



Abstract— The approach to solving cooperative-path finding

(CPF) as propositional satisfiability (SAT) is revisited in this

paper. An alternative encoding that exploits multi-valued state

variables representing locations where a given agent resides is

suggested. This encoding employs the ALL-DIFFERENT con-

straint to model the requirement that agents must not collide

with each other. The use of suggested state variables also al-

lowed us to incorporate certain heuristic reasoning to reduce

the size of the propositional encoding of the problem. We show

that our new domain-dependent encoding enables finding of

optimal or near optimal solutions to CPFs in certain hard set-

ups where A*-based techniques such as WHCA* fail to do so.

Our finding is also that the ALL-DIFFERENT encoding can be

solved faster than the existent encoding.

Keywords-cooperative path-finding; propositional satisfia-

bility (SAT); all-different constraint

I. INTRODUCTION, CONTEXT, AND MOTIVATION

HE problem of cooperative path-finding (CPF) [13]

consists in finding non-colliding spatial-temporal paths

for agents that need to relocate themselves from given initial

locations to given goal locations. A generally adopted ab-

straction is that the environment is modeled as an undirected

graph with agents placed in its vertices. At most one agent is

placed in a vertex and at least one vertex remains unoccu-

pied to allow agents to move. The move is possible along an

edge into a currently unoccupied vertex (an example in-

stance of CPF on a 4-connected grid is shown in Fig. 1).

The problem attracts consid-

erable attention as there are

many real-life situations that

can be modeled as CPFs –

container relocation, traffic

optimization, or ship avoidance

to name some. No less im-

portant are theoretical chal-

lenges that the problem offers.

Although CPF has been studied

for a long time, several im-

portant breakthroughs in its

solving have been made recently. Here we are particularly

interested in the quality of makespan of the resulting solu-

This research is work is supported by the Czech Science Foundation under

the contract number GAP103/10/1287 and by the Japan Society for the
Promotion of Science under the contract number P11743.

tion which is the total number of time steps needed for its

execution. Thus, related works are referred with this regard.

A real-time makespan sub-optimal incomplete algorithm

WHCA* (A*-based) was published by Silver [13]. It actually

became the reference algorithm in the computer entertain-

ment industry (unit movement in RTS games). Several scal-

able complete algorithms for solving CPF sub-optimally

have appeared recently – BIBOX [15] and PUSH-SWAP [7]

represent two most important.

The problem has been attacked from the other side as

well. A technique for solving CPF optimally in the case of

sparsely populated environments called ID+OD has been

described in [14]. Several other methods exploiting structur-

al properties of the problem appeared in [12] and [18]. In the

former case, graph modeling the environment is decomposed

into simpler subgraphs; in the latter case, spatial properties

of the current arrangement of agents are exploited.

In our work we addressed the case of near optimal

makespan and densely populated environments, which has

not yet been addressed. We employ the SAT solving tech-

nology [3] to optimize the makespan of solutions generated

by existent fast sub-optimal techniques such as BIBOX or

PUSH-SWAP. In contrast to the approach adopted in domain

independent SAT-based planning [4], [5] we do not encode

the whole problem as a SAT instance but only sub-problems

represented by subsequences of the original solution are

encoded. These (sub-optimal) sub-solutions are subsequently

replaced by optimal ones found by the SAT solver. In addi-

tion, we propose two compact domain dependent encodings

for CPFs – called INVERSE and ALL-DIFFERENT encoding – as

alternatives to domain independent encodings used in SAT-

based planning. The INVERSE encoding represents an im-

provement of the SAT encoding of CPFs introduced in [16].

The difference consists in more efficient translation of im-

plication constraints over integer variables into propositional

version. The ALL-DIFFERENT encoding together with its

heuristic enhancement has been designed from scratch with-

in this work. We also propose a new variant of the solution

optimization process which first variant appeared in [16].

The new variant called iCOBOPT improves the previous one

by adapting certain parameters.

The organization of the paper is that CPF is introduced

formally first. The INVERSE and the ALL-DIFFERENT encod-

ings of CPF are defined afterwards. Then a section is devot-

On Propositional Encodings of Cooperative Path-finding

Pavel Surynek
1,2

1
Charles University in Prague, Malostranské náměstí 25, Praha, 118 00, Czech Republic
2
Kobe University, 5-1-1 Fukae-minamimachi, Higashinada-ku, Kobe 658-0022, Japan

e-mail: pavel.surynek@mff.cuni.cz

T

2 2

1

1

3

A B

C

D

E

F

G

H

I
 Fig. 1. An instance of CPF.

Three agents need to relocate in

the 4-connected grid 33.

mailto:pavel.surynek@mff.cuni.cz

ed to the description of the iCOBOPT solution optimization

process. Finally, we present an experimental analysis of our

techniques against SAT-based planners SATPLAN and SASE.

A comparison with WHCA* is also made.

II. COOPERATIVE PATH-FINDING (CPF) FORMALLY

An arbitrary undirected graph can be used to model the

environment where agents are moving. Let be

such a graph where is a finite set of ver-

tices and

 is a set of edges. The placement of agents

in the environment is modeled by assigning them vertices of

the graph. Let be a finite set of agents.

Then, an arrangement of agents in vertices of graph will

be fully described by a location function ; the

interpretation is that an agent is located in a vertex

 . At most one agent can be located in each vertex; that

is is uniquely invertible. A generalized inverse of denot-

ed as will provide us an agent located in

a given vertex or if the vertex is empty.

Definition 1 (COOPERATIVE PATH FINDING). An instance

of cooperative path-finding problem is a quadruple
 where location functions and

define the initial and the goal arrangement of a set of agents

 in respectively. □

The dynamicity of the model supposes a discrete time di-

vided into time steps. An arrangement at the -th time step

can be transformed by a transition action which instantane-

ously moves agents in the non-colliding way to form a new

arrangement . The resulting arrangement must

satisfy the following validity conditions:

(i) either or

 holds

(agents move along edges or not move at all),

(ii)

(agents move to vacant vertices only), and

(iii)

(no two agents enter the same target/unique

invertibility of resulting arrangement).

 The task in cooperative path finding is to transform

using above valid transitions to .

Definition 2 (SOLUTION, MAKESPAN). A solution of a

makespan to a cooperative path finding instance
 is a sequence of arrangements
 where and is a result of

valid transformation of for every . □

A notation will be also used to denote the makespan. If

it is a question whether there is a solution of of the

makespan at most a given bound we are speaking about a

bounded variant (bCPF). It is known that bCPF is -

complete and finding makespan optimal solution to CPF is

 -hard [9]. Notice that due to no-ops introduced in valid

transitions it is equivalent to finding a solution of the

makespan equal to the given bound.

III. CPF AS PROPOSITIONAL SATISFIABILITY

To enable solving of CPF as satisfiability we needed to

develop more compact SAT encodings than those represent-

ed by SAT-based domain-independent planning systems like

SATPLAN [5] or SASE [4]. Our advantage here was the

knowledge of the domain, which allowed us to make im-

portant design decisions.

In both encodings, we followed the classical Graphplan

style [5] as for we also encode state of the planning world at

each time step. The candidates for multi-valued state varia-

bles are clearly the location function and its inverse. It is

known that each multi-valued state variable can be encoded

by the logarithmic number of propositional variables with

respect to the number of its values [11] which we also follow

in our design. Location function tells us in what vertex a

given agent is located while the inverse location tells us what

agent is located in a given vertex. This is a substantial differ-

ence and the choice of state variables determines the overall

design of constraints that will encode validity conditions of

CPF.

A. INVERSE Encoding

If states of the planning world – that is, arrangements of

agents – are represented using inverse locations we need to

add other multi-valued state variables that will encode state

transitions with regard on validity conditions. There are two

primitive actions for each edge adjacent to the given vertex

plus one no-op action. Half of the primitive actions corre-

sponding to the vertex are reserved for incoming agents

while the other half is for outgoing agents. If the outgoing

primitive action is selected it is necessary to propagate the

selection as corresponding selection of incoming primitive

action in the target vertex; and vice versa. Representing the

selection of the primitive action as a multi-values state vari-

able automatically ensures that conditions (i) and (iii) are

encoded. No other constraint is necessary. Notice also, that

the degree of vertices in is typically low for real-life envi-

ronments, thus the action selection in the vertex can be cap-

tured by few propositional variables.

Let be an instance of CPF and

 be a makespan bound (= bCPF altogether). The

INVERSE encoding has layers . Suppose that neigh-

boring vertices of a given vertex are ordered in the fixed

order. That is, we have a function

 and its inverse
 .

Definition 3 (REGULAR LAYER – INVERSE ENCODING).

The -th layer of the INVERSE encoding consists of the fol-

lowing finite domain integer state variables:


 for all such that

 iff


 for all such that

 iff no-op was selected in ;

 iff an outgoing primitive action with

 the target was selected in ;

 iff an incoming primitive ac-

tion with as the source was selected in .

and constraints:



 for all

 (no-op case);



 where

 for all

 (outgoing agent case);



 where

 for all

 (incoming agent case). □

State variables
 represent inverse locations; that is,

tells us what agent is located in at the time step . State

variables
 represent primitive transition actions selected in

vertices. The last layer of the encoding is irregular as it has

inverse location state variables only. To finish the encoding

of the bCPF instance we need to encode the initial and the

goal arrangement straightforwardly as follows:

 iff

 ,

 iff

 ,

 iff

 ,

 iff

 .

Transformation of the encoding from the above integer

representation to the propositional one exploits standard

Tseitin’s hierarchical encoding [17] with auxiliary variables.

Basically we need to encode implications with equality be-

tween a state variable and a constant on the left side and one

or more equalities between state variables or between a state

variable and a constant on the right side.

For illustration, suppose we need to encode a constraint

 with and over vec-

tors of propositional variables that encode
 ,

 , and

 (this is, actually part of the second constraint in the

layer encoding; for simplicity we do not show the whole

right side of the implication). Propositional variables will be

referred to using array indices to the original integer state

variables.

We introduce a fresh auxiliary propositional variable .

The original constraint will then split into conjunction as

follows:

 . The first con-

straint in the conjunction will be encoded simply as one

clause:

The second constraint will be encoded as conjunction of

several ternary clauses:

Notice that we kept up with just one auxiliary variable in

this case. Encoding equality on the right side is yet easier.

Let us summarize the size of the encoding in the following

proposition (the proof is omitted). It is easy to observe that

most of the clauses in the INVERSE encoding are either binary

or ternary.

Proposition 1 (INVERSE ENCODING SIZE). A regular lay-

er of the INVERSE encoding of the instance of bCPF re-

quires:

propositional variables for representing state variables,

auxiliary propositional variables from Tseitin’s translation

clauses for representing constraints, and

 ,

clauses for excluding unused location and transition action

states respectively. ■

B. ALL-DIFFERENT Encoding and Heuristic Estimation

If location function is chosen to represent the arrangement

we need to take care of ensuring validity conditions (ii) and

(iii) more explicitly. An agent must move into unoccupied

vertex which in this representation means that it should

avoid all the vertices occupied by other agents at the current

time step. This condition is modeled by pair-wise differences

between involved location state variables. The situation is

very close to a bi-clique [11] of pair-wise differences but

differences between locations for the same agent at consecu-

tive time steps are missing here.

At the same time, it is necessary that no two agents occu-

py the same vertex (location). This requirement can be ex-

pressed through the ALL-DIFFERENT [10] constraint involv-

ing all the location state variables at the given time step.

Finally, we need to encode the condition that agents can

move along edges of only. It requires quite extensive en-

coding as a conditional equality needs to be added for each

vertex and agent. Briefly expressed, this tells that if an agent

is located in a given vertex at a given time step then it must

be located in some of the neighbors or in the same vertex at

the next time step. The just introduced ALL-DIFFERENT-

based encoding is summarized formally in the following

definition.

Definition 4 (REGULAR LAYER – ALL-DIFFERENT). The

 -th layer of the ALL-DIFFERENT encoding consists of the

following finite domain integer state variables:


 for all

 such that
 iff

and the constraints are as follows:

 for all and

(agents can move only along edges of),

Initial:

Goal:

(1)

(2)

(3)

 (4)

where

 iff

 iff

 for all

(the target vertex of agent’s move must be empty),

 and at most one agent resides in each vertex:

 which altogether directly encodes validity conditions

(i), (ii), and (iii). □

 The last layer is irregular again; there is no propagation

constraint to the next layer. Location state variables
 are

encoded using propositional variables each; let us

again refer to them through indexing. The initial and the goal

state are encoded trivially as several equalities between state

variables and constants.

 Let us fix and . Suppose further that

 has neighbors. We need to introduce fresh

propositional variables – say , ,…, – to encode

the constraint (4). Each new auxiliary variable is put to stand

instead of the equality in the original constraint. So we have

an -ary clause

 . To ensure correct

encoding, implications between the auxiliary variables and

the original equalities need to be added. For simplicity let us

show the second equality between the state variable and the

constant only; it is encoded by binary clauses:

The inequality between two state variables is encoded us-

ing the scheme introduced in [1]. Authors use the term bit-

vectors in the same sense as we do use vectors of proposi-

tional variables encoding a state variable. Suppose that we

need to encode

 . Now, fresh proposi-

tional variables , ,…, are introduced. Each

encodes inequality between the corresponding propositional

variables encoding
 and

 respectively. Hence, to ex-

press inequality between original state variables we can just

put single clause:

 . Again the relation of new

auxiliary variables to
 and

 as ternary

clauses needs to be added:

 To encode the ALL-DIFFERENT constraint we again follow

scheme presented in [1]. That is, inequalities between all-

pairs of involved state variables are encoded in the same way

as above which means to encode

 inequalities. Although

the size of the encoding is now more than evident, let us

summarize it in the following proposition. Again, most of

the clauses are either binary or ternary.

Proposition 2 (ALL-DIFFERENT ENCODING SIZE). A regu-

lar layer of the ALL-DIFFERENT encoding of bCPF instance

requires:

propositional variables for representing agent’s locations,

auxiliary propositional variables,

clauses to represent validity conditions, and

 ,

clauses for excluding unused location states. ■

 As it is usually the case that the ALL-DIFFERENT

encoding has fewer propositional variables needed to encode

state variables than the INVERSE encoding (since then it

holds, that). This difference is

becoming more prominent on sparsely populated environ-

ments. On the other hand, the ALL-DIFFERENT encoding has

more constraints which add many auxiliary variables and

most notably the representation of the ALL-DIFFERENT con-

straint grows quadratically as the number of agents increas-

es. Notice also, that all the transition actions need to be cho-

sen even for vertices not containing any agent in the INVERSE

encoding. Hence, we should expect that INVERSE encoding

will be better for densely populated environments while the

ALL-DIFFERENT will be better for sparsely populated ones.

 Unlike in the case of INVERSE encoding the ALL-

DIFFERENT encoding can be enhanced by a certain heuristic

reasoning. We observed in our preliminary experiments that

the most space consuming constraint is constraint (4). Thus

we made an enhancement in which we do not introduce this

constraint if the given location cannot be reached by the

given agent from its initial location at the -th timestep.

Similarly, the constraint is not introduced if there is no

chance for the agent to reach its goal location in the re-

maining number of steps. Formally the constraint (4) is in-

troduced if and only if the following condition holds:

 To ensure the correctness of the enhancement also we

need to forbid occurrence of agents in unreachable loca-

tions. That is, following constraints are added to the model:

 for all and such that

IV. SAT-BASED OPTIMIZATION OF SOLUTIONS TO CPFS

 The approach of our choice to obtain solutions to CPFs of

short makespans (or even optimal makespans) is not to solve

the CPF instance as SAT completely but to employ a SAT

solver to optimize an existent sub-optimal solution. There

already exist sub-optimal complete algorithms for solving

CPF in polynomial time such as BIBOX [15] or PUSH-SWAP

[7] which are ready to be used in this framework.

 The basic idea of the optimization process is to take a

relatively short subsequence of movements in the existent

solution and replace it with an optimal sub-solution obtained

from the SAT solver. Our new SAT-based solution optimi-

(5)

(6)

(7)

zation scheme is called iCOBOPT. The previous version

called COBOPT is described in [16]. The iCOBOPT algorithm

uses more intelligent adaptation of makespan bounds which

limit the number of encoded time steps while in COBOPT it

was fixed by the user.

Algorithm 1. iCOBOPT – an iterative SAT-based optimization of solutions

to CPFs. The algorithm iteratively increases the makespan bound. The

binary search for optimal sub-solutions to CPFs is shown. It finishes if the
timeout is reached or the overall optimum is found.

function iCOBOPT-Optimize-Cooperative-Plan : solution

1: Get-Current-Time

2:
3: do
4: do

5:
6: let
7: ;
8: while do
9: Find-Last-Reachable-Arrangement
10: Compute-Optimal-Solution
11:
12: while
13: Get-Current-Time
14:
15: while and
16: return

function Find-Last-Reachable-Arrangement : integer
17: let
18:
19: while do
20:
21:
22: if Check-Reachability then
23: Encode
24: if Solve-SAT then
25: else
26: else
27:
28: return

function Check-Reachability : boolean

29: let
30: for each do
31: if then return
32: return

The scheme of employing SAT solvers in iCOBOPT is

much more scalable than the classical SATPLAN or SASE

planning since incomparably smaller SAT instances need to

be solved. Here we do not compare encoding style but the

scheme in which encoded instances are submitted to the

SAT solver; eventually all the time steps needed to cover the

optimal makespan are encoded in the SATPLAN or SASE

scheme (and it may be very large in the case of CPFs). No-

tice, that in our approach we encode few layers representing

time steps of a given sub-solution. Observe also the im-

portant fact that the linear increase in the number of layers of

the encoding may cause exponential increase in the solving

runtime of the SAT solver. If we simplify the situation the

time needed check if there is a solution to the encoded in-

stance with layers needs time of where while

if we divide the makespan into two parts – say and

layers where are encoded separately then the

time is which is exponentially smaller

than (of course, the question in the latter case is not

equivalent to the former one). On the other hand SATPLAN

and SASE schemes guarantee to find makespan optimal solu-

tions which iCOBOPT does not guarantee. Nevertheless,

iCOBOPT is capable of optimizing much larger CPFs than

SATPLAN or SASE can do (even if they would use our do-

main-dependent encodings).

 The pseudo-code of the iCOBOPT optimization is shown as

Algorithm 1. Throughout the algorithm the makespan bound

of is used which is gradually increased. At every time step

 of the current solution to the CPF instance (which is at

the beginning that obtained from the suboptimal algorithm

for CPF – called a base solution) a maximum step , such

that and the state (arrangement) at can be reached

from the state at in steps, is found. The step is found

by the binary search which uses multiple queries to the SAT

solver. The optimization process terminates if the given

timeout of is exceeded or the makespan optimal solution

to is found. The process is illustrated in Fig. 2.

Fig. 2. Illustration of the optimization process. A single iteration is shown –

these are repeated until a fixed point is reached.

V. EXPERIMENTAL EVALUATION

We have chosen the BIBOX algorithm to produce sub-

optimal base solutions in our experimental evaluation. This

choice was guided by the fact that authors of this algorithm

do provide the source code and the benchmark generation

suite. Additionally, according to our findings BIBOX algo-

rithm was capable to generate the required sub-optimal solu-

tions very quickly.

As benchmarks we have chosen environments consisting

of 4-connected grids of size 88 and 1616 respectively

with random initial and goal arrangements of agents. Up to

78% occupancy was tested in case of the grid of size 88

and up to 50% occupancy was tested for the 1616 grid.

 As the SAT solver we used MINISAT 2.2 [3] as its pros

and cons are well known. To evaluate the benefit of employ-

ing SAT technology in solving CPFs we also made a brief

comparison with the incomplete solver WHCA* [13] which is

de-facto considered to be the standard approach to solving

CPFs (the window of size 16 was used in WHCA*). We also

considered comparison with the ID+OD algorithm which is

designed to generate optimal solutions to CPFs in sparsely

populated environments. However, we found that it is not

directly comparable as its main strength consists in separat-

ing agents into independent groups which do not intermix.

Base solution

Time steps

Optimized
solution

SAT solving

Next

iteration

makespan

This contrasts with our approach where all the agents consti-

tute one intermixing group.

 To allow reproducing of all the results the source of

iCOBOPT as well as experimental data is provided at:

http://ktiml.mff.cuni.cz/~surynek/research/ictai2012.

A. Comparison of Encoding Sizes

We compared sizes of our INVERSE and ALL-DIFFERENT

encodings with domain independent encodings of SATPLAN

and SASE – results for the 88 grid are shown in Table 1; for

the 1616 grid in Table 2. Although it is a bit unfair compar-

ison since our domain is fixed, it gives a nice picture of the

situation.

Clearly the INVERSE encoding is very conservative regard-

ing the number of variables and clauses – it dominates all the

other encodings in this aspect. The small size is mainly due

to the fact that lot of the domain knowledge is captured in

the design of variables. On the other hand ALL-DIFFERENT

encoding is very close to that of SASE (ALL-DIFFERENT

tends to be smaller on larger instances especially in terms of

the number of clauses).

Table 1. Encoding sizes comparison on the grid 88. The number of layers

of encodings was determined as the goal level provided by SATPLAN (a

step where the goal may be reachable).

 in the
4-connected

grid 88

Number
of layers

SATPLAN

encoding

SASE

encoding

INVERSE

encoding
ALL-DIFFERENT

encoding

|Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses|

4 8 5864 55330 11386 53143 5400 38800 11128 54356

8 8 10022 165660 19097 105724 5920 48224 25136 114952

12 8 14471 356410 26857 168875 5920 46176 42024 181788

16 10 30157 1169198 51662 372140 8122 76192 79008 326736

24 10 43451 2473813 73101 588886 8122 71072 140400 537528

32 14 99398 8530312 157083 1385010 12396 137120 309824 1120672

The SATPLAN encoding seems to be conservative regard-

ing the number of variables but the number of clauses is

quickly blowing up (for larger number of agents in the

1616 grid SATPLAN gave up with no memory left). Surpris-

ingly we found, that the difference in size of the encoding

generated by SATPLAN and SASE is not that huge as it is

reported in [4] for other domains. Encoding sizes differ

marginally for sparsely populated environments; while

SATPLAN tends to have up to 6 times more clauses in dense-

ly populated environments (far from the reported 50-fold).

Table 2. Encoding sizes comparison on the grid 1616. SATPLAN was

unable to generate SAT instance for the larger number of agents, and SASE
failed to proceed to the goal level. That is why the number of layers is lower

than the goal level for larger numbers of agents*.

 in the
4-connected

grid 1616

Number
of layers

SATPLAN

encoding

SASE

encoding

INVERSE

encoding
ALL-DIFFERENT

encoding

|Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses|

4 21 69704 746562 137406 677737 60755 478462 122368 827628

8 15 65365 995507 134482 712352 46904 412416 178816 1174616

16 18

Out of memory

342100 2347456 61154 611328 469888 2928336

32 4* 288498 2716096 13672 143104 197888 1101600

40 4* 357762 3783672 13672 134912 265280 1415080

64 4* 561210 5913320 14700 189440 510464 2446912

 Another important aspect which speaks in favor of do-

main dependent encodings like INVERSE and ALL-DIFFERENT

is that a considerable time and space is necessary to generate

SAT instance in SATPLAN and SASE (in case of SATPLAN

huge memory consumption even hinders it from generating

any output). In the case of our approach SAT, instances are

generated faster than is the time to save them (no special

computation is necessary while SATPLAN and SASE need to

perform time consuming mutex reasoning). Notice, also that

we typically use fewer layers, which is another important

factor in reducing sizes of generated encodings.

B. Makespan and Runtime
1
 Comparison

Experiments regarding makespan and runtime show that

size of the encoding itself is not everything with regard on

solving performance. Observe that each of our encodings is

built in a different fashion – the INVERSE encoding is very

flat while the ALL-DIFFERENT one is built more hierarchical-

ly (that is, many clauses may be switched off through auxil-

iary variables). Generally SAT solvers seem to be sensitive

to such differences.

Fig. 3. Makespan comparison on the 88 grid. Optimal solutions for up to

22 and 30 agents can be found by iCOBOPT using the INVERSE and the
ALL-DIFFERENT encoding respectively. Only up to 16 agents can be solved

sub-optimally by WHCA*.

 Makespan comparison reported in Fig. 3 and Fig. 4 shows

that in the 88 grid, iCOBOPT is capable of generating opti-

mal solutions for up to 30 agents. The ALL-DIFFERENT en-

coding tends to be better for fewer agents while it loses with

respect to the INVERSE encoding on environments populated

by many agents. A comparison with WHCA* shows that its

incompleteness presents an unpleasant issue – it is unable to

produce a solution for instances with the occupancy of envi-

ronment exceeding 25% where iCOBOPT still produces opti-

mal solutions (up to the occupancy of 47%).

Fig. 4. Makespan comparison on the 1616 grid. Optimal solutions for up
to 40 agents can be found by iCOBOPT with the ALL-DIFFERENT encoding;

in the same range WHCA* can find near optimal solution as well. The

INVERSE encoding dominates in the range with more than 80 agents.

1 All the runtime measurements were done on a machine with the 4-
core CPU Intel i7 3.4GHz and 8GB RAM under Linux kernel
2.6.38-26.

0

20

40

60

80

0 4 8 12 16 20 24

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Grid 88|few agents

Base solution
WHCA*
Inverse
All-different

0

200

400

600

28 32 36 40 44 48 52

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Grid 88|many agents

Base solution

Inverse

All-different

0

40

80

120

160

0 4 8 12 16 20 24 28 32 36 40

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Grid 1616|few agents

Base solution

WHCA*

Inverse

All-different

0

200

400

600

800

1000

48 64 80 96 112 128

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Grid 1616|many agents

Base solution

Inverse

All-different

Number of agents

Number of agents Number of agents

Number of agents

http://ktiml.mff.cuni.cz/~surynek/research/ictai2012

The grid of size 1616 represents the current limit of

scalability of the iCOBOPT technique (see Fig. 5 for runtime

comparison). Solutions to instances containing up to 128

agents were submitted to iCOBOPT for improvement. With

the number of agents exceeding 100 the ALL-DIFFERENT

encoding gives rise to the degradation so that almost no

optimization gain can be obtained from it. The explanation is

that if the number of variables involved in the

ALL-DIFFERENT constraint exceeds certain limit the SAT

solver starts to struggle over it. Again the ALL-DIFFERENT

encoding dominates on cases with relatively fewer agents in

the environment (optimal solutions are reached again).

Fig. 5. Runtime evaluation. If timeout of 3600s is reached (indicated by

dotted line) iCOBOPT starts to produce suboptimal solutions. Base solutions
were obtained almost immediately.

However, WHCA* can generate near optimal solutions in

the same range of the occupancy at much lower cost (all the

invocations of WHCA* in our tests finished within 5

minutes). So, it would be more appropriate to use WHCA*

instead of BIBOX to generate base solutions here and submit

them to iCOBOPT for further improvement. Nonetheless,

iCOBOPT is capable of shortening original base solutions by

at least half in all the tested occupancy setups (for higher

occupancies this refers to improvement on INVERSE encod-

ing).

The domain-dependent approach turned out to be much

better than SATPLAN and SASE if applied on CPFs (Table 3).

SATPLAN and SASE encodings become quickly prohibitively

large for the increasing number of agents. The size of the

environment has also a great impact on the performance (as

also does in case of iCOBOPT approach) – only up to 16

agents can be solved in 88 grid and 8 agents in 1616 grid

by SASE within the given time limit of 3600 seconds. For

better comparison performance of iCOBOPT is on the same

instances is summarized in Table 4.

Table 3. Runtime of classical domain independent planners on CPFs.

Timeout of 3600s (1 hour) has been used. Only relatively small instances
have been solved by SATPLAN and SASE. However they are not small in

absolute terms as solutions consist of hundreds of actions.

 in the
4-connected grid

4-connected grid 8x8 4-connected grid 16x16

Optimal makespan
SATPLAN
Runtime (s)

SASE
Runtime (s)

Optimal makespan
SATPLAN
Runtime (s)

SASE
Runtime (s)

1 5 0.0 0.45 4 0.68 1.66

4 6 0.15 2.57 21 195.5 17.98

8 8 19.85 4.73 15 1396.07 128.87

16 10 Timeout 253.55 N/A
Out of

memory
Timeout

 Very importantly, the iCOBOPT process is anytime provid-

ed that procedure for generating a base solution is fast

enough (that is, at any time we have some solution).

Table 4. Runtime of iCOBOPT. Same instances as in the case of SATPLAN
and SASE were used.

 in the
4-connected

grid

4-connected grid 8x8 4-connected grid 16x16

Computed
makespan

INVERSE
Runtime (s)

ALL-DIFF
Runtime (s)

Computed
makespan

INVERSE
Runtime (s)

ALL-DIFF
Runtime (s)

1 5/5 0.001 0.001 6/6 0.074 0.070

4 6/6 0.002 0.003 21/21 319.785 45.367

8 8/8 9.105 3.556 15/15 152.625 62.955

16 10/10 196.991 34.444 18/18 1833.080 910.391

A. Enhancement via Heuristic Distance Estimation

We evaluated the effect of using heuristic reasoning within

the ALL-DIFFERENT encoding by comparing it with the ver-

sion without the reasoning. Sizes of the enhanced encoding

are shown in Table 5. The reduction of the size of the encod-

ing is particularly significant if the number of layers is small

since agents don’t have enough time-steps to spread over the

environment.

Table 5. Sizes of the ALL-DIFFERENT encoding with heuristic reasoning

on the grids 88 and 1616. Instances are the same as in Table 1, Table 2.

The smaller encoding can be solved faster according to

our observations and hence more solution sub-sequence

optimization attempts can be done within the given time

limit by the iCOBOPT algorithm. As a result solutions with

the shorter makespan can be generated. Particularly for the

case of the grid 1616 and the occupancy of 14% - 31% up

to 50% time-steps can be saved with respect to the second

best encoding (INVERSE). For more detailed results see Fig. 6

and Fig. 7.

Fig. 6. Heuristic improvement on the 88 grid. A marginally better

makespan can be achieved by using the ALL-DIFFERENT encoding with

heuristic reasoning.

The result that the ALL-DIFFERENT encoding can be

solved generally faster is also indicated in Fig. 8 where we

show the runtime if the timeout has not been reached, that is

when optimal solution can be generated. In this case the

-600

600

1800

3000

4200

0 8 16 24 32 40 48

R
u

n
ti

m
e

 (

se
co

n
d

s)

Grid 88|all setups

Base solution
Inverse (opt)
All-different (opt)
Inverse (sub-opt)
All-different (sub-opt)

-600

600

1800

3000

4200

0 16 32 48 64 80 96 112 128

R
u

n
ti

m
e

(s

e
co

n
d

s)

Grid 1616|all setups

Base solution

Inverse (opt)

All-different (opt)

Inverse (sub-opt)

All-different (sub-opt)

0

10

20

30

0 4 8 12 16 20 24

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Makespan|Grid 88
few agents

WHCA* Inverse

All-different H-All-different

0

100

200

300

400

500

26 30 34 38 42 46 50

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Makespan|Grid 88
many agents

All-different H-All-different

Inverse

 in the
4-connected

grid 88

Number
of layers

HEURISTIC

ALL-DIFFERENT

encoding

|Variables| |Clauses|

4 8 2528 10626

8 8 7942 27543

12 8 16026 49535

16 10 38304 119827

24 10 81000 235663

32 14 219059 659882

 in the
4-connected

grid 1616

Number
of layers

HEURISTIC

ALL-DIFFERENT

encoding

21980 147136

4 21 29763 164052

8 15 125633 594618

16 18 56725 144146

32 4* 88789 218010

40 4* 228186 532339

64 4* 21980 147136

Number of agents
Number of agents

|A| |A|

optimal solution is generated as fastest by the use of the

ALL-DIFFERENT with heuristic reasoning.

Fig. 7. Heuristic improvement on the 1616 grid. The improvement

achieved by using the heuristic reasoning in the ALL-DIFFERENT encoding

is greater than in case of the 88 grid. Here, the heuristic variant is the best
choice for the population of agents consisting of 36 to 80 agents (occupancy

14% - 31%).

Fig. 8. Runtime vs. timeout comparison. If the optimization finished in the

time limit of 3600s then the runtime is shown. In such a case optimal solu-
tion has been found. The ALL-DIFFERENT encoding with heuristic reason-

ing is fastest and degrades towards the timeout as the last.

VI. SUMMARY, CONCLUSIONS, AND FUTURE WORK

 A novel SAT-based technique – called iCOBOPT – for

solving cooperative path-finding optimally or near optimally

has been introduced. Additionally two SAT encodings were

proposed – called INVERSE and ALL-DIFFERENT. They repre-

sent CPF instances more compactly than existing domain

independent encodings used in SAT-based planners like

SATPLAN and SASE.

 We found that the proposed approach performs especially

well on highly constrained instances with many agents and

small unoccupied space. These are exactly the cases where

techniques from [14] do not scale well as authors report (grid

of size 44 is reported). The INVERSE encoding is more

suitable for densely populated environments while the ALL-

DIFFERENT one is better in the sparse case. We also demon-

strate the advantage of the ALL-DIFFERENT by enhancing it

with the heuristic reasoning that can help to make it smaller

by ruling out many states.

 The important feature of our approach is also the fact that

the iCOBOPT technique is very modular – a different SAT

solver as well as arbitrary algorithm for generating base

solutions can be used. Notice also, that the technique is

friendly to multi-threaded implementation since optimiza-

tions of several isolated parts of the base solution can run in

parallel.

 We approached the classical -puzzle in our ex-

periments with 4-connected grid environments. Actually an

attempt to solve -puzzle has been made here.

Although it is not expectable that for example -puzzle can

be solved optimally even with elevated timeout by the

iCOBOPT technique, some progress from [6] may be done in

future. We are also considering investigating some alterna-

tive and more efficient encodings of the ALL-DIFFERENT

constraint than that from [1]. For future work we also plan to

switch the whole optimization process to CSP [2] where we

could exploit the full strength of global propagators for the

ALL-DIFFERENT constraint.

REFERENCES

[1] Biere, A., Brummayer, R. “Consistency Checking of All Different

Constraints over Bit-Vectors within a SAT Solver”, Proceedings of
Formal Methods in Computer-Aided Design (FMCAD 2008), IEEE

press, 2008, pp. 1-4.

[2] Dechter, R.: “Constraint Processing”, Morgan Kaufmann Publishers,
2003.

[3] Eén, N., Sörensson, N. “An Extensible SAT-solver”, Proceedings of

Theory and Applications of Satisfiability Testing (SAT 2003), LNCS
2919, Springer, 2004, pp. 502-518.

[4] Huang, R., Chen, Y., Zhang, W. “A Novel Transition Based Encoding

Scheme for Planning as Satisfiability”, Proceedings AAAI 2010,
AAAI Press, 2010.

[5] Kautz, H., Selman, B. “Unifying SAT-based and Graph-based Plan-
ning”, Proceedings of the 16th International Joint Conference on Arti-

ficial Intelligence (IJCAI 1999), Morgan Kaufmann, 1999, pp. 318-

325.
[6] Korf, R. E., Taylor, L. A. “Finding Optimal Solutions to the 24-

Puzzle”, Proceedings of the 13th National Conference on Artificial In-

telligence (AAAI 1996), AAAI Press, 1996, pp. 1202-1207.
[7] Luna, R., Berkis, K., E. “Push-and-Swap: Fast Cooperative Path-

Finding with Completeness Guarantees”, Proceedings of the 22nd In-

ternational Joint Conference on Artificial Intelligence (IJCAI 2011),
IJCAI/AAAI Press, 2011, pp. 294-300.

[8] Nightingale, P., Gent, I. “A New Encoding of AllDifferent into SAT”,

CP 2004 Workshop on Modelling and Reformulating CSPs, 2004.
[9] Ratner, D., Warmuth, M. K. “Finding a Shortest Solution for the N ×

N Extension of the 15-PUZZLE Is Intractable”, Proceedings of AAAI

1986, Morgan Kaufmann, 1986, pp. 168-172.
[10] Régin, J-C. “A Filtering Algorithm for Constraints of Difference in

CSPs”, Proceedings of the 12th National Conference on Artificial In-

telligence (AAAI 1994), AAAI Press, 1994, pp. 362-367.
[11] Rintanen, J. “Compact Representation of Sets of Binary Constraints”,

Proceedings of ECAI 2006, IOS Press, 2006, pp. 143-147

[12] Ryan, M. R. K. “Exploiting Subgraph Structure in Multi-Robot Path
Planning”, Journal of Artificial Intelligence Research (JAIR), Volume

31, AAA Press, 2008, pp. 497-542.

[13] Silver, D.. Cooperative Pathfinding. Proceedings of the 1st Artificial
Intelligence and Interactive Digital Entertainment Conference (AIIDE

2005), AAAI Press, 2005, pp. 117-122.

[14] Standley, T. S., Korf, R. E. “Complete Algorithms for Cooperative
Pathfinding Problems”, Proceedings of IJCAI 2011, IJCAI/AAAI

Press, 2011, pp. 668-673

[15] Surynek, P. “A Novel Approach to Path Planning for Multiple Robots
in Bi-connected Graphs”, Proceedings of ICRA 2009, IEEE Press,

2009, pp. 3613-3619.

[16] Surynek, P. “Towards Optimal Cooperative Path Planning in Hard
Setups through Satisfiability Solving”, Proceedings of PRICAI 2012,

LNCS 7458, Springer, 2012, pp. 564-576.

[17] Tseitin, G. “On the complexity of derivation in propositional calcu-
lus”, Studies in Constructive Mathematics and Mathematical Logic,

1968, pp. 115–125.

[18] Wang, K. C., Botea, A. “MAPP: a Scalable Multi-Agent Path Plan-
ning Algorithm with Tractability and Completeness Guarantees”,

JAIR, Volume 42, AAAI Press, 2011, pp. 55-90.

0

40

80

0 4 8 12 16 20 24 28 32 36 40

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Makespan|Grid 1616
few agents

Inverse WHCA*

All-different H-All-different

0

200

400

600

800

1000

48 68 88 108 128
N

u
m

b
er

 o
f

ti
m

e
st

ep
s

Makespan|Grid 1616
many agents

All-different H-All-different

Inverse

-600

600

1800

3000

4200

0 10 20 30 40 50

R
u

n
ti

m
e

(s
e

co
n

d
s)

Runtime|Grid 88

Inverse All-different

H-All-different Base solution

-600

600

1800

3000

4200

0 20 40 60 80 100 120

R
u

n
ti

m
e

(s
e

co
n

d
s)

Runtime|Grid 1616

Base solution Inverse

All-different H-All-different

|A| |A|

|A| |A|

