the description of the iCOBOPT solution optimization 

process. Finally, we present an experimental analysis of our 

techniques against SAT-based planners SATPLAN and SASE. 

A comparison with WHCA* is also made. 

II. COOPERATIVE PATH-FINDING (CPF) FORMALLY 

An arbitrary undirected graph can be used to model the 

environment where agents are moving. Let         be 

such a graph where                is a finite set of ver-

tices and     
 
  is a set of edges. The placement of agents 

in the environment is modeled by assigning them vertices of 

the graph. Let                be a finite set of agents. 

Then, an arrangement of agents in vertices of graph   will 

be fully described by a location function      ; the 

interpretation is that an agent     is located in a vertex 

    . At most one agent can be located in each vertex; that 

is   is uniquely invertible. A generalized inverse of   denot-

ed as             will provide us an agent located in 

a given vertex or   if the vertex is empty. 
 

Definition 1 (COOPERATIVE PATH FINDING). An instance 

of cooperative path-finding problem is a quadruple   
                  where location functions    and    

define the initial and the goal arrangement of a set of agents 

  in   respectively. □ 
 

The dynamicity of the model supposes a discrete time di-

vided into time steps. An arrangement    at the  -th time step 

can be transformed by a transition action which instantane-

ously moves agents in the non-colliding way to form a new 

arrangement     . The resulting arrangement      must 

satisfy the following validity conditions: 

(i)       either               or 

                  holds 

(agents move along edges or not move at all), 

(ii)                          
        

(agents move to vacant vertices only), and 

(iii)                               

(no two agents enter the same target/unique 

invertibility of resulting arrangement). 

 The task in cooperative path finding is to transform    

using above valid transitions to   .  
 

Definition 2 (SOLUTION, MAKESPAN). A solution of a 

makespan   to a cooperative path finding instance   
            is a sequence of arrangements    
                where       and      is a result of 

valid transformation of    for every            . □ 
 

A notation      will be also used to denote the makespan. If 

it is a question whether there is a solution of   of the 

makespan at most a given bound we are speaking about a 

bounded variant (bCPF). It is known that bCPF is   -

complete and finding makespan optimal solution to CPF is 

  -hard [9]. Notice that due to no-ops introduced in valid 

transitions it is equivalent to finding a solution of the 

makespan equal to the given bound.  

III. CPF AS PROPOSITIONAL SATISFIABILITY 

To enable solving of CPF as satisfiability we needed to 

develop more compact SAT encodings than those represent-

ed by SAT-based domain-independent planning systems like 

SATPLAN [5] or SASE [4]. Our advantage here was the 

knowledge of the domain, which allowed us to make im-

portant design decisions. 

In both encodings, we followed the classical Graphplan 

style [5] as for we also encode state of the planning world at 

each time step. The candidates for multi-valued state varia-

bles are clearly the location function and its inverse. It is 

known that each multi-valued state variable can be encoded 

by the logarithmic number of propositional variables with 

respect to the number of its values [11] which we also follow 

in our design. Location function tells us in what vertex a 

given agent is located while the inverse location tells us what 

agent is located in a given vertex. This is a substantial differ-

ence and the choice of state variables determines the overall 

design of constraints that will encode validity conditions of 

CPF. 

A. INVERSE Encoding 

If states of the planning world – that is, arrangements of 

agents – are represented using inverse locations we need to 

add other multi-valued state variables that will encode state 

transitions with regard on validity conditions. There are two 

primitive actions for each edge adjacent to the given vertex 

plus one no-op action. Half of the primitive actions corre-

sponding to the vertex are reserved for incoming agents 

while the other half is for outgoing agents. If the outgoing 

primitive action is selected it is necessary to propagate the 

selection as corresponding selection of incoming primitive 

action in the target vertex; and vice versa. Representing the 

selection of the primitive action as a multi-values state vari-

able automatically ensures that conditions (i) and (iii) are 

encoded. No other constraint is necessary. Notice also, that 

the degree of vertices in   is typically low for real-life envi-

ronments, thus the action selection in the vertex can be cap-

tured by few propositional variables. 

Let                     be an instance of CPF and 

    be a makespan bound (= bCPF altogether). The 

INVERSE encoding has layers        . Suppose that neigh-

boring vertices of a given vertex are ordered in the fixed 

order. That is,      we have a function 

                              and its inverse   
  . 

 

Definition 3 (REGULAR LAYER – INVERSE ENCODING). 

The  -th layer of the INVERSE encoding consists of the fol-

lowing finite domain integer state variables: 

   
              for all     such that   

    iff 

         

   
                    for all     such that 

  
       iff no-op was selected in  ; 

   
         iff an outgoing primitive action with   

       the target     was selected in  ; 

  
               iff an incoming primitive ac-

 

 
 
 
 
 

  

     
             

   
    

       
     

 

    
             

   
    

        
     

 

  



 

 

 

tion with     as the source was selected in  . 

and constraints: 

   
          

    
  for all     

  (no-op case); 

     
               

          
    

       

             
               

 where     
     

   for all     

   (outgoing agent case); 

           
               

        

 where     
     

          for all     

 (incoming agent case). □ 
 

State variables   
  represent inverse locations; that is,   

  

tells us what agent is located in   at the time step  . State 

variables   
  represent primitive transition actions selected in 

vertices. The last layer of the encoding is irregular as it has 

inverse location state variables only. To finish the encoding 

of the bCPF instance we need to encode the initial and the 

goal arrangement straightforwardly as follows: 

         
      iff   

        , 

         
      iff   

       , 

         
      iff   

        , 

         
      iff   

       . 

Transformation of the encoding from the above integer 

representation to the propositional one exploits standard 

Tseitin’s hierarchical encoding [17] with auxiliary variables. 

Basically we need to encode implications with equality be-

tween a state variable and a constant on the left side and one 

or more equalities between state variables or between a state 

variable and a constant on the right side. 

For illustration, suppose we need to encode a constraint 

  
          

    
  with       and       over vec-

tors of propositional variables that encode   
 ,   

 ,  and 

    
  (this is, actually part of the second constraint in the 

layer encoding; for simplicity we do not show the whole 

right side of the implication). Propositional variables will be 

referred to using array indices to the original integer state 

variables. 

We introduce a fresh auxiliary propositional variable  . 

The original constraint will then split into conjunction as 

follows:   
                

    
 . The first con-

straint in the conjunction will be encoded simply as one 

clause: 

 

 

 

 

  

The second constraint will be encoded as conjunction of 

several ternary clauses: 

 

 

  

 

  

  

Notice that we kept up with just one auxiliary variable in 

this case. Encoding equality on the right side is yet easier. 

Let us summarize the size of the encoding in the following 

proposition (the proof is omitted). It is easy to observe that 

most of the clauses in the INVERSE encoding are either binary 

or ternary. 
 

Proposition 1 (INVERSE ENCODING SIZE).  A regular lay-

er of the INVERSE encoding of the instance of bCPF re-

quires: 

                                       

propositional variables for representing state variables, 

                         

auxiliary propositional variables from Tseitin’s translation 

                               

                             

clauses for representing constraints, and 

                          ,  

                    
                     

clauses for excluding unused location and transition action 

states respectively. ■ 

B. ALL-DIFFERENT Encoding and Heuristic Estimation 

If location function is chosen to represent the arrangement 

we need to take care of ensuring validity conditions (ii) and 

(iii) more explicitly. An agent must move into unoccupied 

vertex which in this representation means that it should 

avoid all the vertices occupied by other agents at the current 

time step. This condition is modeled by pair-wise differences 

between involved location state variables. The situation is 

very close to a bi-clique [11] of pair-wise differences but 

differences between locations for the same agent at consecu-

tive time steps are missing here. 

At the same time, it is necessary that no two agents occu-

py the same vertex (location). This requirement can be ex-

pressed through the ALL-DIFFERENT [10] constraint involv-

ing all the location state variables at the given time step. 

Finally, we need to encode the condition that agents can 

move along edges of   only. It requires quite extensive en-

coding as a conditional equality needs to be added for each 

vertex and agent. Briefly expressed, this tells that if an agent 

is located in a given vertex at a given time step then it must 

be located in some of the neighbors or in the same vertex at 

the next time step. The just introduced ALL-DIFFERENT-

based encoding is summarized formally in the following 

definition. 
 

Definition 4 (REGULAR LAYER – ALL-DIFFERENT). The 

 -th layer of the ALL-DIFFERENT encoding consists of the 

following finite domain integer state variables: 

   
              for all     

 such that   
    iff          

and the constraints are as follows: 

 for all     and             

  
        

         
   

                   
 

(agents can move only along edges of  ), 

Initial:  

 
 
 
  

Goal:  

 
 
 
  

(1) 

(2) 

(3) 

     
             

   
    

       
     

 

    
             

   
    

        
     

 

  (4) 

               
    

                 

   
  

 

where 

           
       

 
 
 
  

 

   
     iff        

  
      iff        

 



 

 

 

 for all     

     
    

 

       
 

(the target vertex of agent’s move must be empty), 

 and at most one agent resides in each vertex: 

               
     

      
 

    

 which altogether directly encodes validity conditions 

(i), (ii), and (iii). □ 
 

 The last layer is irregular again; there is no propagation 

constraint to the next layer. Location state variables   
  are 

encoded using           propositional variables each; let us 

again refer to them through indexing. The initial and the goal 

state are encoded trivially as several equalities between state 

variables and constants. 

 Let us fix     and            . Suppose further that 

   has      neighbors. We need to introduce     fresh 

propositional variables – say   ,   ,…,      – to encode 

the constraint (4). Each new auxiliary variable is put to stand 

instead of the equality in the original constraint. So we have 

an      -ary clause        
 
   . To ensure correct 

encoding, implications between the auxiliary variables and 

the original equalities need to be added. For simplicity let us 

show the second equality between the state variable and the 

constant only; it is encoded by           binary clauses:  

 

  

 

The inequality between two state variables is encoded us-

ing the scheme introduced in [1]. Authors use the term bit-

vectors in the same sense as we do use vectors of proposi-

tional variables encoding a state variable. Suppose that we 

need to encode     
    

 . Now,           fresh proposi-

tional variables   ,   ,…,            are introduced. Each 

encodes inequality between the corresponding propositional 

variables encoding     
  and   

  respectively. Hence, to ex-

press inequality between original state variables we can just 

put single clause:    
         
   . Again the relation of new 

auxiliary variables to     
  and   

  as            ternary 

clauses needs to be added: 

 

 

 

 

 

 To encode the ALL-DIFFERENT constraint we again follow 

scheme presented in [1]. That is, inequalities between all-

pairs of involved state variables are encoded in the same way 

as above which means to encode     
 
  inequalities. Although 

the size of the encoding is now more than evident, let us 

summarize it in the following proposition. Again, most of 

the clauses are either binary or ternary. 
 

Proposition 2 (ALL-DIFFERENT ENCODING SIZE).  A regu-

lar layer of the ALL-DIFFERENT encoding of bCPF instance 

requires: 

               
propositional variables for representing agent’s locations, 

                                    
 
            

auxiliary propositional variables, 

                      

                             
 
            

clauses to represent validity conditions, and 

                    , 

clauses for excluding unused location states. ■ 
 

 As it is usually the case that         the ALL-DIFFERENT 

encoding has fewer propositional variables needed to encode 

state variables than the INVERSE encoding (since then it 

holds, that                          ). This difference is 

becoming more prominent on sparsely populated environ-

ments. On the other hand, the ALL-DIFFERENT encoding has 

more constraints which add many auxiliary variables and 

most notably the representation of the ALL-DIFFERENT con-

straint grows quadratically as the number of agents increas-

es. Notice also, that all the transition actions need to be cho-

sen even for vertices not containing any agent in the INVERSE 

encoding. Hence, we should expect that INVERSE encoding 

will be better for densely populated environments while the 

ALL-DIFFERENT will be better for sparsely populated ones. 

 Unlike in the case of INVERSE encoding the ALL-

DIFFERENT encoding can be enhanced by a certain heuristic 

reasoning. We observed in our preliminary experiments that 

the most space consuming constraint is constraint (4). Thus 

we made an enhancement in which we do not introduce this 

constraint if the given location   cannot be reached by the 

given agent   from its initial location at the  -th timestep. 

Similarly, the constraint is not introduced if there is no 

chance for the agent   to reach its goal location in the re-

maining number of steps. Formally the constraint (4) is in-

troduced if and only if the following condition holds: 
 

                                      
 

 To ensure the correctness of the enhancement also we 

need to forbid occurrence of agents in unreachable loca-

tions. That is, following constraints are added to the model: 
 

 for all     and             such that 

                                         
  

    

IV. SAT-BASED OPTIMIZATION OF SOLUTIONS TO CPFS 

 The approach of our choice to obtain solutions to CPFs of 

short makespans (or even optimal makespans) is not to solve 

the CPF instance as SAT completely but to employ a SAT 

solver to optimize an existent sub-optimal solution. There 

already exist sub-optimal complete algorithms for solving 

CPF in polynomial time such as BIBOX [15] or PUSH-SWAP 

[7] which are ready to be used in this framework. 

 The basic idea of the optimization process is to take a 

relatively short subsequence of movements in the existent 

solution and replace it with an optimal sub-solution obtained 

from the SAT solver. Our new SAT-based solution optimi-

                  
     

         

   
 

(5) 

(6) 

         
        

    
         

   
 

          
       

    
         

   
 

  

(7) 



 

 

 

zation scheme is called iCOBOPT. The previous version 

called COBOPT is described in [16]. The iCOBOPT algorithm 

uses more intelligent adaptation of makespan bounds which 

limit the number of encoded time steps while in COBOPT it 

was fixed by the user. 
   

 

Algorithm 1. iCOBOPT – an iterative SAT-based optimization of solutions 

to CPFs. The algorithm iteratively increases the makespan bound. The 

binary search for optimal sub-solutions to CPFs is shown. It finishes if the 
timeout is reached or the overall optimum is found. 
 

function iCOBOPT-Optimize-Cooperative-Plan          : solution 

1:     Get-Current-Time   

2:              
3:  do 
4:   do 

5:             
6:    let                     
7:           ;      
8:    while     do 
9:         Find-Last-Reachable-Arrangement              
10:             Compute-Optimal-Solution            
11:          
12:   while             
13:     Get-Current-Time   
14:         
15:  while         and         
16:  return     

 

function Find-Last-Reachable-Arrangement            : integer 
17:  let                     
18:              
19:  while       do 
20:             
21:                 
22:   if Check-Reachability            then 
23:      Encode            
24:    if Solve-SAT     then     
25:    else     
26:   else 
27:        
28:  return   

 

function Check-Reachability            : boolean 

29:  let               
30:  for each     do 
31:   if                      then return       
32:  return      

 

The scheme of employing SAT solvers in iCOBOPT is 

much more scalable than the classical SATPLAN or SASE 

planning since incomparably smaller SAT instances need to 

be solved. Here we do not compare encoding style but the 

scheme in which encoded instances are submitted to the 

SAT solver; eventually all the time steps needed to cover the 

optimal makespan are encoded in the SATPLAN or SASE 

scheme (and it may be very large in the case of CPFs). No-

tice, that in our approach we encode few layers representing 

time steps of a given sub-solution. Observe also the im-

portant fact that the linear increase in the number of layers of 

the encoding may cause exponential increase in the solving 

runtime of the SAT solver. If we simplify the situation the 

time needed check if there is a solution to the encoded in-

stance with   layers needs time of       where     while 

if we divide the makespan into two parts – say    and    

layers where         are encoded separately then the 

time is                which is exponentially smaller 

than       (of course, the question in the latter case is not 

equivalent to the former one). On the other hand SATPLAN 

and SASE schemes guarantee to find makespan optimal solu-

tions which iCOBOPT does not guarantee. Nevertheless, 

iCOBOPT is capable of optimizing much larger CPFs than 

SATPLAN or SASE can do (even if they would use our do-

main-dependent encodings). 

 The pseudo-code of the iCOBOPT optimization is shown as 

Algorithm 1. Throughout the algorithm the makespan bound 

of   is used which is gradually increased. At every time step 

  of the current solution to the CPF instance   (which is at 

the beginning that obtained from the suboptimal algorithm 

for CPF – called a base solution) a maximum step   , such 

that      and the state (arrangement) at    can be reached 

from the state at   in   steps, is found. The step    is found 

by the binary search which uses multiple queries to the SAT 

solver. The optimization process terminates if the given 

timeout of    is exceeded or the makespan optimal solution 

to   is found. The process is illustrated in Fig. 2. 
 

 
Fig. 2. Illustration of the optimization process. A single iteration is shown – 

these are repeated until a fixed point is reached. 

V. EXPERIMENTAL EVALUATION 

We have chosen the BIBOX algorithm to produce sub-

optimal base solutions in our experimental evaluation. This 

choice was guided by the fact that authors of this algorithm 

do provide the source code and the benchmark generation 

suite. Additionally, according to our findings BIBOX algo-

rithm was capable to generate the required sub-optimal solu-

tions very quickly. 

As benchmarks we have chosen environments consisting 

of 4-connected grids of size 88 and 1616 respectively 

with random initial and goal arrangements of agents. Up to 

78% occupancy was tested in case of the grid of size 88 

and up to 50% occupancy was tested for the 1616 grid. 

 As the SAT solver we used MINISAT 2.2 [3] as its pros 

and cons are well known. To evaluate the benefit of employ-

ing SAT technology in solving CPFs we also made a brief 

comparison with the incomplete solver WHCA* [13] which is 

de-facto considered to be the standard approach to solving 

CPFs (the window of size 16 was used in WHCA*). We also 

considered comparison with the ID+OD algorithm which is 

designed to generate optimal solutions to CPFs in sparsely 

populated environments. However, we found that it is not 

directly comparable as its main strength consists in separat-

ing agents into independent groups which do not intermix. 

Base solution     

Time steps 

Optimized 
solution     

SAT solving 

 
Next 

iteration 

makespan 



 

 

 

This contrasts with our approach where all the agents consti-

tute one intermixing group. 

 To allow reproducing of all the results the source of 

iCOBOPT as well as experimental data is provided at: 

http://ktiml.mff.cuni.cz/~surynek/research/ictai2012. 

A. Comparison of Encoding Sizes 

We compared sizes of our INVERSE and ALL-DIFFERENT 

encodings with domain independent encodings of SATPLAN 

and SASE – results for the 88 grid are shown in Table 1; for 

the 1616 grid in Table 2. Although it is a bit unfair compar-

ison since our domain is fixed, it gives a nice picture of the 

situation. 

Clearly the INVERSE encoding is very conservative regard-

ing the number of variables and clauses – it dominates all the 

other encodings in this aspect. The small size is mainly due 

to the fact that lot of the domain knowledge is captured in 

the design of variables. On the other hand ALL-DIFFERENT 

encoding is very close to that of SASE (ALL-DIFFERENT 

tends to be smaller on larger instances especially in terms of 

the number of clauses). 
 

Table 1. Encoding sizes comparison on the grid 88. The number of layers 

of encodings was determined as the goal level provided by SATPLAN (a 

step where the goal may be reachable). 

    in the 
4-connected 

grid 88 

Number 
of layers 

SATPLAN 

encoding 

SASE 

encoding 

INVERSE 

encoding 
ALL-DIFFERENT 

encoding 

|Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses| 

4 8 5864 55330 11386 53143 5400 38800 11128 54356 

8 8 10022 165660 19097 105724 5920 48224 25136 114952 

12 8 14471 356410 26857 168875 5920 46176 42024 181788 

16 10 30157 1169198 51662 372140 8122 76192 79008 326736 

24 10 43451 2473813 73101 588886 8122 71072 140400 537528 

32 14 99398 8530312 157083 1385010 12396 137120 309824 1120672 

 

The SATPLAN encoding seems to be conservative regard-

ing the number of variables but the number of clauses is 

quickly blowing up (for larger number of agents in the 

1616 grid SATPLAN gave up with no memory left). Surpris-

ingly we found, that the difference in size of the encoding 

generated by SATPLAN and SASE is not that huge as it is 

reported in [4] for other domains. Encoding sizes differ 

marginally for sparsely populated environments; while 

SATPLAN tends to have up to 6 times more clauses in dense-

ly populated environments (far from the reported 50-fold). 
 

Table 2. Encoding sizes comparison on the grid 1616. SATPLAN was 

unable to generate SAT instance for the larger number of agents, and SASE 
failed to proceed to the goal level. That is why the number of layers is lower 

than the goal level for larger numbers of agents*. 

    in the 
4-connected 

grid 1616 

Number 
of layers 

SATPLAN 

encoding 

SASE 

encoding 

INVERSE 

encoding 
ALL-DIFFERENT 

encoding 

|Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses| 

4 21 69704 746562 137406 677737 60755 478462 122368 827628 

8 15 65365 995507 134482 712352 46904 412416 178816 1174616 

16 18 

Out of memory 

342100 2347456 61154 611328 469888 2928336 

32 4* 288498 2716096 13672 143104 197888 1101600 

40 4* 357762 3783672 13672 134912 265280 1415080 

64 4* 561210 5913320 14700 189440 510464 2446912 

 

 Another important aspect which speaks in favor of do-

main dependent encodings like INVERSE and ALL-DIFFERENT 

is that a considerable time and space is necessary to generate 

SAT instance in SATPLAN and SASE (in case of SATPLAN 

huge memory consumption even hinders it from generating 

any output). In the case of our approach SAT, instances are 

generated faster than is the time to save them (no special 

computation is necessary while  SATPLAN and SASE need to 

perform time consuming mutex reasoning). Notice, also that 

we typically use fewer layers, which is another important 

factor in reducing sizes of generated encodings. 

B. Makespan and Runtime
1
 Comparison 

Experiments regarding makespan and runtime show that 

size of the encoding itself is not everything with regard on 

solving performance. Observe that each of our encodings is 

built in a different fashion – the INVERSE encoding is very 

flat while the ALL-DIFFERENT one is built more hierarchical-

ly (that is, many clauses may be switched off through auxil-

iary variables). Generally SAT solvers seem to be sensitive 

to such differences.  
  

  
 

Fig. 3. Makespan comparison on the 88 grid. Optimal solutions for up to 

22 and 30 agents can be found by iCOBOPT using the INVERSE and the 
ALL-DIFFERENT encoding respectively. Only up to 16 agents can be solved 

sub-optimally by WHCA*. 

 Makespan comparison reported in Fig. 3 and Fig. 4 shows 

that in the 88 grid, iCOBOPT is capable of generating opti-

mal solutions for up to 30 agents. The ALL-DIFFERENT en-

coding tends to be better for fewer agents while it loses with 

respect to the INVERSE encoding on environments populated 

by many agents. A comparison with WHCA* shows that its 

incompleteness presents an unpleasant issue – it is unable to 

produce a solution for instances with the occupancy of envi-

ronment exceeding 25% where iCOBOPT still produces opti-

mal solutions (up to the occupancy of 47%).  
 

  
 

Fig. 4. Makespan comparison on the 1616 grid. Optimal solutions for up 
to 40 agents can be found by iCOBOPT with the ALL-DIFFERENT encoding; 

in the same range WHCA* can find near optimal solution as well. The 

INVERSE encoding dominates in the range with more than 80 agents. 

 
1 All the runtime measurements were done on a machine with the 4-
core CPU Intel i7 3.4GHz and 8GB RAM under Linux kernel 
2.6.38-26. 
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The grid of size 1616 represents the current limit of 

scalability of the iCOBOPT technique (see Fig. 5 for runtime 

comparison). Solutions to instances containing up to 128 

agents were submitted to iCOBOPT for improvement. With 

the number of agents exceeding 100 the ALL-DIFFERENT 

encoding gives rise to the degradation so that almost no 

optimization gain can be obtained from it. The explanation is 

that if the number of variables involved in the 

ALL-DIFFERENT constraint exceeds certain limit the SAT 

solver starts to struggle over it. Again the ALL-DIFFERENT 

encoding dominates on cases with relatively fewer agents in 

the environment (optimal solutions are reached again). 
 

 
Fig. 5. Runtime evaluation. If timeout of 3600s is reached (indicated by 

dotted line) iCOBOPT starts to produce suboptimal solutions. Base solutions 
were obtained almost immediately.  

 

However, WHCA* can generate near optimal solutions in 

the same range of the occupancy at much lower cost (all the 

invocations of WHCA* in our tests finished within 5 

minutes). So, it would be more appropriate to use WHCA* 

instead of BIBOX to generate base solutions here and submit 

them to iCOBOPT for further improvement. Nonetheless, 

iCOBOPT is capable of shortening original base solutions by 

at least half in all the tested occupancy setups (for higher 

occupancies this refers to improvement on INVERSE encod-

ing). 

The domain-dependent approach turned out to be much 

better than SATPLAN and SASE if applied on CPFs (Table 3). 

SATPLAN and SASE encodings become quickly prohibitively 

large for the increasing number of agents. The size of the 

environment has also a great impact on the performance (as 

also does in case of iCOBOPT approach) – only up to 16 

agents can be solved in 88 grid and 8 agents in 1616 grid 

by SASE within the given time limit of 3600 seconds. For 

better comparison performance of iCOBOPT is on the same 

instances is summarized in Table 4. 
 

Table 3. Runtime of classical domain independent planners on CPFs. 

Timeout of 3600s (1 hour) has been used. Only relatively small instances 
have been solved by SATPLAN and SASE. However they are not small in 

absolute terms as solutions consist of hundreds of actions.  

    in the 
4-connected grid 

4-connected grid 8x8 4-connected grid 16x16 

Optimal makespan 
SATPLAN 
Runtime (s) 

SASE 
Runtime (s) 

Optimal makespan 
SATPLAN 
Runtime (s) 

SASE 
Runtime (s) 

1 5 0.0 0.45 4 0.68 1.66 

4 6 0.15 2.57 21 195.5 17.98 

8 8 19.85 4.73 15 1396.07 128.87 

16 10 Timeout 253.55 N/A 
Out of 

memory 
Timeout 

 Very importantly, the iCOBOPT process is anytime provid-

ed that procedure for generating a base solution is fast 

enough (that is, at any time we have some solution). 
 

Table 4. Runtime of iCOBOPT. Same instances as in the case of SATPLAN 
and SASE were used. 

    in the 
4-connected 

grid 

4-connected grid 8x8 4-connected grid 16x16 

Computed 
makespan 

INVERSE 
Runtime (s) 

ALL-DIFF 
Runtime (s) 

Computed 
makespan 

INVERSE 
Runtime (s) 

ALL-DIFF 
Runtime (s) 

1 5/5 0.001 0.001 6/6 0.074 0.070 

4 6/6 0.002 0.003 21/21 319.785 45.367 

8 8/8 9.105 3.556 15/15 152.625 62.955 

16 10/10 196.991 34.444 18/18 1833.080 910.391 

A. Enhancement via Heuristic Distance Estimation 

We evaluated the effect of using heuristic reasoning within 

the ALL-DIFFERENT encoding by comparing it with the ver-

sion without the reasoning. Sizes of the enhanced encoding 

are shown in Table 5. The reduction of the size of the encod-

ing is particularly significant if the number of layers is small 

since agents don’t have enough time-steps to spread over the 

environment. 

Table 5. Sizes of the ALL-DIFFERENT encoding with heuristic reasoning 

on the grids 88 and 1616. Instances are the same as in Table 1, Table 2. 

 

 

 

 

 

 

 

 

 

 

 

The smaller encoding can be solved faster according to 

our observations and hence more solution sub-sequence 

optimization attempts can be done within the given time 

limit by the iCOBOPT algorithm. As a result solutions with 

the shorter makespan can be generated. Particularly for the 

case of the grid 1616 and the occupancy of 14% - 31% up 

to 50% time-steps can be saved with respect to the second 

best encoding (INVERSE). For more detailed results see Fig. 6 

and Fig. 7. 

 

Fig. 6. Heuristic improvement on the 88 grid. A marginally better 

makespan can be achieved by using the ALL-DIFFERENT encoding with 

heuristic reasoning. 

The result that the ALL-DIFFERENT encoding can be 

solved generally faster is also indicated in Fig. 8 where we 

show the runtime if the timeout has not been reached, that is 

when optimal solution can be generated. In this case the 
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      in the 
4-connected 

grid 88 

Number 
of layers 

HEURISTIC 

ALL-DIFFERENT 

encoding 

|Variables| |Clauses| 

4 8 2528 10626 

8 8 7942 27543 

12 8 16026 49535 

16 10 38304 119827 

24 10 81000 235663 

32 14 219059 659882 

 

    in the 
4-connected 

grid 1616 

Number 
of layers 

HEURISTIC 

ALL-DIFFERENT 

encoding 

21980 147136 

4 21 29763 164052 

8 15 125633 594618 

16 18 56725 144146 

32 4* 88789 218010 

40 4* 228186 532339 

64 4* 21980 147136 

 

Number of agents 
Number of agents 

|A| |A| 



 

 

 

optimal solution is generated as fastest by the use of the 

ALL-DIFFERENT with heuristic reasoning. 

 
Fig. 7. Heuristic improvement on the 1616 grid. The improvement 

achieved by using the heuristic reasoning in the ALL-DIFFERENT encoding 

is greater than in case of the 88 grid. Here, the heuristic variant is the best 
choice for the population of agents consisting of 36 to 80 agents (occupancy 

14% - 31%). 

 

Fig. 8. Runtime vs. timeout comparison. If the optimization finished in the 

time limit of 3600s then the runtime is shown. In such a case optimal solu-
tion has been found. The ALL-DIFFERENT encoding with heuristic reason-

ing is fastest and degrades towards the timeout as the last. 

VI. SUMMARY, CONCLUSIONS, AND FUTURE WORK 

 A novel SAT-based technique – called iCOBOPT – for 

solving cooperative path-finding optimally or near optimally 

has been introduced. Additionally two SAT encodings were 

proposed – called INVERSE and ALL-DIFFERENT. They repre-

sent CPF instances more compactly than existing domain 

independent encodings used in SAT-based planners like 

SATPLAN and SASE. 

 We found that the proposed approach performs especially 

well on highly constrained instances with many agents and 

small unoccupied space. These are exactly the cases where 

techniques from [14] do not scale well as authors report (grid 

of size 44 is reported). The INVERSE encoding is more 

suitable for densely populated environments while the ALL-

DIFFERENT one is better in the sparse case. We also demon-

strate the advantage of the ALL-DIFFERENT by enhancing it 

with the heuristic reasoning that can help to make it smaller 

by ruling out many states. 

 The important feature of our approach is also the fact that 

the iCOBOPT technique is very modular – a different SAT 

solver as well as arbitrary algorithm for generating base 

solutions can be used. Notice also, that the technique is 

friendly to multi-threaded implementation since optimiza-

tions of several isolated parts of the base solution can run in 

parallel. 

 We approached the classical       -puzzle in our ex-

periments with 4-connected grid environments. Actually an 

attempt to solve        -puzzle has been made here. 

Although it is not expectable that for example   -puzzle can 

be solved optimally even with elevated timeout by the 

iCOBOPT technique, some progress from [6] may be done in 

future. We are also considering investigating some alterna-

tive and more efficient encodings of the ALL-DIFFERENT 

constraint than that from [1]. For future work we also plan to 

switch the whole optimization process to CSP [2] where we 

could exploit the full strength of global propagators for the 

ALL-DIFFERENT constraint. 
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