
Lessons Learned from the Effort to Solve

Cooperative Path-Finding Optimally

Reductions to Propositional Satisfiability

Pavel Surynek

Department of Theoretical Computer Science and Mathematical Logic

Faculty of Mathematics and Physics, Charles University in Prague

Malostranské náměstí 25, 118 00 Praha 1, Czech Republic

pavel.surynek@mff.cuni.cz

Abstract. This paper addresses makespan optimal solving of cooperative path-

finding problem (CPF) by translating it to propositional satisfiability (SAT). The

task in CPF is to relocate a set of agents to given goal locations so that they do not

collide with each other. Recent findings indicate that a simple direct encoding

outperforms the more elaborate encodings based on binary encodings of multi-

value state variables. The direct encoding is further improved by a hierarchical

build-up that uses auxiliary variables to reduce its size in this work. The conducted

experimental evaluation shown that the simple design of the encoding together

with new improvements which reduced its size significantly are key enablers for

faster solving of the encoded CPFs than with existing encodings. It has been also

shown that the SAT based methods dominates over A* based methods in envi-

ronments with high occupancy by agents.

Keywords: cooperative path-finding (CPF), propositional satisfiability (SAT),

SAT encodings, A*

1 Introduction, Motivation, and Related Works1

The problem of cooperative path-finding (CPF) [13, 18, 20, 24] represents an ab-

straction for variety of problems where the task is to relocate some physical

agents, robots, or other objects so that they do not collide with each other. Each

agent is given its initial position in a certain environment and its task is to reach a

This work is supported by the Czech Science Foundation (contract no. GAP103/10/1287).

mailto:pavel.surynek@mff.cuni.cz

2 Pavel Surynek

given goal position. It is assumed that all the agents are the same (same size and

velocity) and are controlled centrally.

The major difficulty in CPF comes from possible interactions among relocated

agents, which is imposed by the requirement that they must not collide with each

other. The more agents appear in the instance the more complex interaction arises

and consequently the instance is harder to solve.

The commonly adopted way to abstract the CPF problem is to model the envi-

ronment in which agents are moving as an undirected graph where agents are

placed in its vertices. Edges in the graph model the topology of the original envi-

ronment – that is, an edge connects two neighboring places so that one can be vis-

ited immediately from the other. Physical constraints are captured by the require-

ment that at most one agent is located in each vertex together with constraints that

determine how agents can move. An agent can move into a neighboring vertex

provided it is unoccupied at the time of commencing the move. No two agents can

enter the same target vertex simultaneously. These constraints together ensure that

at most one agent is placed in each vertex in the next time step. Other conditions

on how motions of agents are enabled are possible but the mentioned one is one of

the most frequently used.

The notion of makespan in this abstraction corresponds to the number of time

steps needed to relocate all the agents (equivalently the makespan is the maximum

number of moves needed by an agent to relocate itself to its goal location over the

set of all the agents).

One of the very successful approaches to solve CPF optimally is to translate

makespan bounded CPF instance to propositional formula and use modern SAT

solvers to solve the resulting formula. The advantage of this approach is that all

the techniques implemented in SAT solvers such as learning and constraint propa-

gation are employed almost for free in CPF solving. The key research question

here is how to encode CPF instance as propositional formula so that the resulting

formula can be solved fast.

Lessons learned from the design of various encodings of CPF as propositional

are utilized in the design of a new encoding, which is surprisingly simple and effi-

cient. It has been found that there is a correlation between the size of the formula

and the speed of its solving in the domain dependent case of CPF (this is correla-

tion however does not appear generally as there exist small formulae that are hard

to solve). At the same time formulae modeling CPF that support constraint propa-

gation (unit propagation) were found to be solvable more easily. Constraint prop-

agation can be enabled by short clauses when the formula is expressed in conjunc-

tive normal form. Combining these aspects in the design of CPF encodings as

SAT is an interesting challenge.

Some propositional encodings of CPF will be discussed. Two most prominent

encodings are based on the all-different propagator known from constraint pro-

gramming and on matchings in bipartite graphs, which is based on the finding that

a valid movement of agents corresponds exactly to the series of matchings in the

time-expanded graph of the CPF instance. All the suggested encodings are howev-

Lessons Learned from the Effort to Solve Cooperative Path-Finding Optimally 3

er still far from the theoretical lower bound on the size of the formula, which of-

fers room for further research.

There are many motivations for introducing CPF. Classical multi-robot reloca-

tion problems where agents are represented by actual mobile robots can be viewed

as CPF. Planning movements of units in real-time strategy games is another appli-

cation [24]. Even data relocation in a network can be regarded a CPF (agent is rep-

resented by a data packet and spatial occupancy turns into storage occupancy).

The indifference between agents in terms of their properties allows abstraction

where the environment is modeled as an undirected graph and agents as items

placed in vertices of this graph [20, 24]. At most one agent is placed in each ver-

tex. The time is discrete and the move is possible only into a currently unoccupied

vertex while no other agent is allowed to enter the same target vertex.

Contemporary approaches to solving CPF include polynomial time sub-optimal

algorithms [13, 25] as well as methods that generate optimal solutions in certain

sense [21, 22]. This work focuses on generating makespan optimal solutions to

CPF where the makespan is the maximum of arrive times over all the agents. Re-

lated makespan optimal methods for CPF currently include methods employing

translation of CPF to propositional satisfiability (SAT) [22, 23], methods based on

conflict resolution between paths for individual agents [19], and classical A*

based methods equipped with powerful heuristics [21]. The first mentioned ap-

proach excels in relatively small environments with high density of agents while

latter two approaches are better in large environments with few agents.

 This work tries to contribute to SAT-based methods. It is inspired by our recent

(unpublished) findings that quite complex and elaborate propositional encodings

called INVERSE and ALL-DIFFERENT proposed in [22] and [23] can be easily out-

performed by an encoding of a straightforward design. The direct encoding design

is further simplified here by introducing auxiliary variables. The introduces sim-

plifications reduced the size of the encoding significantly which in turn enabled

faster solving of CPFs encoded using the proposed encoding. It is also shown how

the SAT-based solving stands in comparison with A* based methods.

The organization of the paper is as follows. The CPF problem is introduced

formally first. Then a theoretical study of sizes of CPF encodings is provided. A

novel propositional encoding of CPF is described thereafter and its theoretical

properties are summarized. Experimental evaluation in which existing encodings

and the A* based method are compared with the novel encoding constitute the last

part.

2 Cooperative Path Planning Formally

An arbitrary undirected graph can be used to model the environment where

agents are moving. Let be such a graph where is a

finite set of vertices and

 is a set of edges. The placement of agents in the

4 Pavel Surynek

environment is modeled by assigning them vertices of the graph. Let
 be a finite set of agents. Then, an arrangement of agents in vertices

of graph will be fully described by a location function ; the interpreta-

tion is that an agent is located in a vertex . At most one agent can be

located in each vertex; that is is uniquely invertible. A generalized inverse of

denoted as will provide us an agent located in a given vertex or

 if the vertex is empty.

Definition 1 (COOPERATIVE PATH FINDING). An instance of cooperative path-

finding problem is a quadruple
 where location func-

tions and define the initial and the goal arrangement of a set of agents in

 respectively. □

 The dynamicity of the model supposes a discrete time divided into time steps.

An arrangement at the -th time step can be transformed by a transition action

which instantaneously moves agents in the non-colliding way to form a new ar-

rangement . The resulting arrangement must satisfy the following validi-

ty conditions:

(i) either or holds

 (agents move along edges or not move at all),

(ii)

 (agents move to vacant vertices only), and

(iii)

 (no two agents enter the same target/unique invertibility of

 resulting arrangement).

The task in cooperative path finding is to transform using above valid transi-

tions to . An illustration of CPF and its solution is depicted in Figure 1.

Figure 1. Cooperative path-finding (CPF) on a 4-connected grid. The task is to relocate

three agents , , and to their goal vertices so that they do not collide with each other.

A solution of makespan 4 is shown.

Definition 2 (SOLUTION, MAKESPAN). A solution of a makespan to a coopera-

tive path finding instance
 is a sequence of arrangements

 where and is a result of valid transfor-

mation of for every . □

a1

a2

a3

v2

v1

v3

v4

v5

v6

v7

v8

v9

a1

a2

a3
v2

v1

v3

v4

v5

v6

v7

v8

v9

CPF Σ=(G, {a1,a2,a3}, α0, α
+
) α

+

α0

a1

a2

a3

α0

v1

v2

v7

α1

v1

v3

v4

α2

v2

v3

v4

α3

v5

v3

v1

α4 = α
+

v8

v3

v2

(1)

(3)

(2)

Lessons Learned from the Effort to Solve Cooperative Path-Finding Optimally 5

 If it is a question whether there exists a solution of of the makespan at most a

given bound we are speaking about a bounded CPF (bCPF). It is known that

bCPF is -complete and finding makespan optimal solution to CPF is -hard

[15].

3 Theoretical Analysis of SAT Encodings of CPF

The goal is to build a propositional formula for a given bCPF and a

makespan bound so that has a model (is satisfiable) if and only if has a

solution of makespan . A sequence of arrangements of agents

over the graph forming the solution should be readable from the model of .

The idea of time expansion graph [1, 12] is adopted to construct such formula.

 If it is known how many propositional variables are needed to express sequence

of consecutive arrangements of agents over the graph, then it can seen how far

from these bounds the suggested encoding is. Following propositions summarize

estimations of the number of necessary propositional variables considering various

approaches to express the arrangements. The presented estimations assume that

almost every arrangement is possible at any time step.

 Also, encodings need to be considered as sparse representations. Otherwise it

would be possible to count the total number of distinct sequences of arrangements

and take binary logarithm of this number as the estimation. Such an encoding is

however impractical as it is hard to decode.

Proposition 1 (LOCATION-ESTIMATION). Let be a makespan bound. Then

 propositional variables are sufficient to express consecutive ar-

rangements of agents up to the time step . ■

Proof. A technique of expressing a multi-value state variable using vectors of

propositional variables that encode individual values as binary numbers will be

used. There are possible states of an agent at every time – the agent can appear

in any vertex of the input graph. To represent an -state variable, bits

(propositional variables) are needed. Hence, we have propositional

variables in total to represent locations of all the agents (there are agents) at eve-

ry time step. ■

Proposition 2 (INVERSE- ESTIMATION). Consecutive arrangements of agents up to

the time step can be expressed by

 propositional varia-

bles. ■

Proof. Instead of expressing where each agent is located, the content of vertices

will be recorded. The crucial observation is that at most changes of agents

can occur in a single vertex (an agent must leave the vertex after which another

agent can enter the vertex – the change consumes time-steps). Information what

agent entered the vertex is again multi-value state variable with states. Hence,

 bits are needed to record it. Altogether, bits are needed

6 Pavel Surynek

to record possible changes for all the agents. Additional bits per vertex indicate

time-steps at which the change in the vertex occurred.■

 The INVERSE encoding [22] partially use the idea presented in the proof. How-

ever, the content of vertices is recorded for all the time-steps (not only for half of

them as here). An interesting way to represent arrangements of agents at all the

time-steps is to record changes between consecutive arrangements while only the

initial arrangement is recorded completely.

Proposition 3 (NEIGHBORHOOD-ESTIMATION). Let and let

the initial arrangement be expressible using propositional variables,

then consecutive arrangements of agents up to the time step can be expressed by

 propositional variables. ■

Proof. The idea is to record what move has been taken by each agent. Assume that

neighbors of each vertex in have a fixed order, then the move of an agent can be

encoded as an order number of the neighbor into which it moved. Assuming that

the degree (the number of edges incident with the given vertex) of all the vertices

in is at most , the move of an agent can be recorded by bits (an

extra state is needed to represent the no move action). Altogether,
 bits are sufficient to record moves of all the agents at all the time

steps. ■

 The estimation gives good results in

sparse graphs since each vertex has

few neighbors in such a case. This

property is partially used in the

INVERSE encoding again. However, the

estimation may degenerate up to the

location-based estimation if the graph

is highly connected.

 Note that up to now two of three op-

tions of how to regard the 3-

dimensional space of vertices, agents,

and time-steps have been discussed. It

remains to show an estimation in

which we ask at what time-steps a giv-

en agent appears in given vertex. As a

single agent may enter a vertex multi-

ple times, the simple scheme in which

multi-value state variable representing

the third dimension is indexed by re-

maining two dimensions can no longer

be used. Little of the structural proper-

ties of the CPF problem can be used in

the estimation.

A

B

C

D

a1

a2

1 2

3
4

A

B

C

D

a1

a2

A

B

C

D a2 a1

A

B

C

D a2

a1

A

B

C

D a2

a1

Figure 2. Illustration of the minimum number of

time steps before returning to the same vertex.

The next visit to the vertex can be separated by at

least 4 time steps.

Lessons Learned from the Effort to Solve Cooperative Path-Finding Optimally 7

Proposition 4 (TIME-BASED ESTIMATION). Consecutive arrangements of agents in

an optimal solution up to the time step can be expressed by

propositional variables. ■

Proof. The most important observation is that at least 4 time steps are allowed to

elapse before an agent returns into a given vertex in a makespan optimal solution.

Step 1 is for leaving the vertex, steps 2, 3 are for entering and leaving by the other

agent, and step 4 is for returning to the vertex – the situation is illustrated in Fig-

ure 2. If the agent returns earlier, then the movement can be eliminated from the

solution without compromising its optimality or correctness. Hence, a single agent

can visit the given vertex at most times. Expressing the time step, at which

the visit occurs, needs bits. All these information are recorded for every

vertex and every agent, which in total gives bits. ■

 Other measures and characteristics than the size of the encoding are difficult to

be captured as the dependence of behavior of SAT solvers on the structure of the

formula is too complex.

4 A Simplification of Simple SAT Encoding

Let us recall a so called DIRECT encoding of bCPF
with makespan bound where and with

 . The DIRECT encoding is part of our unpublished work. As discussed in

the previous section, arrangements of agents over the graphs at all the time steps

from to will be represented. The encoding will use a propositional variable for

each vertex, agent, and a time step which will be assigned , if and only if the

given agent appears in a given vertex at given time step.

 Unlike representations of arrangements using binary encoding of multi-value

state variable, this encoding has a propositional variable for every state. Although

more propositional variables are needed to encode arrangements, we expect that

the benefit of better Boolean constraint propagation outweighs the larger size of

the encoding. The suggested encoding will be called DIRECT and is formally intro-

duced in the following definition.

Definition 3 (DIRECT ENCODING). A DIRECT encoding of a given bCPF
 with makespan bound consists of propositional variables

for every , , . The interpretation is that

 is assigned if and only if appears in at time step . The following

constraints modeling validity conditions on consecutive arrangements are intro-

duced:

 (a)

 for every ,

 and

 (an agent is placed in exactly one vertex at each time step)

(4)

8 Pavel Surynek

 (b)

 for every ,

 and
 (at most one agent is placed in each vertex at each time step)

(c)

 for every ,

 , and

 (an agent relocates to some of its neighbors or makes no move)

(d)

 for every ,
 such that and

 (target vertex of a move must be vacant and the source

 vertex will be vacant after the move is performed). □

Observe that all the constraints are now written as clauses (disjunctions of liter-

als, where literal is a variable or its negation) or can be easily rewritten as clauses.

Thus, a conjunctive normal form (CNF) [5] can be easily obtained from Definition

3. The resulting formula modeling existence of solution of given bCPF with

makespan bound in the CNF form will be denoted as .

The DIRECT encoding has a significant drawback, which is its size. Particularly

(d) constraints produce too many clauses – (d) constraints stand for
ternary clauses. Using auxiliary variables, the number can be reduced to .
 The DIRECT encoding can be improved in another way as well. Constraints (a)

can be eliminated without compromising equisatisfiability of bCPF with and

 . Omitting (a) constraints may cause that a single agent appears multiple

times in the graph. Nevertheless, populating a single only makes it harder to find a

solution thus does not matter if occurs. The same can be done with the second im-

plication in (c) constraints. Again, it does not compromise equisatisfiability if it is

omitted. The absence of constraints may cause appearance of an agent from noth-

ing at a certain time step. Nevertheless, the first implication propagates all the

agents towards the last time steps. Hence, extra-appeared agents just only make it

harder to find a solution. Note that omitted constraints are not entailed by the rest

at the logical level. The equisatisfiability after omitting mentioned constraints

need to be seen at the abstract level of the solution existence in bCPF. The result-

ing encoding will be called SIMPLIFIED and is formally introduced in the following

definition.

Definition 4 (SIMPLIFIED ENCODING). A SIMPLIFIED encoding of a given bCPF

 with makespan bound consists of propositional vari-

ables
 and

 (auxiliary for macros) for every , ,

 . The interpretation is that
 is assigned if and only if

appears in at time step and
 is if and only if is vacant at time step

 . The following constraints modeling validity conditions on consecutive arrange-

ments are introduced:

(5)

(6)

(7)

Lessons Learned from the Effort to Solve Cooperative Path-Finding Optimally 9

 (A)

 for every ,

 and
 (at most one agent is placed in each vertex at each time step)

 (B)

 for every ,

 , and
 (an agent relocates to some of its neighbors or makes no move)

(C)

 for every ,
 such that and

 (target vertex of a move must be vacant and the source vertex

 will be vacant after the move is performed)

(D)

 for every ,

 (empty vertex macro connected through auxiliary variable). □

Again, all the constraints of the SIMPLIFIED encoding can be written as clauses.

Let the resulting formula for bCPF with makespan bound be denoted

 .

Properties of the DIRECT and SIMPLIFIED Encodings

Let us summarize basic properties of the proposed SIMPLIFIED encoding. The fact

that the encoding does what is what designed for is summarized in the following

proposition. Further, a discussion is devoted to the size of the encoding.

Proposition 5 (ENCODING SOUNDNESS). Let be a bCPF and a

makespan bound, then as well as is satisfiable if and only if

 has a solution of makespan . Moreover, the solution of can be reconstructed

from the model of or from . ■

 The proof is omitted for space limitations. Nevertheless, note that the second

part of the proposition is important to be stated as it is possible to establish equi-

satisfiability between a propositional formula and even for trivial cases of the

formula from which a solution of cannot be reconstructed.

Proposition 6 (ENCODING SIZE). Let , where with a

bound be an instance of bCPF. The DIRECT encoding requires

propositional variables and clauses respectively.

 The SIMPLIFIED encoding requires

(8)

(10)

(11)

(9)

(12)

(13)

10 Pavel Surynek

propositional variables and clauses respectively. ■

Proof. Let us investigate the DIRECT encoding first. The number of propositional

variables can immediately seen from the scope of indexes. The number of clauses

appearing in (4), (5), and (6) can be calculated as a product of the size of index

scopes. Clauses in (7) will develop into ternary clauses. An analogical cal-

culation can be done for the SIMPLIFIED encoding. ■

 Note that most of clauses in the DIRECT encoding are binary or ternary which

supports good performance of Boolean constraint propagation (unit propagation

[5]). The same holds for the SIMPLIFIED encoding.

 Asymptotically, the number of variables is and the number of

clauses is in the DIRECT encoding. If this is compared with the

INVERSE encoding [22] where the number of variables is reported to be
 and the number of clauses and with the ALL-

DIFFERENT encoding [23] where the number of variables is

and the number of clauses is , then the size of the DIRECT en-

coding is larger approximately by the factor of

 or

 respec-

tively (note that is dominated by). However, the size of clauses is much

smaller in case of DIRECT encoding.

 The asymptotic number of variables is and the number of claus-

es is in the SIMPLIFIED encoding. Although factor

 in the number of clauses may be up to , it is smaller in

typical CPF instances. Hence in theory, will be smaller than

typically.

5 SAT-Based Optimal CPF Solving

The suggested SIMPLIFIED encoding is intended for makespan optimal CPF solv-

ing. As it is possible to solve bCPF with given makespan bound by translating it

to SAT, an optimal makespan and corresponding solution can be obtained using

multiple queries to a SAT solver with encoded bCPF. Various strategies exist for

getting the optimal makespan. The simplest one and very efficient one at the same

time is to try sequentially makespan bounds until equal to the opti-

mal makespan is encountered. This strategy will be further referred as sequential

increasing. The sequential increasing strategy is also used in domain independent

planners such as SATPLAN [12], SASE [11] and others. Pseudo-code of the strategy

is listed as Algorithm 1.

 The focus here is on SAT encoding while querying strategies are out of scope of

the paper; though let us mention that in depth study of querying strategies is given

in [17]. There is a great potential in querying strategies as they can bring speedup

Lessons Learned from the Effort to Solve Cooperative Path-Finding Optimally 11

of planning process in orders of magnitude, especially when combined with paral-

lel processing.

 Any complete SAT solver [5] may be used as the external module of the sug-

gested optimal CPF solving algorithm. Notice however that a CPF solver follow-

ing the framework of Algorithm 1 is incomplete. If the given CPF instance has

no solution then the algorithm runs infinitely. The treatment of incompleteness is

easy. The solvability of can be checked by some of sub-optimal polynomial time

solving algorithms such as that suggested in [13] or by PUSH-AND-ROTATE [25]

(which corrects the previous algorithm [14]) before optimal SAT solving is start-

ed. The speed of the solving process is not compromised by solving the instance

sub-optimally first since the runtime of solving encoded bCPFs by a SAT solver

significantly dominates in the overall runtime.

Algorithm 1. SAT based optimal CPF solving.
 input: a CPF instance
 output: a pair consisting of the optimal makespan
 and corresponding optimal solution

function Find-Optimal-Solution-Sequentially
 : pair

1:
2 loop

3: Encode-CPF-as-SAT
4: if Solve-SAT then
5: Extract-Solution-from-Valuation
6: return
7:
8: return

6 Experimental Evaluation

The proposed SIMPLIFIED encoding has been competitively evaluated with respect

to other existing two propositional encodings of bCPF called INVERSE [22] and

ALL-DIFFERENT [23] and with respect to the unpublished DIRECT encoding. Vari-

ous static characteristics of encodings such as its size and runtime behavior, when

the encoding is built-in to the SAT-based optimal CPF solving, were compared.

The SAT-based solving with all the encodings has been compared with another

state-of-the-art method developed around A* algorithm called OD+ID [21]. The

comparison with OD+ID interestingly extends results shown in [22, 23] where

SAT-based CPF solving was compared with domain independent SAT-based

planners SASE [11] and SATPLAN [12] only.

 The experimental setup employs random CPF instances over 4-connected grids

with randomly placed obstacles. This is a standard benchmark for evaluating CPF

solving methods suggested in [20]. Although it is not very general, it provides

easy comparison with results in existing literature. Initial locations and goals of

agents were distributed randomly over the grid. Grids of sizes 6⨯6, 8⨯8, and

12 Pavel Surynek

12⨯12 were used in experiments; were occupied by obstacles. All CPF the

instances in the evaluation were solvable.

 All the encodings were further augmented with reachability heuristic as pro-

posed in [23]. That is, locations that are unreachable from the initial position or

from the goal in the given number of time steps are forbidden and associated con-

straints (clauses) are omitted. This heuristic significantly reduces the size of all the

encodings and speeds up the solving process.

 Glucose version 3.0 [1] SAT solver has been used in the experimental eval-

uation. According to the 2013 SAT Competition [3] Glucose is one of few top

SAT solvers in terms of performance in solving hard combinatorial problems. As

CPF can be regarded as a combinatorial problem, this choice of SAT solver is jus-

tified.

 Let us also briefly summarize properties of all the encodings and A* based

method used in competitive comparison. The IVERSE encoding is build around the

inverse location function , which is used to represent arrangements of agents.

The primary motivation is to keep the encoding as small as possible, hence it uses

multi-value state variables encoded by bit vectors, which eliminates additional

constraints. However, no attention is paid to Boolean constraint propagation. Rela-

tively long clauses appear in the encoding.

 The ALL-DIFFERENT encoding on the other hand uses standard location function

 to represent arrangements of agents. Again, locations are modeled as bit-

vectors. The main idea is to express the requirement that each agent must occupy a

unique location by the all-different relation over bit vectors [4]. Note that no prop-

agator based on network flows, as it is known in constraint programming [16], is

used here. Boolean constraint propagation is considered at the level of the all-

different relation, which is designed in that sense [4]. However, the encoding of

the all-different relation grows as quadratically which makes the encoding compli-

cated for higher number of agents.

 OD+ID is a search method. It is always trying to separate agents into groups for

which shortest paths to their goals can be found independently on other agents.

The best case occurs if each agent is in its own group. That is, the cooperative so-

lution consists of shortest paths between initial positions and goals of agents. The

worst case is on the other hand if all the agents are considered as a single group. If

agents become too interdependent in the densely occupied environment, the per-

formance of the method considerably degrades.

 All the source codes used to conduct experiments are posted on website to al-

low full reproducibility of presented results: http://ktiml.mff.cuni.cz/~surynek/ re-

search/cjs2014.

Static Evaluation of Encodings

There are several static characteristics of propositional formulae in CNF that are

correlated with performance of their solving by most SAT solvers. Obviously, the

size of the formula in terms of the number of variables and the number of clauses

determines the time needed to find a solution significantly. Typically the larger the

http://ktiml.mff.cuni.cz/~surynek/%20research/
http://ktiml.mff.cuni.cz/~surynek/%20research/

Lessons Learned from the Effort to Solve Cooperative Path-Finding Optimally 13

formula is the longer runtime of its solving should be expected though the solving

runtime is also affected by other factors (easily solvable large formula is possible).

 How the formula is constrained determines the difficulty of its solving as well.

It is known that in random 3-SAT case (clauses has exactly three literals) the most

difficult formulae have the ratio of the number of clauses to the number of varia-

bles around [5] which is called a phase transition. Formulae that are over-

constrained (tend to be unsatisfiable) or under-constrained (tend to be satisfiable),

that is, have the clause to variable ratio far from the phase transition can be solved

easily in most cases. Hence, encodings producing such formulae are preferred.

Another important characteristic is the length of clauses while short clauses are

preferred. This is implied by the Boolean constraint propagation represented by

the unit propagation [5], which always assigns to the last unassigned literal

in a clause during search. Short clauses promote frequent use of unit propagation,

which significantly speeds up the process of solving the formula [6].

Table 1. Static characteristics of encodings over 8⨯8 grid. INVERSE, ALL-DIFFERENT,
DIRECT, SIMPLIFIED and encodings – all with compiled distance heuristics [23] – are com-
pared. bCPF instances are generated over the 4-connected grid of size 8⨯8 with of
cells occupied by obstacles. Makespan bound is always 16. The number of variables and
clauses, the ratio of the number of clauses and the number of variables, and the average
clause length are listed for different sizes of the of agents . The DIRECT encoding is big-
gest in terms of the length of formula but has smallest clauses in average and is most con-
strained out of all the encodings, which suggests good behavior in Boolean constraint prop-
agation (unit propagation) and pushes the formula far from the phase transition. The
SIMPLIFIED encoding inherited a promising clause to variable ratio and short clauses from
the DIRECT encoding.

Grid 8⨯8
INVERSE ALL-DIFFERENT DIRECT SIMPLIFIED

|Agents|

1
#Variables

#Clauses
Ratio

Length
8 358.7

31 327.9
3.748
2.616

1 489.3
7 930.4

5.325
3.057

814.4
23 241.9

28.539
2.149

1 628.8
3 384.6

2.078
2.550

4
10 019.5
55 437.0

5.532
2.641

7 834.5
34 781.9

4.440
3.103

3 257.6
115 934.3

35.589
2.272

4 072.0
17 997.8

4.420
2.374

16
11 680.3
91 344.5

7.820
3.127

67 088.3
216 745.4

3.231
3.147

13 030.4
840 540.6

64.506
2.505

13 844.8
150 259.2

10.853
2.180

32
12 510.7

122 170.3
9.765
3.733

230 753.0
646 616.2

2.802
3.168

26 060.8
2 738 584.7

105.084
2.621

26 875.2
510 672.1

19.002
2.111

 Note that preferences in the mentioned characteristics are sometimes contra-

dictory. We want the formula to be small, hence the number of clauses should be

small, but over-constraining by many clauses is desirable at the same time. There-

fore, discussed preferences should not be considered literally – also because the

considered behavior of SAT solvers appears in most cases but does not appear ab-

solutely. They are rather a simple guidance that was kept in mind when an encod-

ing is designed.

 Static characteristics of the SIMPLIFIED encoding are compared with other three

propositional encodings – INVERSE, ALL-DIFFERENT, and DIRECT – in Table 1. A

4-connected grid of size 8⨯8 various numbers of agents is shown. The winner ac-

cording to discussed preferences in each characteristic is shown in bold (results

14 Pavel Surynek

over 6⨯6 and 12⨯12 indicate same conclusions and thus are omitted for space

limitations).

 It can be observed that the smallest encoding in terms of the number of varia-

bles and clauses is the INVERSE one while the biggest one is the DIRECT encoding

with ALL-DIFFERENT and SIMPLIFIED encodings standing in the middle. This as-

pect seems to be disadvantageous for the proposed DIRECT encoding. However in

terms of the clause to variable ratio and the size of clauses, the DIRECT encoding

seems to be the best followed by the SIMPLIFIED one as they have highest number

of shortest clauses. Whether these static advantages prevail over disadvantages of

encodings, must be evaluated in runtime experiments.

Runtime Evaluation of Encodings

The speed of SAT-based optimal CPF solving with the three discussed encodings

has been evaluated. Again, 4-connected grids of various sizes were used in exper-

iments. The runtime2 needed for finding an optimal solution has been measured

for the number of agents ranging from 1 up to the number for which at least one

method solves all the instances (the increasing number of agents makes the CPF

instance more difficult). The timeout of seconds has been used. For each

number of agents, random instances of bCPF have been generated and solved.

All the testing instances were solvable. The average runtime and makespan is re-

ported.

 Evaluation of SAT-based CPF solving would be incomplete if it is not com-

pared with other state-of-the-art solving methods. Therefore A*-based method

OD+ID [17] is included into competitive comparison.

 Runtime results are shown in Figure 3. Also average optimal makespans are

shown for the sake of completeness. Results for the 8⨯8 grid indicate that SAT-

based solving with the SIMPLIFIED encoding is the best option if the occupancy of

the graph with agents is non-trivial, that is . Almost identical results can be

observed in case of 6⨯6 and 12⨯12 grids.

 The DIRECT encodings follows the SIMPLIFIED one in term of solving speed. It

outperforms remaining two encodings INVERSE and ALL-DIFFERENT if the occu-

pancy of the graph with agents exceeds approximately . The closest competi-

tor to presented encodings seems to the ALL-DIFFERENT encoding which is a bet-

ter option for less occupied graphs.

 In very sparsely occupied graphs, OD+ID method is the best as lot of independ-

ence among agents can be found. However, OD+ID degrades dramatically if there

is higher concentration of agents in the graph since agents become more interde-

pendent and independence heuristics no longer work.

 The INVERSE encoding was always the worst option out of all the tested meth-

ods. We consider that the reason for its weak performance is that relatively long

clauses appear in it. On the other hand, short clauses of the DIRECT encoding and

2 All the runtime measurements were done on an experimental server with the 4-core CPU

Xeon 2.0GHz and 12GB RAM under Linux kernel 3.5.0-48.

Lessons Learned from the Effort to Solve Cooperative Path-Finding Optimally 15

their abundance promoting unit propagation are the main reasons for the good per-

formance of this encoding. We observed that solving of formulae of the DIRECT

encoding by the SAT solver is relatively fast while large portion of the time is

consumed by generating the formula (the formula is generated into file, which is

subsequently read by the SAT solver). Hence, there is still room to increase the

speed of SAT-based solving if the solving process is better engineered.

Grid 8⨯8
1 2 4 8 12 16 20 24

|A|

Makespan 6.4 6.1 8.1 10.5 9.8 11.0 11.9 12.7

Figure 3. Runtime of SAT-based CPF solving – grid 8⨯8. Glucose 3.0 is used as an ex-

ternal solver in SAT-based solving. For each number of agents, random instances were

solved and the average runtime is reported. The SIMPLIFIED encoding can be solved the

fastest for the occupancy with agents greater than . The SIMPLIFIED and the DIRECT en-

coding are the only encodings for which all the instances have been solved in a given

timeout of seconds. Note that the DIRECT encoding becomes faster than the IVERSE and

ALL-DIFFERENT encodings when the occupancy exceeds . The average optimal

makespan for selected numbers of agents is shown in the table in the bottom (again it is the

average makespan out of makespans of instances). Note that OD+ID is fastest for sparse-

ly populated graphs but its increases runtime quickly with higher number of agents.

Discussion, Conclusions, and Future Works

A new propositional encoding of the makespan bounded cooperative path-finding

problem (bCPF) has been proposed. The idea of the work was to simplify further

our unpublished encoding whose design was very simple with no elaborate tech-

nique behind. The next goal was to check how simple encodings stands with re-

spect to existing relatively elaborate encodings for the problem. The new encoding

has been called SIMPLIFIED as it simplifies our previous encoding called DIRECT.

 The SIMPLIFIED encoding has been used within the SAT-based framework for

solving CPF (unbounded version) optimally. The comparison of SIMPLIFIED and

DIRECT encodings with existing two encodings INVERSE [22] and ALL-DIFFERENT

[23] as well as with A* search based method OD+ID [21] on random CPF instanc-

0.001

0.01

0.1

1

10

100

1000

1 2 4 6 8 10 12 14 16 18 20 22 24

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Runtime | Grid 8⨯8 | 10% obstacles

INVERSE ALL-DIFFERENT

OD+ID DIRECT

SIMPLIFIED

|A|

16 Pavel Surynek

es over 4-connected grids has been done and showed surprising results. The

DIRECT encoding despite its relatively naive design performed better than the

ALL-DIFFERENT encoding on instances with occupancy by agents and al-

most always better than the INVERSE encoding. The SIMPLIFIED encoding was

even better and it prevailed over all the other encodings in case with occupancy

higher than approximately .

 Generally, the SAT-based approach turned out to be better whatever encoding

has been used than the A* based OD+ID whenever occupancy with agents has

been higher than trivial. This can be explained by the fact that OD+ID‘s heuristic

cannot detect independence among agents in cases with high occupancy. Note also

that this method can be regarded as all-in-one while in the SAT-based approach

the SAT solver itself is an external module. It is quite unrealistic to implement

equivalent number of propagation, learning, and heuristic techniques in the all-in-

one solution as they are in SAT solvers. Through an encoding of the problem in

the SAT formalism, we can access all these elaborate techniques almost for free.

We hope that lessons learned from the design of encodings for CPF can be applied

in other areas as well.

 It would be interesting to study models of CPF also in other formalisms than

SAT. The promising candidate seems to be constraint satisfaction problem (CSP)

[7] where global constraints can be used. Integer programming (IP) model are al-

so worth studying. Recently an attempt to model the problem in the answer set

programming (ASP) formalism has been made [9]. Also, it seems that existing en-

codings are still far from theoretically smallest possible sizes. Hence, we see an

opportunity in further reductions of the size of SAT encodings.

 Another interesting question is if finding makespan sub-optimal solution can be

modeled as SAT. It is known that sub-optimal methods such as [13, 25] generate

solutions that have excessively long makespans. Their shortening is a difficult

process as shown in [22]. The optional way may be to propose a SAT encoding

that prefers sub-optimal solution of short makespans.

 We are also investigating the possibility of automated generation of encodings.

Our first examination of the problem of finding an encoding automatically indi-

cates that it belongs to
 class. Hence, the encoding can be theoretically found by

a QBF solver. The open question is if this process is practically feasible.

References

1. Ahuja, R. K., Magnanti, T. L., Orlin, J. B. Network flows: theory, algorithms, and ap-

plications. Prentice Hall, 1993.

2. Audemard, G., Simon, L. The Glucose SAT Solver.

http://labri.fr/perso/lsimon/glucose/, 2013, [accessed in June 2014].

3. Balint, A., Belov, A., Heule, M., and Järvisalo, M. SAT 2013 competition.

http://satcompetition.org/, 2013, [accessed in June 2014].

http://labri.fr/perso/lsimon/glucose/
http://satcompetition.org/

Lessons Learned from the Effort to Solve Cooperative Path-Finding Optimally 17

4. Biere, A., Brummayer, R. Consistency Checking of All Different Constraints over Bit-

Vectors within a SAT Solver. Proceedings of Formal Methods in Computer-Aided De-

sign, (FMCAD 2008), pp. 1-4, IEEE Press, 2008.

5. Biere, A., Heule, M., van Maaren, H., Walsh, T. Handbook of Satisfiability. IOS Press,

2009.

6. Bjork, M. Successful SAT Encoding Techniques. Journal on Satisfiability, Boolean

Modeling and Computation, Addendum, IOS Press, 2009.

7. Dechter, R. Constraint Processing. Morgan Kaufmann Publishers, 2003.

8. Eén, N., Sörensson, N. An Extensible SAT-solver. Proceedings of Theory and Applica-

tions of Satisfiability Testing (SAT 2003), pp. 502-518, LNCS 2919, Springer, 2004.

9. Erdem, E., Kisa, D. G., Oztok, U., Schüller, P. Experimental Evaluation of Multi-

Agent Pathfinding Problems using Answer Set Programming. Proceedings of the 20th

International Workshop on Knowledge Representation and Automated Reasoning

(RCRA 2013), AI*IA, 2013.

10. Gent, I. P., Walsh, T. The SAT Phase Transition. Proceedings of the 11th European

Conference on Artificial Intelligence (ECAI 1994), pp. 105–109, John Wiley and

Sons, 1994.

11. Huang, R., Chen, Y., Zhang, W. A Novel Transition Based Encoding Scheme for

Planning as Satisfiability. Proceedings AAAI 2010, AAAI Press, 2010.

12. Kautz, H., Selman, B. Unifying SAT-based and Graph-based Planning. Proceedings of

the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp.

318-325, Morgan Kaufmann, 1999.

13. Kornhauser, D., Miller, G. L., Spirakis, P. G. Coordinating Pebble Motion on Graphs,

the Diameter of Permutation Groups, and Applications. Proceedings of the 25th An-

nual Symposium on Foundations of Computer Science (FOCS 1984), pp. 241-250,

IEEE Press, 1984.

14. Luna, R., Berkis, K., E. Push-and-Swap: Fast Cooperative Path-Finding with Com-

pleteness Guarantees. Proceedings of the 22nd International Joint Conference on Arti-

ficial Intelligence (IJCAI 2011), pp. 294-300, IJCAI/AAAI Press, 2011.

15. Ratner, D., Warmuth, M. K. Finding a Shortest Solution for the N × N Extension of

the 15-PUZZLE Is Intractable. Proceedings of AAAI 1986, pp. 168-172, Morgan

Kaufmann, 1986.

16. Régin, J-C. A Filtering Algorithm for Constraints of Difference in CSPs. Proceedings

of the 12th National Conference on Artificial In-telligence (AAAI 1994), pp. 362-367,

AAAI Press, 1994.

17. Rintanen, J., Hel anko, K., and Niemel a, I. Planning as satisfiability: parallel plans

and algorithms for plan search. Artificial Intelligence, Volume 170 (12-13), pp. 1031–

1080, Elsevier, 2006

18. Ryan, M. R. K. Exploiting Subgraph Structure in Multi-Robot Path Planning. Journal

of Artificial Intelligence Research (JAIR), Volume 31, pp. 497-542, AAA Press, 2008.

19. Sharon, G., Stern, R., Goldenberg, M., Felner, A. The increasing cost tree search for

optimal multi-agent pathfinding. Artificial Intelligence, Volume 195, pp. 470-495,

Elsevier, 2013.

20. Silver, D. Cooperative Pathfinding. Proceedings of the 1st Artificial Intelligence and

Interactive Digital Entertainment Conference (AIIDE 2005), pp. 117-122, AAAI

Press, 2005.

21. Standley, T. S., Korf, R. E. Complete Algorithms for Cooperative Pathfinding Prob-

lems. Proceedings of the 22nd International Joint Conference on Artificial Intelligence

(IJCAI 2011), 668-673, IJCAI/AAAI Press, 2011.

18 Pavel Surynek

22. Surynek, P. Towards Optimal Cooperative Path Planning in Hard Setups through

Satisfiability Solving. Proceedings of 12th Pacific Rim International Conference on

Artificial Intelligence (PRICAI 2012), LNCS 7458, pp. 564-576, Springer, 2012.

23. Surynek, P. On Propositional Encodings of Cooperative Path-Finding. Proceedings of

the 24th International Conference on Tools with Artificial Intelligence (ICTAI 2012),

pp. 524-531, IEEE Press, 2012.

24. Wang, K. C., Botea, A. MAPP: a Scalable Multi-Agent Path Planning Algorithm with

Tractability and Completeness Guarantees. JAIR, Volume 42, pp. 55-90, AAAI Press,

2011.

25. de Wilde, B., ter Mors, A., Witteveen, C. Push and rotate: cooperative multi-agent

path planning. Proceedings of International conference on Autonomous Agents and

Multi-Agent Systems (AAMAS 2013), pp. 87-94, IFAAMAS, 2013.

