
An Adaptation of Path Consistency for

Boolean Satisfiability:

a Theoretical View of the Concept

Pavel Surynek*

Charles University in Prague

Faculty of Mathematics and Physics
Department of Theoretical Computer Science and Mathematical Logic

Malostranské náměstí 25, Praha, 118 00, Czech Republic
pavel.surynek@mff.cuni.cz

Abstract. The task of enforcing certain level of consistency in Boolean satis-
fiability problem (SAT problem) is addressed in this paper. The concept of
path-consistency known from the constraint programming paradigm is revisited
in this context. Augmentations how to make path-consistency more suitable for
SAT are specifically studied. A stronger variant of path-consistency is de-
scribed and its theoretical properties are investigated. It combines the standard
path consistency on the literal encoding of the given SAT instance with global
properties calculated from constraints imposed by the instance – namely with
the maximum number of visits of a certain set by the path. Unfortunately, the
problem of enforcing this variant of path-consistency turned out to be NP-hard.
Hence, various types of relaxations of this stronger version of path-consistency
were proposed. The relaxed version of the proposed consistency represents a
trade-off between the inference strength and the complexity of its propagation
algorithm. A presented theoretical analysis shows that computational costs of
the proposed consistency are kept reasonably low. Preliminary experiments also
show that the mentioned maximum number of visits calculated on several
benchmark SAT instances provide non-trivial amount of information.

Keywords: local consistency, global consistency, path-consistency, CSP, SAT

1 Introduction and Motivation

A method how to increase the inference strength of path-consistency [13, 14] will be
described. It combines the standard path-consistency on the literal encoding model
[17] of the given Boolean satisfiability (SAT) instance [5] with global properties
calculated from the instance. The existence of a path in a graph interpretation of the
instance is being checked by the standard path-consistency. In the augmented va-
riants, additional requirements are imposed on the path being checked to exist. Unfor-

* This work is supported by The Czech Science Foundation (Grantová agentura České republi-

ky - GAČR) under the contract number 201/09/P318 and by The Ministry of Education,
Youth and Sports, Czech Republic (Ministerstvo školství, mládeže a tělovýchovy ČR –
MŠMT ČR) under the contract number MSM 0021620838.

tunately, the problem of checking the existence of a path according to augmented
requirements turned out to be NP-complete [16]. Hence, various relaxations that still
preserve the inference strength of augmented variants above the level of the standard
path-consistency were proposed and evaluated. The ultimate goal of whole design of
the adaptation of path-consistency is a tool for preprocessing SAT instances. The
result of preprocessing should be a simplified SAT instance that is easier to solve.

2 Notations and Definitions

Concepts of constraint satisfaction problem (CSP) [7] and Boolean satisfiability

(SAT) [5] need to be established first to make reasoning about path-consistency in the
context of SAT easier to understand.

Definition 1 (Constraint satisfaction problem - CSP). Let � be a finite set
representing domain universe. A constraint satisfaction problem [7] is a triple
(�, �, �) where � is a finite set of variables, � is a finite set of constraints, and
�: � ⟶
(�) is a function that defines domains of individual variables from � (that
is, �(�) ⊆ � is a set of values that can be assigned to the variable � ∈ �). Each con-
straint from � ∈ � is of the form 〈(��

� , ��
�, … , ���

�), ��〉 where �� ∈ ℕ is called an arity
of the constraint �, the tuple (��

�, ��
� , … , ���

�) with ��
� ∈ � for � = 1,2, … , �� is called

a scope of the constraint, and the relation �� ⊆ �(��
�) × �(��

�) × … × �(���
�) defines

the set of tuples of values for that the constraint � is satisfied. The task is to find a
valuation of variables : � ⟶ � such that (�) ∈ �(�) ∀� ∈ � and
((��

�), (��
�), … , (���

�)) ∈ �� ∀� ∈ �. □

A constraint � ∈ � with the scope (��
� , ��

�, … , ���
�) will be denoted as

�({��
�, ��

� , … , ���
� }); this notation is useful when the ordering of variables in the scope

is not known from the context; when ordering of variables in the scope matters, then a
notation �(��

�, ��
� , … , ���

�) will be used instead.
A CSP is called binary if all the constraints has the arity of two. The expressive

power of a binary CSP is not reduced in comparison with a general one since every
CSP can be transformed into an equivalent binary CSP [15]. The key concept of path-

consistency [14] that is addressed in this paper is defined for binary CSPs only. It is
also convenient to suppose, that each pair of variables is constrained by at most one
constraint.

Definition 2 (Boolean satisfiability problem - SAT). Let $ be a finite set of Boolean

variables; that is, a set of variables that can be assigned either %&'() or *�+). A
Boolean formula % over the set of variables $ in a so called conjunctive normal form
(CNF) [12] is the construct of the form ⋀ (⋁ ./

��0
/1�)2

�1� where ./
� with either ./

� = 3 or
./

� = ¬3 for some 3 ∈ $ for � = 1,2, … , 4; 5 = 1,2, … , �� is called a literal and
(⋁ ./

��0
/1�) for � = 1,2, … , 4 is called a clause. The task is to find a valuation of Boo-

lean variables 6: $ ⟶ {%&'(), *�+)} such that % evaluates to *�+) under 6 while
¬ (negation), ∨ (disjunction), and ∧ (conjunction) are interpreted commonly in the
Boolean algebra. A formula for that such a satisfying valuation exists is called satisfi-

able. □

It is a well known result that the language consisting of satisfiable formulas in
CNF as well as general ones is an NP-complete problem [5, 9]. It is not difficult to
observe that the language of solvable instances of CSP is NP-complete as well since it
just generalizes SAT in fact (constraints are represented by clauses) while member-
ship of CSP into the NP class is preserved by the generalization.

2 Path-consistency in CSP

The standard definition of path-consistency in CSP will be recalled before the aug-
mented versions and their relaxations are introduced. The following definition refers
to general paths of variables which is not necessary in fact. However, this style of
definition will be more suitable for making intended augmentations.

Definition 3 (Path-consistency - PC). Let (�, �, �) be a binary CSP and let 9 =
(�:, ��, … , ��) with �� ∈ � for � = 0,1, … , � be a sequence of variables called a path.
A pair of values <: ∈ �(�:) and <� ∈ �(��) is path-consistent with respect to 9 if
there exists a valuation : {�:, ��, … , ��} ⟶ � with (�:) = <: ∧ (��) = <� such
that constraints �({�� , �(�=�) ?@A �}) are satisfied by for every � = 0,1, … , �. The
path 9 is said to be path-consistent if all the pairs of values from �(�:) and �(��)
respectively are path-consistent with respect to 9. Finally, the CSP (�, �, �) is said to
be path-consistent if it is path-consistent for every path. □

Notice that variables forming the path in the definition do not need to be neces-
sarily distinct. Although the notion of path-consistency seems to be computationally
infeasible since there are typically too many paths, it is sufficient to check path-
consistency for all the paths consisting of triples of variables only to ensure that the
given CSP is path-consistent [13, 14]. In other words, although it seems that path-
consistency captures the problem globally (a path can go through large portion of
variables of the instance), it merely defines a local property.

There exist many algorithms for enforcing path-consistency in a CSP such as PC-4
[10] and PC-6 [1, 3]. They differ in the representation of auxiliary data structures and
the efficiency. The common feature of path-consistency algorithms is however the
process how the consistency is enforced. It is done by eliminating pairs of inconsis-
tent values until a path-consistent state is reached (the smallest set of pairs of values
such that their elimination makes the problem path-consistent is being pursued). The
process of elimination of pairs of values is typically done by pruning extensional
representation of constraints (lists of allowed tuples) to forbid more pairs of values.

3 Standard Path-consistency in SAT

The aim of this work is to modify path-consistency to make it applicable on SAT and
to increase its inference strength by incorporating certain global reasoning into it. The
easier task is to make path-consistency applicable on SAT - it is sufficient to model
SAT as CSP. A so called literal encoding [17], which of the result is a binary CSP, is

particularly used. This kind of encoding is especially suitable since it allows natural
expressing of path-consistency in terms of graph constructs.

Let % = ⋀ (⋁ ./
��0

/1�)2
�1� be a Boolean formula in CNF over a set of Boolean va-

riables $. Let � = ⋃ (⋃ {./̅
�}

D0
/1�)E

�1� be a domain universe; that is, a constant symbol
with the stripe is introduced into � for each literal occurrence in % (notice that, each
occurrence of a literal corresponds to a different constant symbol). The corresponding
CSP (�, �, �) using literal encoding is built as follows: � = {F�, F�, … , F2}; that is, a
variable is introduced for each clause of %; it holds for �: � ⟶
(�) that �(F�) =

⋃ {./̅
�}

�0
/1� ; that is, the domain of an �-th clause contains constant symbols correspond-

ing to all its literals. A constraint �({F�G
, F�H

}) = 〈(F�G
, F�H

), ��〉 is introduced over
every pair of variables with ��, �� ∈ {1,2, … , 4} ∧ �� ≠ �� where a variable � ∈ $ such
that either � ∈ �(F�G

) ∧ ¬� ∈ �(F�H
) or ¬� ∈ �(F�G

) ∧ � ∈ �(F�H
) exists. Such a

constraint �({F�G
, F�H

}) then forbids every tuple of values (. ̅
/G

�G , . ̅
/H

�H) such that there
exists � ∈ $ for that either . ̅

/G

�G = � ∧ . ̅
/H

�H = ¬� or . ̅
/G

�G = ¬� ∧ . ̅
/H

�H = � (that is, the tuple
(. ̅

/G

�G , . ̅
/H

�H) is removed from �� which has been initially set to �(F�G
) × �(F�H

)). A
solution of the resulting CSP (�, �, �) corresponds to the valuation of Boolean va-
riables of $ that satisfies % and vice versa [17].

Fig. 1. An illustration of path-consistency in the CSP model of a SAT problem. The SAT prob-
lem represented by a formula % shown here is a representation of the requirement of selecting
an odd number of variables from every of the following sets to be true: {��, ��}, {��, �J},
{��, �J}. Observe, that there is no satisfying valuation of %. However, the pair of literals ¬��
and �J from the left most variable and from the right most variable respectively are path-
consistent with respect to a depicted path 9 since they are non-conflicting and there exists a
path from the left to the right consisting of edges between neighboring variables connecting
allowed pairs of values (the path is marked by bold edges and by darker vertices).

¬¬¬¬KL

¬��

∨

¬��

¬¬¬¬KM

N = (�� ∨ ��) ∧ (¬�� ∨ ¬��) ∧ (�� ∨ �J) ∧ (¬�� ∨ ¬�J) ∧ (�� ∨ �J) ∧ (¬�� ∨ ¬�J)

F� F� FJ FO FP FQ

F�

.�̅
�

.�̅
�

KL

��

∨

��

KM

F�

.�̅
�

.�̅
�

¬¬¬¬KM

¬��

∨

¬�J

¬¬¬¬KR

FO

.�̅
O

.�̅
O

KM

��

∨

�J

KR

FJ

.�̅
J

.�̅
J

¬¬¬¬KR

¬��

∨

¬�J

¬¬¬¬KL

FQ

.�̅
Q

.�̅
Q

KR

��

∨

�J

KL

FP

.�̅
P

.�̅
P

S = (F�, F�, FO, FJ, FQ, FP) TSU
→ (S) = (W,))

Having the CSP model of SAT it is possible to check path-consistency for the cor-
responding CSP model and proclaim the original SAT path-consistent or path-
inconsistent accordingly. If elements of variable domains are interpreted as vertices
and allowed tuples of values as directed edges connecting them, then path-consistency
with respect to a given path can be interpreted as existence of paths in the resulting
directed graph.

More precisely, let 9 = (F�X
, F�G

, … , F�Y
) with �/ ∈ {1,2, … , 4} for 5 = 0,1, … , � be

a sequence of variables in the literal encoding CSP model (�, �, �). A directed graph
Z[\

→ (9) = (W,)), in which path-consistency can be interpreted as the existence of
paths, is defined as follows: W = ⋃ �(F�]

)�
/1: and if

(. ̅
/G

�]
, . ̅

/H

�(]^G) _`a Y
) ∈ �

�(b0]
,b0(]^G) _`a Y

)
 then a directed edge (. ̅

/G

�]
, . ̅

/H

�(]^G) _`a Y
) is in-

cluded into). A pair of values . ̅
/G

�X ∈ �(F�X
) and . ̅

/H

�Y ∈ �(F�Y
) is path-consistent with

respect to the path 9 if there is an edge (. ̅
/G

�Y , . ̅
/G

�X) in Z[\
→ (9) and there exists a path

from the vertex . ̅
/G

�X to the vertex . ̅
/H

�Y in Z[\
→ (9). The graph Z[\

→ (9) will be called a
graph interpretation of path-consistency – see Fig. 1 for illustration.

Notice that path-consistency is incomplete in the sense that a pair of values may be
path-consistent even if there is no solution of the problem that contains this pair of
values (see Fig. 1 again). Analogically, the problem may be path-consistent (that is,
path-consistent with respect to all the paths) even if it has no solution actually. The
partial reason for this weakness of path-consistency is that many constraints are ig-
nored when a pair of values is checked. This is especially apparent if a longer path of
variables is considered. Only constraints over pairs of variables neighboring in the
path are considered while many constraints such as that for example over the first and
the third variable in the path are ignored. This property is disadvantageous especially
in SAT where stronger reasoning is typically more beneficial.

For further augmentation of path-consistency, it is also convenient to prepare a so
called auxiliary constraint graph for the model with respect to the path 9 that reflects
all the constraints over the variables of the path 9. It is an undirected graph
Z\c[(9) = (W,)) and it is defined as follows: W = ⋃ �(F�]

)�
/1: ; an edge {. ̅

/G

�]
, . ̅

/H

�d} is
added to) if (. ̅

/G

�]
, . ̅

/H

�d) ∈ �
�(b0]

,b0d
)
; and all the edges {. ̅

/G

�]
, . ̅

/H

�]
} for all 5 = 1,2, … , 4 and

5�, 5� = 1,2, … , �/ ∧ 5� ≠ 5�. Observe that the auxiliary constraint graph subsumes the
graph interpretation with respect to the same path. Notice also, that there is a com-
plete subgraph over vertices corresponding to values from the domain of the same
variable.

4 Making Path-consistency Stronger

A modification of path-consistency has been proposed to overcome mentioned limita-
tions of the standard version. To increase inference strength of path-consistency addi-
tional requirements on the path in the graph model are imposed. These additional
requirements reflect constraints over non-neighboring variables in the path of va-
riables. As the auxiliary constraint graph represents an explicit representation of con-
straints, it is exploited for determining additional requirements.

4.1 An Initial Augmentation of Path-consistency

An approach adopted in this work restricts the size of the intersection of the con-
structed path with certain subsets of vertices in the graph interpretation of path-
consistency. More precisely, let Z[\

→ (9) = (W,)) be a graph interpretation of path-
consistency in a CSP model of SAT (�, �, �). The set of vertices W is partitioned into
disjoint sequences '�, '�, … , 'e called layers (that is, ⋃ 'f�

e
�1� = W and 'f� ∩ 'f/

∀�, 5 ∈ {1,2, … , h} ∧ � ≠ 5; where denotes the union of the sequence &i, that is
&i = ⋃ {j�}E

�1� for & = [j�, j�, … , jE]). The maximum size of the intersection of the
path being checked to exist with individual layers is determined using the set of con-
straints � (notice that all the constraints over 9 are considered – not only constraints
over neighboring variables in 9). This proposal will be called an initial augmentation
of path-consistency in the rest of the text.

The concept of the initial augmentation of path-consistency comes from [16]. The
process of decomposition of the set of vertices into layers is done over the corres-
ponding auxiliary constraint graph Z\c[(9). Vertices of Z\c[(9) are decomposed into
vertex disjoint stable sets (a stable set is a subset of vertices of a graph where no two
vertices are adjacent with respect to edges). The knowledge of such decomposition
can be then used to partition vertices into layers that directly correspond to found
stable sets. However, determining a stable subset is a difficult task itself. Hence a
greedy approach has been used to obtain an acceptable solution. More details about
how to decompose vertices into layers greedily for the initial augmentation can be
found in [16].

Since it is possible to assign to a variable at most one value from values corres-
ponding to vertices of the stable set in Z\c[(9), the maximum size of the intersection
of the path with a layer is thus at most 1. Notice, that at most one value from vertices
corresponding to the domain of a variable can be selected (this is due to the presence
of the complete subgraph over the set of vertices corresponding to the domain of a
variable in Z\c[(9)). Notice further, that if a value corresponding to a vertex in a
stable set is selected than all the values corresponding to other vertices of the stable
set are ruled out since they are in conflict with the selected value with respect to con-
straints.

A quite negative result has been obtained in [16]. It has been shown that finding a
path, which conforms to the calculated maximum size of the intersection with indi-
vidual layers, corresponds to finding a Hamiltonian path [4]. This is known to be an
NP-hard problem. Hence, it is not tractable to find a path that satisfies defined re-
quirements exactly. Moreover, initial experiments showed that it is almost impossible
to make any reasonable relaxation of proposed requirements. Every relaxation of
requirements on the path being constructed proposed by the author leads to weaken-
ing the modified path-consistency down to the level of the standard version of path-
consistency (specifically, several adaptations of the algorithm for finding single
source shortest paths [6] have been evaluated by the author).

These initial findings founded an effort to further augment requirements on the
constructed path in order to allow developing stronger and more efficient relaxations.
The result of this effort is a concept of a so called modified version of path-

consistency.

4.2 A Modified Version of Path-consistency

Again, partitioning of vertices of Z[\
→ (9) into layers is supposed. In addition, the

sequencing of variables in the path 9 is exploited for defining the maximum size of
the intersection of the constructed path with layers. Particularly, the path being con-
structed is required to conform to the calculated maximum size of the intersection
with vertices of the layer preceding a given vertex of the path with respect to the se-
quencing of variables in 9. The maximum size of the intersection is again imposed by
the set of constraints �. More precisely, let '�, '�, … , 'e be layers of Z[\

→ (9); let a
function m: W ⟶ ℕ defines requirements on the maximum size of intersections im-
posed by constraints as follows: m(/

n) is the maximum size of the intersection of the
constructed path with a set of vertices { :

n , �
n , … �

n} where 'n = [:
n , �

n , … ,
�o
n] with

. ∈ {1,2, … , h} and 5 ∈ {0,1, … , �n}. Let a consistency defined by this new require-
ment on the constructed path be called a modified path-consistency. Observe that this
new concept is a generalization of the initial augmentation described above (see Fig 2
for illustration).

Fig 2. An illustration of modified path-consistency in the CSP model of a SAT problem. The
maximum size of the intersection of the constructed path with vertices preceding the given
vertex (including) in its layer is calculated using constraints for each vertex - these maximum
sizes are denoted as the function m. For example, having m(.�̅

J) = 2 then the constructed path
can intersect the subset of vertices {.�̅

�, .�̅
�, .�̅

O, .�̅
J} (first occurrences of literals in first four va-

riables of the path 9) of the layer '� in at most two vertices. Observe, that these requirements
on the path being constructed rules out its existence for connecting a pair of vertices .�̅

� from the
left most variable (occurrence of literal ¬��) and .�̅

P from the right most variable (occurrence of
literal �J). Compare it with the standard path-consistency in Fig. 1 where the corresponding
path connecting the same pair of vertices exists.

It is intractable to construct a path conforming to the maximum sizes of intersec-

tions determined by m as in the case of the initial augmentation. Nevertheless, it is
possible to make a tractable relaxation of these requirements which does not collapse
down to the level of the standard path-consistency.

Let us now briefly describe such a tractable relaxation. Suppose that m is already
known (the process of calculation of m will be described in the following section). Let

'�

¬¬¬¬KL

¬¬¬¬KM

F�

KL

KM

F�

¬¬¬¬KM

¬¬¬¬KR

FO

KM

KR

FJ

¬¬¬¬KR

¬¬¬¬KL

FQ

KR

KL

FP

S = (F�, F�, FO, FJ, FQ, FP) TSU
→ (S) = (W,))

'�

L L M M M M

L L M

M

M

M

p

<: ∈ �(F�X
) and <� ∈ �(F�Y

) be a pair of values for that a consistency is being
checked. Two assignments will be maintained: Σ: W ⟶ ℕ: and r: W ⟶ ℕ:

e×(�=�)
where ℕ:

e×(�=�) denotes matrices of the size h × (� + 1) over ℕ:. The assignment
Σ will express the total number of distinct paths in Z[\

→ (9) = (W,)) starting in <: and
ending in a given vertex. Observe, that it is easy to calculate Σ(). It is determined
recursively by the expression: Σ() = ∑ Σ(u)v∈w,(v,x)∈y , while Σ(<:) = 1. The as-
signment r expresses statistical information about paths in Z[\

→ (9) starting in <: and
ending in a given vertex regarding the size of the intersection with layers. More pre-
cisely, an element of r() at �-th row and 5-th column (that is, r()�,/) with ∈ W,
� ∈ {1,2, … , h}, and 5 ∈ {0,1, … , �} represents the number of distinct paths starting in
<: and ending in intersecting with the layer '� in exactly 5 vertices that conform to
relaxed requirements (that is, the size of the intersection of these paths with '� is 5). If
the mentioned conformation to relaxed requirements is omitted, the information main-
tained in r is not difficult to be calculated recursively for every vertex of Z[\

→ (9).
However, as it is algorithmically more complex calculation, it is deferred to the sec-
tion devoted to algorithms.

Requirements on the size of the intersection of the constructed path with layers
represented by m are relaxed in the following way. If it is detected that all the paths
staring in <: and ending in intersects the layer containing in more vertices than it
is allowed by m, then it is possible to conclude that there is no path connecting <: and
 that conforms to calculated maximum sizes of intersections with layers. Hence, is
unreachable from <: under given circumstances. The described relaxation can be
expressed using defined assignments Σ and r. Let 'nz be a layer containing (that is,
 ∈ 'fnz). If there is some 5> m() such that r()nz,/ = Σ(), then there is no path
connecting <: and conforming to the maximum sizes of intersection with layers.
Observe, that although there is no 5> m() such that r()nz,/ = Σ(), the required
path still need not to exist. This is the principle which is called the relaxation in the
context of this paper.

If it is detected that there is no path connecting <: and <� that conforms to relaxed
requirements on the maximum sizes of intersections with layers, the pair of values <:
and <� is said to be inconsistent with respect to the modified path-consistency.

5 Modified Path-consistency Enforcing Algorithms

It is necessary to clarify several essential steps in order to be able to enforce modified
path-consistency according to the suggestion in the previous section. These essential
steps are: how to construct layer decomposition of the graph interpretation of path
consistency, then we need to know how to determine maximum sizes of intersections
with layers, and finally how to perform modified path-consistency checking.

Constructions carried out in all these steps must regard the objective that the infe-
rence ability of the resulting modified path-consistency should as strong as possible
(since every step induces a possible relaxation, this means that all these relaxations
should not relax the original constraints too much).

 This section is devoted to the algorithmic point of view of suggestions from pre-
vious sections. Thus aspects that have been explained informally so far will be now
explained in all the details using algorithms written in pseudo-code.

5.1 Construction of the Layer Decomposition

The first step is represented by construction of the layer decomposition '�, '�, … , 'e
of a given graph interpretation of path consistency Z[\

→ (9) = (W,)) with respect to a
path 9. It has been reported how to construct layer decomposition from the know-
ledge of the auxiliary constraint graph Z\c[(9) within the initial augmentation of
path-consistency. The process within modified path-consistency is similar.

Algorithm 1. Construction of a layer decomposition. The input parameters are: (�, �, �) which
is a CSP model of the SAT instance, a path 9, and an auxiliary constraint graph with respect to
(�, �, �) the path 9 as Z\c[(9). The output of the algorithm is a sequence of vertex disjoint
subsets of Z[\

→ (9) (or equivalently of Z\c[(9)) which form layer decomposition.

function Construct-Layer-Decomposition((�, �, �), 9, Z�(9(9) = (W,))): sequence
1: let 9 = (F�X

, F�G
, … , F�Y

)
2: h ← 1
3: Π ← ∅
4: for 5 = 0,1, … , � do
5: for each u ∈ �(F�]

) do
6: if u ∉ Π then
7: 'e ← Construct-Next-Layer(u, Π, (�, �, �), 9, Z�(9(9))
8: Π ← Π ∪ 'e
9: h ← h + 1
10: return ('�, '�, … , 'e)

function Construct-Next-Layer(u:, Π, (�, �, �), 9, Z�(9(9) = (W,))): set
1: let 9 = (F�X

, F�G
, … , F�Y

)
2: let u: ∈ �(F�d

)
3: ' ← {u:}
4: for 5 = � + 1, � + 2, … , � do
5: ���� ←⊥

6: for each ∈ �(F�]
) do

7: if ∉ Π then
8: if |{u|u ∈ ' ∧ {u, } ∉)}| > |{u|u ∈ ' ∧ {u, ����} ∉)}| then
9: ���� ←
10: if ���� ≠⊥ then
11: ' ← '. ����
12: return '

It works with auxiliary constraint graphs Z\c[(9) again while construction of each
layer is done in the direction from the first variable to the last variable of the path 9
while sequencing of variables in 9 are respected. The process is formally expressed
using pseudo-code as Algorithm 1.

For each vertex of Z\c[(9) it is checked whether it has been already included in
some of the previously constructed layers. If not, the construction of a new layer is
started and the vertex is included in it. Let u: be the first vertex of the just started
layer. Let it belong to the domain of a variable F�d

. Then variables following F�d
 in 9

are traversed and vertices corresponding to their domain elements are checked wheth-
er it is advantageous to include them. Vertices not yet included in any of the previous-
ly constructed layers are considered only. At most one vertex from each variable
domain is included into each layer. If there are multiple vertices remaining in the
variable domain, the vertex which is disconnected from the most vertices already
included in the currently constructed layer with respect to edges of) is selected for
inclusion. The selected vertex is concatenated to the constructed layer finally.

This way of selection of vertices to layers prefers small intersections of the path
being constructed with layers. This is due to the fact that selection of vertices into
layers according to the described criterion prefers that few variables can have as-
signed values corresponding to vertices of the layer not to violate constraints. Conse-
quently, this selection is in accordance with the objective of obtaining strongly infer-
ring modified path-consistency. In other words, we are trying to forbid as many paths
as possible (in fact, these paths are forbidden by constraints we just need to identify as
many of them as possible).

Observe that the worst case time complexity of the algorithm is �(|9|�|�|). The
worst case space complexity is �(|W| + |)|).

5.2 Calculation of Maximum Sizes of Intersection with Layers

The next step is the calculation of maximum sizes of intersections of the path being
constructed with individual layers represented by m: W ⟶ ℕ. It is supposed that layer
decomposition has been already constructed. Vertices of each layer are traversed from
the beginning. This way of traversal corresponds to the traversal of vertices in the
sequence of vertices of the path 9. The process is formally expressed using pseudo-
code as Algorithm 2.

Let 'n = [:
n , �

n , … ,
�o
n] with . ∈ {1,2, … , h} be a layer which is currently consi-

dered. The value of m(D
n) with � ∈ {0,1, … , �n} is calculated by considering two

alternatives. The first alternative is that the vertex D
n is considered to be included in

the potential intersection with the constructed path. The second alternative is that the
vertex D

n is not included in this way. The higher value from these two alternatives is
eventually assigned to m(D

n).
In the first alternative, the vertices from the set { :

n , �
n , … , D��

n } that are con-
nected with D

n are considered. These vertices can be potentially included into the
intersection of the layer 'n with the constructed path together with the vertex D

n . Then
maximum of m for these vertices is calculated and this value plus 1 represents the
maximum size of the intersection in this alternative (in the case when maximum is not
defined - the case of the empty set - the value 0 is used).

In the second alternative, the vertex D
n is not considered for inclusion into the in-

tersection with the path. In such a case, the value of m(D
n) can be inherited from

m(D��
n) since the vertex D

n has no influence on the size of the intersection.

Algorithm 2. The process of calculation of maximum intersection sizes. The input of the algo-
rithm is a layer decomposition of a Z[\

→ (9) denoted as ℒ and the auxiliary constraint graph
Z\c[(9) with respect to (�, �, �) and the path 9 as Z\c[(9) itself. The output of the algorithm
is an assignment m: W ⟶ ℕ which determines the maximum size of the intersection of the path
being constructed with the set of vertices of the layer preceding the given vertex. The maxi-
mum size of the intersection is determined by constrains imposed by the instance.

function Calculate-Maximum-Intersection-Sizes(ℒ, Z\c[(9) = (W,))): assignment
1: let ℒ = {'�, '�, … , 'e}
2: for . = 1,2, … , h do
3: let 'n = [:

n , �
n , … ,

�o
n]

4: m���x ← 0
5: for � = 0,1, … , �n do
6: m���� ← 0
7: for 5 = 0,1, … , � − 1 do
8: if { /

n , D
n } ∈) then

9: if m(/
n) > m���� then

10: m���� ← m(/
n)

11: m(D
n) ← max{m���� + 1, m���x}

12: m���x ← m(D
n)

13: return m

The following proposition summarizes the correctness of calculation of the maxi-
mum sizes of intersection with layers and their application in forbidding paths. It is
stated without the proof.

Proposition 1. Let <: ∈ �(F�X
) and <� ∈ �(F�Y

). If there is no path � connecting <:
and <� in Z[\

→ (9) such that � ∩ { :
n , �

n , … , D
n } ≤ m(D

n) for each . ∈ {1,2, … , h} and
for each � ∈ {0,1, … , �n}, then there is no assignment of values to variables of 9 such
that all the constraints over 9 are satisfied. ■

 The worst case time complexity of the algorithm for calculating maximum sizes of
intersections is �(|9|�|�|) again. The worst case space complexity is �(|W| + |)|).

5.3 Modified Path-consistency Checking

The final step is modified path-consistency checking for a pair of values <: and <�
from both ends of the path 9 being checked supposed that the layer decomposition
and maximum sizes of intersections with layers have been constructed. The process is
formally expressed using pseudo-code as Algorithm 3.

The algorithm traverses values from domains of the variables of the path 9 from
the beginning of the path 9 in the graph interpretation of path-consistency Z[\

→ (9) =

(W,)). For each vertex ∈ W along the traversal, assignments Σ and r are calculated.
The major idea within the algorithm is represented by the moment when it is de-

tected that all the paths starting in <: and ending in a given vertex exceed the maxi-
mum size of the intersection with some of the layers (lines 30-35). In such a situation,
no of the paths ending in the given vertex can be prolonged into the vertex from the
next variable in 9 without violating the constraints. This claim is formalized by the

following proposition which is again stated without the proof. The proposition also
formalizes the second stage of relaxation used in our proposal.

Algorithm 3. The modified path-consistency checking algorithm. The input of the algorithm is
a pair of vertices <: and <� from both ends of the path 9 which also the parameter. The next
parameters are the layer decomposition ℒ, CSP model of path-consistency (�, �, �), and the
graph interpretation of path-consistency Z[\

→ (9). The output of the algorithm is the Boolean
indicator whether the given pair of values is allowed.

function Check-Modified-Path-Consistency(<:, <� , 9, ℒ, (�, �, �), Z[\
→ (9) = (W,))): boolean

1: if (<:, <�) ∉) then
2: return %&'()
3: let 9 = (F�X

, F�G
, … , F�Y

)
4: let ℒ = {'�, '�, … , 'e}
5: let <: ∈ 'n
6: Σ(<:) ← 1
7: r(<:) ← 0e×(�=�); r(<:)n,� ← 1
8: for each ∈ �(F�X

) do
9: if ≠ <: then
10: Σ() ← 1
11: r() ← 0e×(�=�)
12: for � = 1,2, … , � do
13: for each ∈ �(F�d

) do
14: Σ() ← 0
15: r() ← 0e×(�=�)
16: let ∈ 'fnz
17: for each u ∈ �(F�d�G

) do
18: let u ∈ 'fn�
19: if (u,) ∈) then
20: Σ() ← Σ() + Σ(u)
21: for � = 1,2, … , h do
22: for 5 = 0,1, … , � do
23: if � = .x then
24: if 5 = 0 then
25: r()�,: ← 0
26: else
27: r()�,/ ← r()�,/ + r(u)�,/��
28: else
29: r()�,/ ← r()�,/ + r(u)�,/
30: � ← *�+)
31: for 5 = 0,1, … , m() do
32: if r()nz,/ > 0 then
33: � ← %&'()
34: if � then
35: r() ← 0e×(�=�)
36: if r(<�) ≠ 0e×(�=�) then
37: return *�+)
38: else
39: return %&'()

Proposition 2. Let <: ∈ �(F�X

) and <� ∈ �(F�Y
). If the modified path consistency

algorithm does not find the path conforming to requirements imposed by the algo-
rithm then there is no path � connecting <: and <� in Z[\

→ (9) such that � ∩
{ :

n , �
n , … , D

n } ≤ m(D
n) for each . ∈ {1,2, … , h} and for each � ∈ {0,1, … , �n}. ■

The worst case time complexity of the algorithm is �(|9|�|�|J), the worst case
space complexity is �(|9|�|�|�).

At this moment, a question may arise whether the modified path-consistency is ac-
tually stronger than the standard path-consistency. The answer is that it really is. The
particular instance, where the modified path-consistency can infer that there is no
consistent pair of values while the standard path-consistency is unable to infer this, is
an encoding of the pigeon hole principle [1].

6 Preliminary Experimental Evaluation

We have performed a preliminary experimental evaluation of the above suggestions.
The evaluation was targeted on determining the quality of layer decomposition and
maximum sizes of intersections with layers determined by proposed algorithms
(Algorithm 1 and Algorithm 2).

Table 1. Maximum intersection sizes with the first layer of the layer decomposition. The inter-
section sizes are calculated in the graph interpretation of several satisfiability instances from
SATLib. The determining of layers and maximum size of intersections was done using Algo-
rithm 1 and Algorithm 2 respectively.

SAT instance
Maximum intersection with '� = [:

� , �
�, … , �

�]
m(:

�) m(�
�) m(�

�) m(J
�) m(O

�) m(P
�) m(Q

�) m(�
�)

ais12.cnf 1 1 1 1 1 1 1 1

hanoi4.cnf 1 2 2 3 3 3 4 4

huge.cnf 1 1 2 2 2 2 3 3

jnh1.cnf 1 2 2 3 4 4 4 5

par16-1.cnf 1 1 1 2 2 2 2 2

par16-1-c.cnf 1 2 2 3 3 4 4 5

pret150_75.cnf 1 1 2 2 3 3 4 4

s3-3-3-8.cnf 1 1 2 3 3 4 4 5

ssa7552-160.cnf 1 1 2 3 4 4 5 6

sw100-5.cnf 1 1 2 2 2 2 3 3

Urq8_5.cnf 1 1 2 2 3 3 4 4

uuf250-0100.cnf 1 1 2 2 3 3 4 4

Several instances from the Satisfiability Library (SATLib) [11] and from [1] were
encoded using literal encoding and graph interpretations were constructed for them
with respect to the path of variables 9 consisting of 8 clauses starting with the first
clause of the instance. The remaining clauses for the path 9 were selected so that they
are the most constrained with already selected clauses for 9. This way of selection
prefers choosing of highly constrained path for subsequent construction of layers and
calculation of maximum sizes of intersections. In order to yet more increase con-
straining of the generated graph interpretation of Z[\

→ (9) the constraint model

(�, �, �) is enriched by additional constraint inferred by the singleton unit propaga-

tion [8] (that is, each literal is assigned the value *�+) and unit propagation is per-
formed; assignments to literals enforced by the propagation together with assignment
to the original literal form additional constraints).

To provide reproducibility of results all the results presented in this paper, the
complete source code, and input data are provided at the web: http://ktiml.mff.cuni.cz/
~surynek/research/csclp2010. Results regarding maximum sizes of intersections are
shown in Table 1. Parts of the auxiliary constraint graph restricted on the first layer of
several instances are shown in Fig 3. Although the experimental results are incom-
plete at the current stage of the development, they indicate that information captured
by constraints over non-neighboring variables in the path of variables is relatively
strongly reflected in the maximum sizes of intersections with layers.

Fig 3. An illustration of first layers of the auxiliary constraint graph of several satisfiability

instances. Several sparse and dense graphs are shown together with calculated maximum sizes
of intersection of the path being constructed with the layer.

7 Conclusion and Future Work

A new consistency for Boolean satisfiability has been proposed in this paper. The new
type of consistency augments the standard path-consistency by exploiting global
properties of the input instance. Particularly, stronger requirements are imposed on
the path being checked to exist compared to the situation in the standard path-
consistency – namely, the size of the intersection of the path with certain sets called
layers is restricted. Preliminary experimental evaluation has shown that it is possible
to relatively successfully derive the restriction on the size of the intersection with
layers on several well known benchmark SAT instances.

For future work we plan to further reduce the relaxation in the calculation of the
maximum sizes of intersections with layers. The simple augmentation can be done in
the alternative where the new vertex is considered to be selected into the intersection.
The number of vertices in the layer not ruled out by constraints when the new vertex

hanoi4.cnf jnh1.cnf

par16-1-c.cnf pret150_75.cnf

s3-3-3-8.cnf uuf250-0100.cnf

is included should be taken into account. Indeed, the future work is also to evaluate
inference strength of the modified path-consistency checking algorithm itself
(Algorithm 3). We also would like to evaluate possible applications of modified path-
consistency as a preprocessing tool for SAT solving.

References

1. Aloul, F. A., Ramani, A., Markov, I. L., Sakallah, K. A.: Solving Difficult SAT Instances
in the Presence of Symmetry. Proceedings of the 39th Design Automation Conference
(DAC 2002), 731-736, USA, ACM Press, 2002, http://www.aloul.net/benchmarks.html,
[October 2010] .

2. Chmeiss, A., Jégou, P.: Two New Constraint Propagation Algorithms Requiring Small
Space Complexity. Proceedings of the 8th International Conference on Tools with Artifi-
cial Intelligence (ICTAI 1996), pp. 286-289, IEEE Computer Society, 1996.

3. Chmeiss, A., Jégou, P.: Efficient Constraint Propagation with Good Space Complexity.
Proceedings of the Second International Conference on Principles and Practice of Con-
straint Programming (CP 1996), pp. 533-534, LNCS 1118, Springer, 1996.

4. Chvátal, V.: Tough Graphs and Hamiltonian Circuits. Discrete Mathematics 306, Volume
10-11, pp. 910-917, Elsevier, 2006.

5. Cook, S. A.: The Complexity of Theorem Proving Procedures. Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing (STOC 1971), pp. 151-158, ACM
Press, 1971.

6. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.: Introduction to Algorithms
(Second edition), MIT Press and McGraw-Hill, 2001.

7. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, 2003.
8. Dowling, W., Gallier, J.: Linear-time algorithms for testing the satisfiability of proposi-

tional Horn formulae. Journal of Logic Programming, Volume 1 (3), 267-284, Elsevier
Science Publishers, 1984.

9. Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP
Completeness. W. H. Freeman & Co., 1979, ISBN: 978-0716710455.

10. Han, C. C., Lee, C. H.: Comments on Mohr and Henderson's Path Consistency Algorithm.
Artificial Intelligence, Volume 36(1), pp. 125-130, Elsevier, 1988.

11. Holger, H. H., Stützle, T.: SATLIB: An Online Resource for Research on SAT. Proceed-
ings of Theory and Applications of Satisfiability Testing, 4th International Conference
(SAT 2000), pp.283-292, IOS Press, 2000, http://www.satlib.org, [October 2010].

12. Jackson, P., Sheridan, D.. Clause Form Conversions for Boolean Circuits. Theory and
Applications of Satisfiability Testing, 7th International Conference (SAT 2004), Revised
Selected Papers, pp. 183–198, Lecture Notes in Computer Science 3542, Springer 2005.

13. Mohr, R., Henderson, T. C.: Arc and Path Consistency Revisited. Artificial Intelligence,
Volume 28 (2), 225-233, Elsevier Science Publishers, 1986.

14. Montanari, U.: Networks of constraints: Fundamental properties and applications to pic-
ture processing. Information Sciences, Volume 7, pp. 95-132, Elsevier, 1974.

15. Rossi, F., Dhar, V., Petrie, C.: On the Equivalence of Constraint Satisfactions Problems.
Proceedings of the 9th European Conference on Artificial Intelligence (ECAI 1990), pp.
550-556, 1990.

16. Surynek, P.: Making Path Consistency Stronger for SAT. Proceedings of the Annual ER-
CIM Workshop on Constraint Solving and Constraint Logic Programming (CSCLP 2008),
ISTC-CNR, 2008.

17. Walsh, T.: SAT vs. CSP. Proceedings of the 6th International Conference on Principles
and Practice of Constraint Programming, 441-456, LNCS 1894, Springer Verlag, 2000.

