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Abstract. The task of enforcing certain level of consistency in Boolean satis-
fiability problem (SAT problem) is addressed in this paper. The concept of 
path-consistency known from the constraint programming paradigm is revisited 
in this context. Augmentations how to make path-consistency more suitable for 
SAT are specifically studied. A stronger variant of path-consistency is de-
scribed and its theoretical properties are investigated. It combines the standard 
path consistency on the literal encoding of the given SAT instance with global 
properties calculated from constraints imposed by the instance – namely with 
the maximum number of visits of a certain set by the path. Unfortunately, the 
problem of enforcing this variant of path-consistency turned out to be NP-hard. 
Hence, various types of relaxations of this stronger version of path-consistency 
were proposed. The relaxed version of the proposed consistency represents a 
trade-off between the inference strength and the complexity of its propagation 
algorithm. A presented theoretical analysis shows that computational costs of 
the proposed consistency are kept reasonably low. Preliminary experiments also 
show that the mentioned maximum number of visits calculated on several 
benchmark SAT instances provide non-trivial amount of information. 
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1   Introduction and Motivation 

A method how to increase the inference strength of path-consistency [13, 14] will be 
described. It combines the standard path-consistency on the literal encoding model 
[17] of the given Boolean satisfiability (SAT) instance [5] with global properties 
calculated from the instance. The existence of a path in a graph interpretation of the 
instance is being checked by the standard path-consistency. In the augmented va-
riants, additional requirements are imposed on the path being checked to exist. Unfor-
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tunately, the problem of checking the existence of a path according to augmented 
requirements turned out to be NP-complete [16]. Hence, various relaxations that still 
preserve the inference strength of augmented variants above the level of the standard 
path-consistency were proposed and evaluated. The ultimate goal of whole design of 
the adaptation of path-consistency is a tool for preprocessing SAT instances. The 
result of preprocessing should be a simplified SAT instance that is easier to solve. 

2   Notations and Definitions 

Concepts of constraint satisfaction problem (CSP) [7] and Boolean satisfiability 

(SAT) [5] need to be established first to make reasoning about path-consistency in the 
context of SAT easier to understand. 

 

Definition 1 (Constraint satisfaction problem - CSP). Let � be a finite set 
representing domain universe. A constraint satisfaction problem [7] is a triple 
(�, �, �) where � is a finite set of variables, � is a finite set of constraints, and 
�: � ⟶ 
(�) is a function that defines domains of individual variables from � (that 
is, �(�) ⊆ � is a set of values that can be assigned to the variable � ∈ �). Each con-
straint from � ∈ � is of the form 〈(��

� , ��
�, … , ���

� ), ��〉 where �� ∈ ℕ is called an arity 
of the constraint �, the tuple (��

�, ��
� , … , ���

� ) with ��
� ∈ � for � = 1,2, … , �� is called 

a scope of the constraint, and the relation �� ⊆ �(��
�) × �(��

�) × … × �(���
� ) defines 

the set of tuples of values for that the constraint � is satisfied. The task is to find a 
valuation of variables  : � ⟶ � such that  (�) ∈ �(�) ∀� ∈ � and 
( (��

�),  (��
�), … ,  (���

� )) ∈ �� ∀� ∈ �. □ 
 

A constraint � ∈ � with the scope (��
� , ��

�, … , ���
� ) will be denoted as 

�({��
�, ��

� , … , ���
� }); this notation is useful when the ordering of variables in the scope 

is not known from the context; when ordering of variables in the scope matters, then a 
notation �(��

�, ��
� , … , ���

� ) will be used instead. 
A CSP is called binary if all the constraints has the arity of two. The expressive 

power of a binary CSP is not reduced in comparison with a general one since every 
CSP can be transformed into an equivalent binary CSP [15]. The key concept of path-

consistency [14] that is addressed in this paper is defined for binary CSPs only. It is 
also convenient to suppose, that each pair of variables is constrained by at most one 
constraint. 

 

Definition 2 (Boolean satisfiability problem - SAT). Let $ be a finite set of Boolean 

variables; that is, a set of variables that can be assigned either %&'() or *�+). A 
Boolean formula % over the set of variables $ in a so called conjunctive normal form 
(CNF) [12] is the construct of the form ⋀ (⋁ ./

��0
/1� )2

�1�  where ./
� with either ./

� = 3 or 
./

� = ¬3 for some 3 ∈ $ for � = 1,2, … , 4; 5 = 1,2, … , �� is called a literal and 
(⋁ ./

��0
/1� ) for � = 1,2, … , 4 is called a clause. The task is to find a valuation of Boo-

lean variables 6: $ ⟶ {%&'(), *�+)} such that % evaluates to *�+) under 6 while 
¬ (negation), ∨ (disjunction), and ∧ (conjunction) are interpreted commonly in the 
Boolean algebra. A formula for that such a satisfying valuation exists is called satisfi-

able. □ 
 



It is a well known result that the language consisting of satisfiable formulas in 
CNF as well as general ones is an NP-complete problem [5, 9]. It is not difficult to 
observe that the language of solvable instances of CSP is NP-complete as well since it 
just generalizes SAT in fact (constraints are represented by clauses) while member-
ship of CSP into the NP class is preserved by the generalization. 

2   Path-consistency in CSP 

The standard definition of path-consistency in CSP will be recalled before the aug-
mented versions and their relaxations are introduced. The following definition refers 
to general paths of variables which is not necessary in fact. However, this style of 
definition will be more suitable for making intended augmentations. 
 

Definition 3 (Path-consistency - PC). Let (�, �, �) be a binary CSP and let 9 =
(�:, ��, … , ��) with �� ∈ � for � = 0,1, … , � be a sequence of variables called a path. 
A pair of values <: ∈ �(�:) and <� ∈ �(��) is path-consistent with respect to 9 if 
there exists a valuation  : {�:, ��, … , ��} ⟶ � with  (�:) = <: ∧  (��) = <� such 
that constraints �({�� , �(�=�) ?@A �}) are satisfied by   for every � = 0,1, … , �. The 
path 9 is said to be path-consistent if all the pairs of values from �(�:) and �(��) 
respectively are path-consistent with respect to 9. Finally, the CSP (�, �, �) is said to 
be path-consistent if it is path-consistent for every path. □ 

 

Notice that variables forming the path in the definition do not need to be neces-
sarily distinct. Although the notion of path-consistency seems to be computationally 
infeasible since there are typically too many paths, it is sufficient to check path-
consistency for all the paths consisting of triples of variables only to ensure that the 
given CSP is path-consistent [13, 14]. In other words, although it seems that path-
consistency captures the problem globally (a path can go through large portion of 
variables of the instance), it merely defines a local property. 

There exist many algorithms for enforcing path-consistency in a CSP such as PC-4 
[10] and PC-6 [1, 3]. They differ in the representation of auxiliary data structures and 
the efficiency. The common feature of path-consistency algorithms is however the 
process how the consistency is enforced. It is done by eliminating pairs of inconsis-
tent values until a path-consistent state is reached (the smallest set of pairs of values 
such that their elimination makes the problem path-consistent is being pursued). The 
process of elimination of pairs of values is typically done by pruning extensional 
representation of constraints (lists of allowed tuples) to forbid more pairs of values. 

3   Standard Path-consistency in SAT 

The aim of this work is to modify path-consistency to make it applicable on SAT and 
to increase its inference strength by incorporating certain global reasoning into it. The 
easier task is to make path-consistency applicable on SAT - it is sufficient to model 
SAT as CSP. A so called literal encoding [17], which of the result is a binary CSP, is 



particularly used. This kind of encoding is especially suitable since it allows natural 
expressing of path-consistency in terms of graph constructs. 

Let % = ⋀ (⋁ ./
��0

/1� )2
�1�  be a Boolean formula in CNF over a set of Boolean va-

riables $. Let � = ⋃ (⋃ {./̅
�}

D0
/1� )E

�1�  be a domain universe; that is, a constant symbol 
with the stripe is introduced into � for each literal occurrence in % (notice that, each 
occurrence of a literal corresponds to a different constant symbol). The corresponding 
CSP (�, �, �) using literal encoding is built as follows: � = {F�, F�, … , F2}; that is, a 
variable is introduced for each clause of %; it holds for �: � ⟶ 
(�) that �(F�) =

⋃ {./̅
�}

�0
/1� ; that is, the domain of an �-th clause contains constant symbols correspond-

ing to all its literals. A constraint �({F�G
, F�H

}) = 〈(F�G
, F�H

), ��〉 is introduced over 
every pair of variables with ��, �� ∈ {1,2, … , 4} ∧ �� ≠ �� where a variable � ∈ $ such 
that either � ∈ �(F�G

) ∧ ¬� ∈ �(F�H
) or ¬� ∈ �(F�G

) ∧ � ∈ �(F�H
) exists. Such a 

constraint �({F�G
, F�H

}) then forbids every tuple of values (. ̅
/G

�G , . ̅
/H

�H) such that there 
exists � ∈ $ for that either . ̅

/G

�G = � ∧ . ̅
/H

�H = ¬� or . ̅
/G

�G = ¬� ∧ . ̅
/H

�H = � (that is, the tuple 
(. ̅

/G

�G , . ̅
/H

�H) is removed from �� which has been initially set to �(F�G
) ×  �(F�H

)). A 
solution of the resulting CSP (�, �, �) corresponds to the valuation of Boolean va-
riables of $ that satisfies % and vice versa [17]. 
 

 

 

Fig. 1. An illustration of path-consistency in the CSP model of a SAT problem. The SAT prob-
lem represented by a formula % shown here is a representation of the requirement of selecting 
an odd number of variables from every of the following sets to be true: {��, ��}, {��, �J}, 
{��, �J}. Observe, that there is no satisfying valuation of %. However, the pair of literals ¬�� 
and �J from the left most variable and from the right most variable respectively are path-
consistent with respect to a depicted path 9 since they are non-conflicting and there exists a 
path from the left to the right consisting of edges between neighboring variables connecting 
allowed pairs of values (the path is marked by bold edges and by darker vertices). 
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Having the CSP model of SAT it is possible to check path-consistency for the cor-
responding CSP model and proclaim the original SAT path-consistent or path-
inconsistent accordingly. If elements of variable domains are interpreted as vertices 
and allowed tuples of values as directed edges connecting them, then path-consistency 
with respect to a given path can be interpreted as existence of paths in the resulting 
directed graph. 

More precisely, let 9 = (F�X
, F�G

, … , F�Y
) with �/ ∈ {1,2, … , 4} for 5 = 0,1, … , � be 

a sequence of variables in the literal encoding CSP model (�, �, �). A directed graph 
Z[\

→ (9) = (W, )), in which path-consistency can be interpreted as the existence of 
paths, is defined as follows: W = ⋃ �(F�]

)�
/1:  and if 

(. ̅
/G

�]
, . ̅

/H

�(]^G) _`a Y
) ∈ �

�(b0]
,b0(]^G) _`a Y

)
 then a directed edge (. ̅

/G

�]
, . ̅

/H

�(]^G) _`a Y
) is in-

cluded into ). A pair of values . ̅
/G

�X ∈ �(F�X
) and . ̅

/H

�Y ∈ �(F�Y
) is path-consistent with 

respect to the path 9 if there is an edge (. ̅
/G

�Y , . ̅
/G

�X) in Z[\
→ (9) and there exists a path 

from the vertex . ̅
/G

�X to the vertex . ̅
/H

�Y in Z[\
→ (9). The graph Z[\

→ (9) will be called a 
graph interpretation of path-consistency – see Fig. 1 for illustration. 

Notice that path-consistency is incomplete in the sense that a pair of values may be 
path-consistent even if there is no solution of the problem that contains this pair of 
values (see Fig. 1 again). Analogically, the problem may be path-consistent (that is, 
path-consistent with respect to all the paths) even if it has no solution actually. The 
partial reason for this weakness of path-consistency is that many constraints are ig-
nored when a pair of values is checked. This is especially apparent if a longer path of 
variables is considered. Only constraints over pairs of variables neighboring in the 
path are considered while many constraints such as that for example over the first and 
the third variable in the path are ignored. This property is disadvantageous especially 
in SAT where stronger reasoning is typically more beneficial. 

For further augmentation of path-consistency, it is also convenient to prepare a so 
called auxiliary constraint graph for the model with respect to the path 9 that reflects 
all the constraints over the variables of the path 9. It is an undirected graph 
Z\c[(9) = (W, )) and it is defined as follows: W = ⋃ �(F�]

)�
/1: ; an edge {. ̅

/G

�]
, . ̅

/H

�d} is 
added to )  if (. ̅

/G

�]
, . ̅

/H

�d) ∈ �
�(b0]

,b0d
)
; and all the edges {. ̅

/G

�]
, . ̅

/H

�]
} for all 5 = 1,2, … , 4 and 

5�, 5� = 1,2, … , �/ ∧ 5� ≠ 5�. Observe that the auxiliary constraint graph subsumes the 
graph interpretation with respect to the same path. Notice also, that there is a com-
plete subgraph over vertices corresponding to values from the domain of the same 
variable. 

4   Making Path-consistency Stronger 

A modification of path-consistency has been proposed to overcome mentioned limita-
tions of the standard version. To increase inference strength of path-consistency addi-
tional requirements on the path in the graph model are imposed. These additional 
requirements reflect constraints over non-neighboring variables in the path of va-
riables. As the auxiliary constraint graph represents an explicit representation of con-
straints, it is exploited for determining additional requirements. 



4.1   An Initial Augmentation of Path-consistency 

An approach adopted in this work restricts the size of the intersection of the con-
structed path with certain subsets of vertices in the graph interpretation of path-
consistency. More precisely, let Z[\

→ (9) = (W, )) be a graph interpretation of path-
consistency in a CSP model of SAT (�, �, �). The set of vertices W is partitioned into 
disjoint sequences '�, '�, … , 'e called layers (that is, ⋃ 'f�

e
�1� = W and 'f� ∩ 'f/ 

∀�, 5 ∈ {1,2, … , h} ∧ � ≠ 5; where denotes the union of the sequence &i, that is 
&i = ⋃ {j�}E

�1�  for & = [j�, j�, … , jE]). The maximum size of the intersection of the 
path being checked to exist with individual layers is determined using the set of con-
straints � (notice that all the constraints over 9 are considered – not only constraints 
over neighboring variables in 9). This proposal will be called an initial augmentation 
of path-consistency in the rest of the text. 

The concept of the initial augmentation of path-consistency comes from [16]. The 
process of decomposition of the set of vertices into layers is done over the corres-
ponding auxiliary constraint graph Z\c[(9). Vertices of Z\c[(9) are decomposed into 
vertex disjoint stable sets (a stable set is a subset of vertices of a graph where no two 
vertices are adjacent with respect to edges). The knowledge of such decomposition 
can be then used to partition vertices into layers that directly correspond to found 
stable sets. However, determining a stable subset is a difficult task itself. Hence a 
greedy approach has been used to obtain an acceptable solution. More details about 
how to decompose vertices into layers greedily for the initial augmentation can be 
found in [16].  

Since it is possible to assign to a variable at most one value from values corres-
ponding to vertices of the stable set in Z\c[(9), the maximum size of the intersection 
of the path with a layer is thus at most 1. Notice, that at most one value from vertices 
corresponding to the domain of a variable can be selected (this is due to the presence 
of the complete subgraph over the set of vertices corresponding to the domain of a 
variable in Z\c[(9)). Notice further, that if a value corresponding to a vertex in a 
stable set is selected than all the values corresponding to other vertices of the stable 
set are ruled out since they are in conflict with the selected value with respect to con-
straints. 

A quite negative result has been obtained in [16]. It has been shown that finding a 
path, which conforms to the calculated maximum size of the intersection with indi-
vidual layers, corresponds to finding a Hamiltonian path [4]. This is known to be an 
NP-hard problem. Hence, it is not tractable to find a path that satisfies defined re-
quirements exactly. Moreover, initial experiments showed that it is almost impossible 
to make any reasonable relaxation of proposed requirements. Every relaxation of 
requirements on the path being constructed proposed by the author leads to weaken-
ing the modified path-consistency down to the level of the standard version of path-
consistency (specifically, several adaptations of the algorithm for finding single 
source shortest paths [6] have been evaluated by the author). 

These initial findings founded an effort to further augment requirements on the 
constructed path in order to allow developing stronger and more efficient relaxations. 
The result of this effort is a concept of a so called modified version of path-

consistency. 



4.2   A Modified Version of Path-consistency 

Again, partitioning of vertices of Z[\
→ (9) into layers is supposed. In addition, the 

sequencing of variables in the path 9 is exploited for defining the maximum size of 
the intersection of the constructed path with layers. Particularly, the path being con-
structed is required to conform to the calculated maximum size of the intersection 
with vertices of the layer preceding a given vertex of the path with respect to the se-
quencing of variables in 9. The maximum size of the intersection is again imposed by 
the set of constraints �. More precisely, let '�, '�, … , 'e be layers of Z[\

→ (9); let a 
function m: W ⟶ ℕ defines requirements on the maximum size of intersections im-
posed by constraints as follows: m( /

n) is the maximum size of the intersection of the 
constructed path with a set of vertices { :

n ,  �
n , …  �

n} where 'n = [ :
n ,  �

n , … ,  
�o
n ] with 

. ∈ {1,2, … , h} and 5 ∈ {0,1, … , �n}. Let a consistency defined by this new require-
ment on the constructed path be called a modified path-consistency. Observe that this 
new concept is a generalization of the initial augmentation described above (see Fig 2 
for illustration). 

 

 

 

Fig 2. An illustration of modified path-consistency in the CSP model of a SAT problem. The 
maximum size of the intersection of the constructed path with vertices preceding the given 
vertex (including) in its layer is calculated using constraints for each vertex - these maximum 
sizes are denoted as the function m. For example, having m(.�̅

J) = 2 then the constructed path 
can intersect the subset of vertices {.�̅

�, .�̅
�, .�̅

O, .�̅
J} (first occurrences of literals in first four va-

riables of the path 9) of the layer '� in at most two vertices. Observe, that these requirements 
on the path being constructed rules out its existence for connecting a pair of vertices .�̅

� from the 
left most variable (occurrence of literal ¬��) and .�̅

P from the right most variable (occurrence of 
literal �J). Compare it with the standard path-consistency in Fig. 1 where the corresponding 
path connecting the same pair of vertices exists. 

 
It is intractable to construct a path conforming to the maximum sizes of intersec-

tions determined by m as in the case of the initial augmentation. Nevertheless, it is 
possible to make a tractable relaxation of these requirements which does not collapse 
down to the level of the standard path-consistency. 

Let us now briefly describe such a tractable relaxation. Suppose that m is already 
known (the process of calculation of m will be described in the following section). Let 
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<: ∈ �(F�X
) and <� ∈ �(F�Y

) be a pair of values for that a consistency is being 
checked. Two assignments will be maintained: Σ: W ⟶ ℕ: and r: W ⟶ ℕ:

e×(�=�) 
where ℕ:

e×(�=�) denotes matrices of the size h × (� + 1) over ℕ:. The assignment 
Σ will express the total number of distinct paths in Z[\

→ (9) = (W, )) starting in <: and 
ending in a given vertex. Observe, that it is easy to calculate Σ( ). It is determined 
recursively by the expression: Σ( ) = ∑ Σ(u)v∈w,(v,x)∈y , while Σ(<:) = 1. The as-
signment r expresses statistical information about paths in  Z[\

→ (9) starting in <: and 
ending in a given vertex regarding the size of the intersection with layers. More pre-
cisely, an element of r( ) at �-th row and 5-th column (that is, r( )�,/) with  ∈ W, 
� ∈ {1,2, … , h}, and 5 ∈ {0,1, … , �} represents the number of distinct paths starting in 
<: and ending in   intersecting with the layer '� in exactly 5 vertices that conform to 
relaxed requirements (that is, the size of the intersection of these paths with '� is 5). If 
the mentioned conformation to relaxed requirements is omitted, the information main-
tained in r is not difficult to be calculated recursively for every vertex of Z[\

→ (9). 
However, as it is algorithmically more complex calculation, it is deferred to the sec-
tion devoted to algorithms. 

Requirements on the size of the intersection of the constructed path with layers 
represented by m are relaxed in the following way. If it is detected that all the paths 
staring in <: and ending in   intersects the layer containing   in more vertices than it 
is allowed by m, then it is possible to conclude that there is no path connecting <: and 
  that conforms to calculated maximum sizes of intersections with layers. Hence,   is 
unreachable from <: under given circumstances. The described relaxation can be 
expressed using defined assignments Σ and r. Let 'nz be a layer containing   (that is, 
 ∈ 'fnz). If there is some 5> m( ) such that r( )nz,/ = Σ( ), then there is no path 
connecting <: and   conforming to the maximum sizes of intersection with layers. 
Observe, that although there is no 5> m( ) such that r( )nz,/ = Σ( ), the required 
path still need not to exist. This is the principle which is called the relaxation in the 
context of this paper. 

If it is detected that there is no path connecting <: and <� that conforms to relaxed 
requirements on the maximum sizes of intersections with layers, the pair of values <: 
and <� is said to be inconsistent with respect to the modified path-consistency. 

5   Modified Path-consistency Enforcing Algorithms 

It is necessary to clarify several essential steps in order to be able to enforce modified 
path-consistency according to the suggestion in the previous section. These essential 
steps are: how to construct layer decomposition of the graph interpretation of path 
consistency, then we need to know how to determine maximum sizes of intersections 
with layers, and finally how to perform modified path-consistency checking. 

Constructions carried out in all these steps must regard the objective that the infe-
rence ability of the resulting modified path-consistency should as strong as possible 
(since every step induces a possible relaxation, this means that all these relaxations 
should not relax the original constraints too much). 



 This section is devoted to the algorithmic point of view of suggestions from pre-
vious sections. Thus aspects that have been explained informally so far will be now 
explained in all the details using algorithms written in pseudo-code. 

5.1   Construction of the Layer Decomposition 

The first step is represented by construction of the layer decomposition '�, '�, … , 'e 
of a given graph interpretation of path consistency Z[\

→ (9) = (W, )) with respect to a 
path 9. It has been reported how to construct layer decomposition from the know-
ledge of the auxiliary constraint graph Z\c[(9) within the initial augmentation of 
path-consistency. The process within modified path-consistency is similar. 

 
Algorithm 1. Construction of a layer decomposition. The input parameters are: (�, �, �) which 
is a CSP model of the SAT instance, a path 9, and an auxiliary constraint graph with respect to 
(�, �, �) the path 9 as Z\c[(9). The output of the algorithm is a sequence of vertex disjoint 
subsets of Z[\

→ (9) (or equivalently of Z\c[(9)) which form layer decomposition. 
 

function Construct-Layer-Decomposition((�, �, �), 9, Z�(9(9) = (W, ))): sequence 
1: let 9 = (F�X

, F�G
, … , F�Y

) 
2: h ← 1 
3: Π ← ∅ 
4: for 5 = 0,1, … , � do 
5:  for each u ∈ �(F�]

) do 
6:   if u ∉ Π then 
7:    'e ← Construct-Next-Layer(u, Π, (�, �, �), 9, Z�(9(9)) 
8:    Π ← Π ∪ 'e 
9:    h ← h + 1 
10: return ('�, '�, … , 'e) 
 
function Construct-Next-Layer(u:, Π, (�, �, �), 9, Z�(9(9) = (W, ))): set 
1: let 9 = (F�X

, F�G
, … , F�Y

) 
2: let u: ∈ �(F�d

) 
3: ' ← {u:} 
4: for 5 = � + 1, � + 2, … , � do 
5:   ���� ←⊥ 

6:  for each  ∈ �(F�]
) do 

7:   if  ∉ Π then 
8:    if |{u|u ∈ ' ∧ {u,  } ∉ )}| > |{u|u ∈ ' ∧ {u,  ����} ∉ )}| then 
9:      ���� ←   
10:  if  ���� ≠⊥ then 
11:   ' ← '.  ����  
12: return ' 
 

It works with auxiliary constraint graphs Z\c[(9) again while construction of each 
layer is done in the direction from the first variable to the last variable of the path 9 
while sequencing of variables in 9 are respected. The process is formally expressed 
using pseudo-code as Algorithm 1. 



For each vertex of Z\c[(9) it is checked whether it has been already included in 
some of the previously constructed layers. If not, the construction of a new layer is 
started and the vertex is included in it. Let u: be the first vertex of the just started 
layer. Let it belong to the domain of a variable F�d

. Then variables following F�d
 in 9 

are traversed and vertices corresponding to their domain elements are checked wheth-
er it is advantageous to include them. Vertices not yet included in any of the previous-
ly constructed layers are considered only. At most one vertex from each variable 
domain is included into each layer. If there are multiple vertices remaining in the 
variable domain, the vertex which is disconnected from the most vertices already 
included in the currently constructed layer with respect to edges of ) is selected for 
inclusion. The selected vertex is concatenated to the constructed layer finally. 

This way of selection of vertices to layers prefers small intersections of the path 
being constructed with layers. This is due to the fact that selection of vertices into 
layers according to the described criterion prefers that few variables can have as-
signed values corresponding to vertices of the layer not to violate constraints. Conse-
quently, this selection is in accordance with the objective of obtaining strongly infer-
ring modified path-consistency. In other words, we are trying to forbid as many paths 
as possible (in fact, these paths are forbidden by constraints we just need to identify as 
many of them as possible). 

Observe that the worst case time complexity of the algorithm is �(|9|�|�|). The 
worst case space complexity is �(|W| + |)|). 

5.2   Calculation of Maximum Sizes of Intersection with Layers 

The next step is the calculation of maximum sizes of intersections of the path being 
constructed with individual layers represented by m: W ⟶ ℕ. It is supposed that layer 
decomposition has been already constructed. Vertices of each layer are traversed from 
the beginning. This way of traversal corresponds to the traversal of vertices in the 
sequence of vertices of the path 9. The process is formally expressed using pseudo-
code as Algorithm 2. 

Let 'n = [ :
n ,  �

n , … ,  
�o
n ] with . ∈ {1,2, … , h} be a layer which is currently consi-

dered. The value of m( D
n ) with � ∈ {0,1, … , �n} is calculated by considering two 

alternatives. The first alternative is that the vertex  D
n  is considered to be included in 

the potential intersection with the constructed path. The second alternative is that the 
vertex  D

n  is not included in this way. The higher value from these two alternatives is 
eventually assigned to m( D

n ). 
In the first alternative, the vertices from the set { :

n ,  �
n , … ,  D��

n } that are con-
nected with  D

n  are considered. These vertices can be potentially included into the 
intersection of the layer 'n with the constructed path together with the vertex  D

n . Then 
maximum of m for these vertices is calculated and this value plus 1 represents the 
maximum size of the intersection in this alternative (in the case when maximum is not 
defined - the case of the empty set - the value 0 is used). 

In the second alternative, the vertex  D
n  is not considered for inclusion into the in-

tersection with the path. In such a case, the value of m( D
n ) can be inherited from 

m( D��
n ) since the vertex  D

n  has no influence on the size of the intersection. 
 



 
Algorithm 2. The process of calculation of maximum intersection sizes. The input of the algo-
rithm is a layer decomposition of a Z[\

→ (9) denoted as ℒ and the auxiliary constraint graph 
Z\c[(9) with respect to (�, �, �) and the path 9 as Z\c[(9) itself. The output of the algorithm 
is an assignment m: W ⟶ ℕ which determines the maximum size of the intersection of the path 
being constructed with the set of vertices of the layer preceding the given vertex. The maxi-
mum size of the intersection is determined by constrains imposed by the instance. 
 

function Calculate-Maximum-Intersection-Sizes(ℒ, Z\c[(9) = (W, ))): assignment 
1: let ℒ = {'�, '�, … , 'e} 
2: for . = 1,2, … , h do 
3:  let 'n = [ :

n ,  �
n , … ,  

�o
n ] 

4:  m���x ← 0 
5:  for � = 0,1, … , �n do 
6:   m���� ← 0 
7:   for 5 = 0,1, … , � − 1 do 
8:   if { /

n ,  D
n } ∈ ) then 

9:    if m( /
n) > m���� then 

10:     m���� ←  m( /
n) 

11:   m( D
n ) ← max{m���� + 1, m���x} 

12:    m���x ← m( D
n ) 

13: return m 
 

The following proposition summarizes the correctness of calculation of the maxi-
mum sizes of intersection with layers and their application in forbidding paths. It is 
stated without the proof. 

 

Proposition 1. Let <: ∈ �(F�X
) and <� ∈ �(F�Y

). If there is no path � connecting <: 
and <� in Z[\

→ (9) such that � ∩ { :
n ,  �

n , … ,  D
n } ≤ m( D

n ) for each . ∈ {1,2, … , h} and 
for each � ∈ {0,1, … , �n}, then there is no assignment of values to variables of 9 such 
that all the constraints over 9 are satisfied. ■ 
 

 The worst case time complexity of the algorithm for calculating maximum sizes of 
intersections is �(|9|�|�|) again. The worst case space complexity is �(|W| + |)|). 

5.3   Modified Path-consistency Checking 

The final step is modified path-consistency checking for a pair of values <: and <� 
from both ends of the path 9 being checked supposed that the layer decomposition 
and maximum sizes of intersections with layers have been constructed. The process is 
formally expressed using pseudo-code as Algorithm 3. 

The algorithm traverses values from domains of the variables of the path 9 from 
the beginning of the path 9 in the graph interpretation of path-consistency Z[\

→ (9) =

(W, )). For each vertex  ∈ W along the traversal, assignments Σ and r are calculated. 
The major idea within the algorithm is represented by the moment when it is de-

tected that all the paths starting in <: and ending in a given vertex exceed the maxi-
mum size of the intersection with some of the layers (lines 30-35). In such a situation, 
no of the paths ending in the given vertex can be prolonged into the vertex from the 
next variable in 9 without violating the constraints. This claim is formalized by the 



following proposition which is again stated without the proof. The proposition also 
formalizes the second stage of relaxation used in our proposal. 

 
Algorithm 3. The modified path-consistency checking algorithm. The input of the algorithm is 
a pair of vertices <: and <� from both ends of the path 9 which also the parameter. The next 
parameters are the layer decomposition ℒ, CSP model of path-consistency (�, �, �), and the 
graph interpretation of path-consistency Z[\

→ (9). The output of the algorithm is the Boolean 
indicator whether the given pair of values is allowed. 
 

function Check-Modified-Path-Consistency(<:, <� , 9, ℒ, (�, �, �), Z[\
→ (9) = (W, ))): boolean 

1: if (<:, <�) ∉ ) then 
2:  return %&'() 
3: let 9 = (F�X

, F�G
, … , F�Y

) 
4: let ℒ = {'�, '�, … , 'e} 
5: let <: ∈ 'n 
6: Σ(<:) ← 1 
7: r(<:) ← 0e×(�=�); r(<:)n,� ← 1 
8: for each  ∈ �(F�X

) do 
9:  if  ≠ <: then 
10:   Σ( ) ← 1  
11:   r( ) ← 0e×(�=�)  
12: for � = 1,2, … , � do 
13:  for each  ∈ �(F�d

) do 
14:   Σ( ) ← 0 
15:   r( ) ← 0e×(�=�) 
16:   let  ∈ 'fnz  
17:   for each u ∈ �(F�d�G

) do 
18:    let u ∈ 'fn� 
19:    if (u,  ) ∈ ) then 
20:     Σ( ) ← Σ( ) + Σ(u) 
21:     for � = 1,2, … , h do 
22:      for 5 = 0,1, … , � do 
23:       if � = .x then 
24:        if 5 = 0 then 
25:         r( )�,: ← 0 
26:        else 
27:         r( )�,/ ← r( )�,/ + r(u)�,/��  
28:       else 
29:        r( )�,/ ← r( )�,/ + r(u)�,/  
30:   � ← *�+) 
31:   for 5 = 0,1, … , m( ) do 
32:    if r( )nz,/ > 0 then 
33:     � ← %&'() 
34:   if � then 
35:     r( ) ← 0e×(�=�)  
36: if r(<�) ≠ 0e×(�=�) then 
37:  return *�+) 
38: else 
39:  return %&'() 



 
Proposition 2. Let <: ∈ �(F�X

) and <� ∈ �(F�Y
). If the modified path consistency 

algorithm does not find the path conforming to requirements imposed by the algo-
rithm then there is no path � connecting <: and <� in Z[\

→ (9) such that � ∩
{ :

n ,  �
n , … ,  D

n } ≤ m( D
n ) for each . ∈ {1,2, … , h} and for each � ∈ {0,1, … , �n}. ■ 

 

The worst case time complexity of the algorithm is �(|9|�|�|J), the worst case 
space complexity is �(|9|�|�|�). 

At this moment, a question may arise whether the modified path-consistency is ac-
tually stronger than the standard path-consistency. The answer is that it really is. The 
particular instance, where the modified path-consistency can infer that there is no 
consistent pair of values while the standard path-consistency is unable to infer this, is 
an encoding of the pigeon hole principle [1]. 

6   Preliminary Experimental Evaluation 

We have performed a preliminary experimental evaluation of the above suggestions. 
The evaluation was targeted on determining the quality of layer decomposition and 
maximum sizes of intersections with layers determined by proposed algorithms 
(Algorithm 1 and Algorithm 2). 

Table 1. Maximum intersection sizes with the first layer of the layer decomposition. The inter-
section sizes are calculated in the graph interpretation of several satisfiability instances from 
SATLib. The determining of layers and maximum size of intersections was done using Algo-
rithm 1 and Algorithm 2 respectively. 

SAT instance 
Maximum intersection with '� = [ :

� ,  �
�, … ,  �

�] 
m( :

�) m( �
�) m( �

�) m( J
�) m( O

�) m( P
�) m( Q

�) m( �
�) 

ais12.cnf 1 1 1 1 1 1 1 1 

hanoi4.cnf 1 2 2 3 3 3 4 4 

huge.cnf 1 1 2 2 2 2 3 3 

jnh1.cnf 1 2 2 3 4 4 4 5 

par16-1.cnf 1 1 1 2 2 2 2 2 

par16-1-c.cnf 1 2 2 3 3 4 4 5 

pret150_75.cnf 1 1 2 2 3 3 4 4 

s3-3-3-8.cnf 1 1 2 3 3 4 4 5 

ssa7552-160.cnf 1 1 2 3 4 4 5 6 

sw100-5.cnf 1 1 2 2 2 2 3 3 

Urq8_5.cnf 1 1 2 2 3 3 4 4 

uuf250-0100.cnf 1 1 2 2 3 3 4 4 
 

Several instances from the Satisfiability Library (SATLib) [11] and from [1] were 
encoded using literal encoding and graph interpretations were constructed for them 
with respect to the path of variables 9 consisting of 8 clauses starting with the first 
clause of the instance. The remaining clauses for the path 9 were selected so that they 
are the most constrained with already selected clauses for 9. This way of selection 
prefers choosing of highly constrained path for subsequent construction of layers and 
calculation of maximum sizes of intersections. In order to yet more increase con-
straining of the generated graph interpretation of Z[\

→ (9) the constraint model 



(�, �, �) is enriched by additional constraint inferred by the singleton unit propaga-

tion [8] (that is, each literal is assigned the value *�+) and unit propagation is per-
formed; assignments to literals enforced by the propagation together with assignment 
to the original literal form additional constraints). 

To provide reproducibility of results all the results presented in this paper, the 
complete source code, and input data are provided at the web: http://ktiml.mff.cuni.cz/ 
~surynek/research/csclp2010. Results regarding maximum sizes of intersections are 
shown in Table 1. Parts of the auxiliary constraint graph restricted on the first layer of 
several instances are shown in Fig 3. Although the experimental results are incom-
plete at the current stage of the development, they indicate that information captured 
by constraints over non-neighboring variables in the path of variables is relatively 
strongly reflected in the maximum sizes of intersections with layers. 
 

 
 

Fig 3. An illustration of first layers of the auxiliary constraint graph of several satisfiability 

instances. Several sparse and dense graphs are shown together with calculated maximum sizes 
of intersection of the path being constructed with the layer. 

7   Conclusion and Future Work 

A new consistency for Boolean satisfiability has been proposed in this paper. The new 
type of consistency augments the standard path-consistency by exploiting global 
properties of the input instance. Particularly, stronger requirements are imposed on 
the path being checked to exist compared to the situation in the standard path-
consistency – namely, the size of the intersection of the path with certain sets called 
layers is restricted. Preliminary experimental evaluation has shown that it is possible 
to relatively successfully derive the restriction on the size of the intersection with 
layers on several well known benchmark SAT instances. 

For future work we plan to further reduce the relaxation in the calculation of the 
maximum sizes of intersections with layers. The simple augmentation can be done in 
the alternative where the new vertex is considered to be selected into the intersection. 
The number of vertices in the layer not ruled out by constraints when the new vertex 

hanoi4.cnf jnh1.cnf 

par16-1-c.cnf pret150_75.cnf 

s3-3-3-8.cnf uuf250-0100.cnf 



is included should be taken into account. Indeed, the future work is also to evaluate 
inference strength of the modified path-consistency checking algorithm itself 
(Algorithm 3). We also would like to evaluate possible applications of modified path-
consistency as a preprocessing tool for SAT solving. 
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