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Abstract. This paper addresses makespan optimal solving of cooperative path-

finding problem (CPF) by translating it to propositional satisfiability (SAT). The 

task in CPF is to relocate a set of agents to given goal locations so that they do not 

collide with each other. Recent findings indicate that a simple direct encoding 

outperforms the more elaborate encodings based on binary encodings of multi-

value state variables. The direct encoding is further improved by a hierarchical 

build-up that uses auxiliary variables to reduce its size in this work. The conducted 

experimental evaluation shown that the simple design of the encoding together 

with new improvements which reduced its size significantly are key enablers for 

faster solving of the encoded CPFs than with existing encodings. It has been also 

shown that the SAT based methods dominates over A* based methods in envi-

ronments with high occupancy by agents. 

Keywords: cooperative path-finding (CPF), propositional satisfiability (SAT), 

SAT encodings, A* 

1 Introduction, Motivation, and Related Works1 

The problem of cooperative path-finding (CPF) [13, 18, 20, 24] represents an ab-

straction for variety of problems where the task is to relocate some physical 

agents, robots, or other objects so that they do not collide with each other. Each 

agent is given its initial position in a certain environment and its task is to reach a 
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given goal position. It is assumed that all the agents are the same (same size and 

velocity) and are controlled centrally. 

The major difficulty in CPF comes from possible interactions among relocated 

agents, which is imposed by the requirement that they must not collide with each 

other. The more agents appear in the instance the more complex interaction arises 

and consequently the instance is harder to solve. 

The commonly adopted way to abstract the CPF problem is to model the envi-

ronment in which agents are moving as an undirected graph where agents are 

placed in its vertices. Edges in the graph model the topology of the original envi-

ronment – that is, an edge connects two neighboring places so that one can be vis-

ited immediately from the other. Physical constraints are captured by the require-

ment that at most one agent is located in each vertex together with constraints that 

determine how agents can move. An agent can move into a neighboring vertex 

provided it is unoccupied at the time of commencing the move. No two agents can 

enter the same target vertex simultaneously. These constraints together ensure that 

at most one agent is placed in each vertex in the next time step. Other conditions 

on how motions of agents are enabled are possible but the mentioned one is one of 

the most frequently used. 

The notion of makespan in this abstraction corresponds to the number of time 

steps needed to relocate all the agents (equivalently the makespan is the maximum 

number of moves needed by an agent to relocate itself to its goal location over the 

set of all the agents). 

One of the very successful approaches to solve CPF optimally is to translate 

makespan bounded CPF instance to propositional formula and use modern SAT 

solvers to solve the resulting formula. The advantage of this approach is that all 

the techniques implemented in SAT solvers such as learning and constraint propa-

gation are employed almost for free in CPF solving. The key research question 

here is how to encode CPF instance as propositional formula so that the resulting 

formula can be solved fast. 

Lessons learned from the design of various encodings of CPF as propositional 

are utilized in the design of a new encoding, which is surprisingly simple and effi-

cient. It has been found that there is a correlation between the size of the formula 

and the speed of its solving in the domain dependent case of CPF (this is correla-

tion however does not appear generally as there exist small formulae that are hard 

to solve). At the same time formulae modeling CPF that support constraint propa-

gation (unit propagation) were found to be solvable more easily. Constraint prop-

agation can be enabled by short clauses when the formula is expressed in conjunc-

tive normal form. Combining these aspects in the design of CPF encodings as 

SAT is an interesting challenge. 

Some propositional encodings of CPF will be discussed. Two most prominent 

encodings are based on the all-different propagator known from constraint pro-

gramming and on matchings in bipartite graphs, which is based on the finding that 

a valid movement of agents corresponds exactly to the series of matchings in the 

time-expanded graph of the CPF instance. All the suggested encodings are howev-
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er still far from the theoretical lower bound on the size of the formula, which of-

fers room for further research. 

There are many motivations for introducing CPF. Classical multi-robot reloca-

tion problems where agents are represented by actual mobile robots can be viewed 

as CPF. Planning movements of units in real-time strategy games is another appli-

cation [24]. Even data relocation in a network can be regarded a CPF (agent is rep-

resented by a data packet and spatial occupancy turns into storage occupancy). 

The indifference between agents in terms of their properties allows abstraction 

where the environment is modeled as an undirected graph and agents as items 

placed in vertices of this graph [20, 24]. At most one agent is placed in each ver-

tex. The time is discrete and the move is possible only into a currently unoccupied 

vertex while no other agent is allowed to enter the same target vertex. 

Contemporary approaches to solving CPF include polynomial time sub-optimal 

algorithms [13, 25] as well as methods that generate optimal solutions in certain 

sense [21, 22]. This work focuses on generating makespan optimal solutions to 

CPF where the makespan is the maximum of arrive times over all the agents. Re-

lated makespan optimal methods for CPF currently include methods employing 

translation of CPF to propositional satisfiability (SAT) [22, 23], methods based on 

conflict resolution between paths for individual agents [19], and classical A* 

based methods equipped with powerful heuristics [21]. The first mentioned ap-

proach excels in relatively small environments with high density of agents while 

latter two approaches are better in large environments with few agents. 

 This work tries to contribute to SAT-based methods. It is inspired by our recent 

(unpublished) findings that quite complex and elaborate propositional encodings 

called INVERSE and ALL-DIFFERENT proposed in [22] and [23] can be easily out-

performed by an encoding of a straightforward design. The direct encoding design 

is further simplified here by introducing auxiliary variables. The introduces sim-

plifications reduced the size of the encoding significantly which in turn enabled 

faster solving of CPFs encoded using the proposed encoding. It is also shown how 

the SAT-based solving stands in comparison with A* based methods. 

The organization of the paper is as follows. The CPF problem is introduced 

formally first. Then a theoretical study of sizes of CPF encodings is provided. A 

novel propositional encoding of CPF is described thereafter and its theoretical 

properties are summarized. Experimental evaluation in which existing encodings 

and the A* based method are compared with the novel encoding constitute the last 

part. 

2 Cooperative Path Planning Formally 

An arbitrary undirected graph can be used to model the environment where 

agents are moving. Let         be such a graph where                is a 

finite set of vertices and     
 
  is a set of edges. The placement of agents in the 
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environment is modeled by assigning them vertices of the graph. Let   
             be a finite set of agents. Then, an arrangement of agents in vertices 

of graph   will be fully described by a location function      ; the interpreta-

tion is that an agent     is located in a vertex     . At most one agent can be 

located in each vertex; that is   is uniquely invertible. A generalized inverse of   

denoted as             will provide us an agent located in a given vertex or 

  if the vertex is empty. 

Definition 1 (COOPERATIVE PATH FINDING). An instance of cooperative path-

finding problem is a quadruple                  
   where location func-

tions    and    define the initial and the goal arrangement of a set of agents   in 

  respectively. □ 

 The dynamicity of the model supposes a discrete time divided into time steps. 

An arrangement    at the  -th time step can be transformed by a transition action 

which instantaneously moves agents in the non-colliding way to form a new ar-

rangement     . The resulting arrangement      must satisfy the following validi-

ty conditions: 

(i)        either               or                   holds 

   (agents move along edges or not move at all), 

(ii)                           
              

   (agents move to vacant vertices only), and 

(iii)                                

   (no two agents enter the same target/unique invertibility of 

   resulting arrangement). 

The task in cooperative path finding is to transform    using above valid transi-

tions to   . An illustration of CPF and its solution is depicted in Figure 1. 

 

Figure 1. Cooperative path-finding (CPF) on a 4-connected grid. The task is to relocate 

three agents   ,   , and    to their goal vertices so that they do not collide with each other. 

A solution    of makespan 4 is shown. 

Definition 2 (SOLUTION, MAKESPAN). A solution of a makespan   to a coopera-

tive path finding instance            
   is a sequence of arrangements 

                   where       and      is a result of valid transfor-

mation of    for every            . □ 
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 If it is a question whether there exists a solution of   of the makespan at most a 

given bound   we are speaking about a bounded CPF (bCPF). It is known that 

bCPF is   -complete and finding makespan optimal solution to CPF is   -hard 

[15]. 

3 Theoretical Analysis of SAT Encodings of CPF 

The goal is to build a propositional formula        for a given bCPF   and a 

makespan bound   so that        has a model (is satisfiable) if and only if   has a 

solution of makespan  . A sequence of arrangements of agents               

over the graph forming the solution should be readable from the model of       . 

The idea of time expansion graph [1, 12] is adopted to construct such formula. 

 If it is known how many propositional variables are needed to express sequence 

of consecutive arrangements of agents over the graph, then it can seen how far 

from these bounds the suggested encoding is. Following propositions summarize 

estimations of the number of necessary propositional variables considering various 

approaches to express the arrangements. The presented estimations assume that 

almost every arrangement is possible at any time step. 

 Also, encodings need to be considered as sparse representations. Otherwise it 

would be possible to count the total number of distinct sequences of arrangements 

and take binary logarithm of this number as the estimation. Such an encoding is 

however impractical as it is hard to decode. 

Proposition 1 (LOCATION-ESTIMATION).  Let   be a makespan bound. Then 

            propositional variables are sufficient to express consecutive ar-

rangements of agents up to the time step  . ■ 

Proof. A technique of expressing a multi-value state variable using vectors of 

propositional variables that encode individual values as binary numbers will be 

used. There are   possible states of an agent at every time – the agent can appear 

in any vertex of the input graph. To represent an  -state variable,         bits 

(propositional variables) are needed. Hence, we have             propositional 

variables in total to represent locations of all the agents (there are   agents) at eve-

ry time step. ■ 

Proposition 2 (INVERSE- ESTIMATION). Consecutive arrangements of agents up to 

the time step   can be expressed by  
 

 
                propositional varia-

bles. ■ 

Proof. Instead of expressing where each agent is located, the content of vertices 

will be recorded. The crucial observation is that at most       changes of agents 

can occur in a single vertex (an agent must leave the vertex after which another 

agent can enter the vertex – the change consumes   time-steps). Information what 

agent entered the vertex is again multi-value state variable with   states. Hence, 

        bits are needed to record it. Altogether,                 bits are needed 
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to record possible changes for all the agents. Additional   bits per vertex indicate 

time-steps at which the change in the vertex occurred.■ 

 The INVERSE encoding [22] partially use the idea presented in the proof. How-

ever, the content of vertices is recorded for all the time-steps (not only for half of 

them as here). An interesting way to represent arrangements of agents at all the 

time-steps is to record changes between consecutive arrangements while only the 

initial arrangement is recorded completely. 

Proposition 3 (NEIGHBORHOOD-ESTIMATION). Let                and let 

the initial arrangement    be expressible using     propositional variables, 

then consecutive arrangements of agents up to the time step   can be expressed by 

                  propositional variables. ■ 

Proof. The idea is to record what move has been taken by each agent. Assume that 

neighbors of each vertex in   have a fixed order, then the move of an agent can be 

encoded as an order number of the neighbor into which it moved. Assuming that 

the degree (the number of edges incident with the given vertex) of all the vertices 

in   is at most  , the move of an agent can be recorded by             bits (an 

extra state is needed to represent the no move action). Altogether,     
            bits are sufficient to record moves of all the agents at all the time 

steps. ■ 

 The estimation gives good results in 

sparse graphs since each vertex has 

few neighbors in such a case. This 

property is partially used in the 

INVERSE encoding again. However, the 

estimation may degenerate up to the 

location-based estimation if the graph 

is highly connected. 

 Note that up to now two of three op-

tions of how to regard the 3-

dimensional space of vertices, agents, 

and time-steps have been discussed. It 

remains to show an estimation in 

which we ask at what time-steps a giv-

en agent appears in given vertex. As a 

single agent may enter a vertex multi-

ple times, the simple scheme in which 

multi-value state variable representing 

the third dimension is indexed by re-

maining two dimensions can no longer 

be used. Little of the structural proper-

ties of the CPF problem can be used in 

the estimation. 
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Figure 2. Illustration of the minimum number of 

time steps before returning to the same vertex. 

The next visit to the vertex can be separated by at 

least 4 time steps. 
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Proposition 4 (TIME-BASED ESTIMATION). Consecutive arrangements of agents in 

an optimal solution up to the time step   can be expressed by  
 

 
              

propositional variables. ■ 

Proof. The most important observation is that at least 4 time steps are allowed to 

elapse before an agent returns into a given vertex in a makespan optimal solution. 

Step 1 is for leaving the vertex, steps 2, 3 are for entering and leaving by the other 

agent, and step 4 is for returning to the vertex – the situation is illustrated in Fig-

ure 2. If the agent returns earlier, then the movement can be eliminated from the 

solution without compromising its optimality or correctness. Hence, a single agent 

can visit the given vertex at most       times. Expressing the time step, at which 

the visit occurs, needs         bits. All these information are recorded for every 

vertex and every agent, which in total gives                   bits. ■ 

 Other measures and characteristics than the size of the encoding are difficult to 

be captured as the dependence of behavior of SAT solvers on the structure of the 

formula is too complex. 

4 A Simplification of Simple SAT Encoding 

Let us recall a so called DIRECT encoding of bCPF                     
with makespan bound   where                and                with 

     . The DIRECT encoding is part of our unpublished work. As discussed in 

the previous section, arrangements of agents over the graphs at all the time steps 

from   to   will be represented. The encoding will use a propositional variable for 

each vertex, agent, and a time step which will be assigned     , if and only if the 

given agent appears in a given vertex at given time step. 

 Unlike representations of arrangements using binary encoding of multi-value 

state variable, this encoding has a propositional variable for every state. Although 

more propositional variables are needed to encode arrangements, we expect that 

the benefit of better Boolean constraint propagation outweighs the larger size of 

the encoding. The suggested encoding will be called DIRECT and is formally intro-

duced in the following definition. 

Definition 3 (DIRECT ENCODING). A DIRECT encoding of a given bCPF      
               with makespan bound   consists of propositional variables     

  

for every           ,          ,          . The interpretation is that 

    
  is assigned      if and only if    appears in    at time step  . The following 

constraints modeling validity conditions on consecutive arrangements are intro-

duced: 

 (a)       
       

  
            for every            , 

        
  

          and             

  (an agent is placed in exactly one vertex at each time step) 

(4) 
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 (b)       
       

  
           for every            , 

            and             
  (at most one agent is placed in each vertex at each time step) 

(c)     
      

         
   

             for every              ,  

       
        

       
 

                        , and             

  (an agent relocates to some of its neighbors or makes no move) 

(d)     
      

          
  

          
    

    

    for every              ,               
     such that           and             

  (target vertex of a move must be vacant and the source 

   vertex will be vacant after the move is performed). □ 

Observe that all the constraints are now written as clauses (disjunctions of liter-

als, where literal is a variable or its negation) or can be easily rewritten as clauses. 

Thus, a conjunctive normal form (CNF) [5] can be easily obtained from Definition 

3. The resulting formula modeling existence of solution of given bCPF   with 

makespan bound   in the CNF form will be denoted as          . 

The DIRECT encoding has a significant drawback, which is its size. Particularly 

(d) constraints produce too many clauses – (d) constraints stand for             
ternary clauses. Using auxiliary variables, the number can be reduced to        . 
 The DIRECT encoding can be improved in another way as well. Constraints (a) 

can be eliminated without compromising equisatisfiability of bCPF   with   and 

         . Omitting (a) constraints may cause that a single agent appears multiple 

times in the graph. Nevertheless, populating a single only makes it harder to find a 

solution thus does not matter if occurs. The same can be done with the second im-

plication in (c) constraints. Again, it does not compromise equisatisfiability if it is 

omitted. The absence of constraints may cause appearance of an agent from noth-

ing at a certain time step. Nevertheless, the first implication propagates all the 

agents towards the last time steps. Hence, extra-appeared agents just only make it 

harder to find a solution. Note that omitted constraints are not entailed by the rest 

at the logical level. The equisatisfiability after omitting mentioned constraints 

need to be seen at the abstract level of the solution existence in bCPF. The result-

ing encoding will be called SIMPLIFIED and is formally introduced in the following 

definition. 

Definition 4 (SIMPLIFIED ENCODING). A SIMPLIFIED encoding of a given bCPF 

                    with makespan bound   consists of propositional vari-

ables     
  and   

  (auxiliary for macros) for every          ,          , 

         . The interpretation is that     
  is assigned      if and only if    

appears in    at time step   and   
  is      if and only if    is vacant at time step 

 . The following constraints modeling validity conditions on consecutive arrange-

ments are introduced: 

(5) 

(6) 

(7) 
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 (A)       
       

  
            for every            , 

             and             
   (at most one agent is placed in each vertex at each time step) 

 (B)     
      

         
   

             for every              ,  

                        , and             
  (an agent relocates to some of its neighbors or makes no move) 

(C)     
      

      
    

     

     for every              ,               
     such that           and             

 (target vertex of a move must be vacant and the source vertex 

  will be vacant after the move is performed) 

(D)   
        

  
     for every            ,             

 (empty vertex macro connected through auxiliary variable). □ 

Again, all the constraints of the SIMPLIFIED encoding can be written as clauses. 

Let the resulting formula for bCPF   with makespan bound   be denoted 

         . 

Properties of the DIRECT and SIMPLIFIED Encodings 

Let us summarize basic properties of the proposed SIMPLIFIED encoding. The fact 

that the encoding does what is what designed for is summarized in the following 

proposition. Further, a discussion is devoted to the size of the encoding. 

Proposition 5 (ENCODING SOUNDNESS). Let               be a bCPF and   a 

makespan bound, then           as well as           is satisfiable if and only if 

  has a solution of makespan  . Moreover, the solution of   can be reconstructed 

from the model of           or from          . ■ 

  The proof is omitted for space limitations. Nevertheless, note that the second 

part of the proposition is important to be stated as it is possible to establish equi-

satisfiability between a propositional formula and   even for trivial cases of the 

formula from which a solution of   cannot be reconstructed. 

Proposition 6 (ENCODING SIZE). Let                    , where with a 

bound   be an instance of bCPF. The DIRECT encoding           requires 

              

        
   
 

           
   
 

                         

propositional variables and  clauses respectively. 

 The SIMPLIFIED encoding           requires 

                            

(8) 

(10) 

(11) 

(9) 

(12) 

(13) 
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propositional variables and clauses respectively. ■ 

Proof. Let us investigate the DIRECT encoding first. The number of propositional 

variables can immediately seen from the scope of indexes. The number of clauses 

appearing in (4), (5), and (6) can be calculated as a product of the size of index 

scopes. Clauses in (7) will develop into       ternary clauses. An analogical cal-

culation can be done for the SIMPLIFIED encoding. ■ 

 Note that most of clauses in the DIRECT encoding are binary or ternary which 

supports good performance of Boolean constraint propagation (unit propagation 

[5]). The same holds for the SIMPLIFIED encoding. 

 Asymptotically, the number of variables is              and the number of 

clauses is               in the DIRECT encoding. If this is compared with the 

INVERSE encoding [22] where the number of variables is reported to be     
              and the number of clauses                   and with the ALL-

DIFFERENT encoding [23] where the number of variables is                   

and the number of clauses is                  , then the size of the DIRECT en-

coding is larger approximately by the factor of   
   

       
  or   

   

       
  respec-

tively (note that     is dominated by    ). However, the size of clauses is much 

smaller in case of DIRECT encoding. 

 The asymptotic number of variables is              and the number of claus-

es is                            in the SIMPLIFIED encoding. Although factor 

                  in the number of clauses may be up to     , it is smaller in 

typical CPF instances. Hence in theory,           will be smaller than           

typically. 

5 SAT-Based Optimal CPF Solving 

The suggested SIMPLIFIED encoding is intended for makespan optimal CPF solv-

ing. As it is possible to solve bCPF with given makespan bound   by translating it 

to SAT, an optimal makespan and corresponding solution can be obtained using 

multiple queries to a SAT solver with encoded bCPF. Various strategies exist for 

getting the optimal makespan. The simplest one and very efficient one at the same 

time is to try sequentially makespan bounds         until   equal to the opti-

mal makespan is encountered. This strategy will be further referred as sequential 

increasing. The sequential increasing strategy is also used in domain independent 

planners such as SATPLAN [12], SASE [11] and others. Pseudo-code of the strategy 

is listed as Algorithm 1. 

 The focus here is on SAT encoding while querying strategies are out of scope of 

the paper; though let us mention that in depth study of querying strategies is given 

in [17]. There is a great potential in querying strategies as they can bring speedup 
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of planning process in orders of magnitude, especially when combined with paral-

lel processing. 

 Any complete SAT solver [5] may be used as the external module of the sug-

gested optimal CPF solving algorithm. Notice however that a CPF solver follow-

ing the framework of Algorithm 1 is incomplete. If the given CPF instance   has 

no solution then the algorithm runs infinitely. The treatment of incompleteness is 

easy. The solvability of   can be checked by some of sub-optimal polynomial time 

solving algorithms such as that suggested in [13] or by PUSH-AND-ROTATE [25] 

(which corrects the previous algorithm [14]) before optimal SAT solving is start-

ed. The speed of the solving process is not compromised by solving the instance 

sub-optimally first since the runtime of solving encoded bCPFs by a SAT solver 

significantly dominates in the overall runtime. 

  
Algorithm 1. SAT based optimal CPF solving. 
 input:  a CPF instance   
 output:  a pair consisting of the optimal makespan 
    and corresponding optimal solution 

 

function Find-Optimal-Solution-Sequentially             
   : pair 

1:      
2   loop 

3:          Encode-CPF-as-SAT       
4:   if Solve-SAT          then 
5:       Extract-Solution-from-Valuation         
6:    return       
7:         
8:  return       

 

6 Experimental Evaluation 

The proposed SIMPLIFIED encoding has been competitively evaluated with respect 

to other existing two propositional encodings of bCPF called INVERSE [22] and 

ALL-DIFFERENT [23] and with respect to the unpublished DIRECT encoding. Vari-

ous static characteristics of encodings such as its size and runtime behavior, when 

the encoding is built-in to the SAT-based optimal CPF solving, were compared. 

The SAT-based solving with all the encodings has been compared with another 

state-of-the-art method developed around A* algorithm called OD+ID [21]. The 

comparison with OD+ID interestingly extends results shown in [22, 23] where 

SAT-based CPF solving was compared with domain independent SAT-based 

planners SASE [11] and SATPLAN [12] only. 

 The experimental setup employs random CPF instances over 4-connected grids 

with randomly placed obstacles. This is a standard benchmark for evaluating CPF 

solving methods suggested in [20]. Although it is not very general, it provides 

easy comparison with results in existing literature. Initial locations and goals of 

agents were distributed randomly over the grid. Grids of sizes 6⨯6, 8⨯8, and 
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12⨯12 were used in experiments;     were occupied by obstacles. All CPF the 

instances in the evaluation were solvable. 

 All the encodings were further augmented with reachability heuristic as pro-

posed in [23]. That is, locations that are unreachable from the initial position or 

from the goal in the given number of time steps are forbidden and associated con-

straints (clauses) are omitted. This heuristic significantly reduces the size of all the 

encodings and speeds up the solving process.  

 Glucose version 3.0 [1] SAT solver has been used in the experimental eval-

uation. According to the 2013 SAT Competition [3] Glucose is one of few top 

SAT solvers in terms of performance in solving hard combinatorial problems. As 

CPF can be regarded as a combinatorial problem, this choice of SAT solver is jus-

tified.  

 Let us also briefly summarize properties of all the encodings and A* based 

method used in competitive comparison. The IVERSE encoding is build around the 

inverse location function    , which is used to represent arrangements of agents. 

The primary motivation is to keep the encoding as small as possible, hence it uses 

multi-value state variables encoded by bit vectors, which eliminates additional 

constraints. However, no attention is paid to Boolean constraint propagation. Rela-

tively long clauses appear in the encoding. 

 The ALL-DIFFERENT encoding on the other hand uses standard location function 

  to represent arrangements of agents. Again, locations are modeled as bit-

vectors. The main idea is to express the requirement that each agent must occupy a 

unique location by the all-different relation over bit vectors [4]. Note that no prop-

agator based on network flows, as it is known in constraint programming [16], is 

used here. Boolean constraint propagation is considered at the level of the all-

different relation, which is designed in that sense [4]. However, the encoding of 

the all-different relation grows as quadratically which makes the encoding compli-

cated for higher number of agents. 

 OD+ID is a search method. It is always trying to separate agents into groups for 

which shortest paths to their goals can be found independently on other agents. 

The best case occurs if each agent is in its own group. That is, the cooperative so-

lution consists of shortest paths between initial positions and goals of agents. The 

worst case is on the other hand if all the agents are considered as a single group. If 

agents become too interdependent in the densely occupied environment, the per-

formance of the method considerably degrades. 

 All the source codes used to conduct experiments are posted on website to al-

low full reproducibility of presented results: http://ktiml.mff.cuni.cz/~surynek/ re-

search/cjs2014. 

Static Evaluation of Encodings 

There are several static characteristics of propositional formulae in CNF that are 

correlated with performance of their solving by most SAT solvers. Obviously, the 

size of the formula in terms of the number of variables and the number of clauses 

determines the time needed to find a solution significantly. Typically the larger the 

http://ktiml.mff.cuni.cz/~surynek/%20research/
http://ktiml.mff.cuni.cz/~surynek/%20research/


Lessons Learned from the Effort to Solve Cooperative Path-Finding Optimally      13 

formula is the longer runtime of its solving should be expected though the solving 

runtime is also affected by other factors (easily solvable large formula is possible). 

 How the formula is constrained determines the difficulty of its solving as well. 

It is known that in random 3-SAT case (clauses has exactly three literals) the most 

difficult formulae have the ratio of the number of clauses to the number of varia-

bles around      [5] which is called a phase transition. Formulae that are over-

constrained (tend to be unsatisfiable) or under-constrained (tend to be satisfiable), 

that is, have the clause to variable ratio far from the phase transition can be solved 

easily in most cases. Hence, encodings producing such formulae are preferred. 

Another important characteristic is the length of clauses while short clauses are 

preferred. This is implied by the Boolean constraint propagation represented by 

the unit propagation [5], which always assigns      to the last unassigned literal 

in a clause during search. Short clauses promote frequent use of unit propagation, 

which significantly speeds up the process of solving the formula [6]. 

Table 1. Static characteristics of encodings over 8⨯8 grid. INVERSE, ALL-DIFFERENT, 
DIRECT, SIMPLIFIED and encodings – all with compiled distance heuristics  [23] – are com-
pared. bCPF instances are generated over the 4-connected grid of size 8⨯8 with     of 
cells occupied by obstacles. Makespan bound   is always 16. The number of variables and 
clauses, the ratio of the number of clauses and the number of variables, and the average 
clause length are listed for different sizes of the of agents  . The DIRECT encoding is big-
gest in terms of the length of formula but has smallest clauses in average and is most con-
strained out of all the encodings, which suggests good behavior in Boolean constraint prop-
agation (unit propagation) and pushes the formula far from the phase transition. The 
SIMPLIFIED encoding inherited a promising clause to variable ratio and short clauses from 
the DIRECT encoding. 

Grid 8⨯8 
INVERSE ALL-DIFFERENT DIRECT SIMPLIFIED 

|Agents| 

1 
#Variables 

#Clauses 
Ratio 

Length 
8 358.7 

31 327.9 
3.748 
2.616 

1 489.3 
7 930.4 

5.325 
3.057 

814.4 
23 241.9 

28.539 
2.149 

1 628.8 
3 384.6 

2.078 
2.550 

4 
10 019.5 
55 437.0 

5.532 
2.641 

7 834.5 
34 781.9 

4.440 
3.103 

3 257.6 
115 934.3 

35.589 
2.272 

4 072.0 
17 997.8 

4.420 
2.374 

16 
11 680.3 
91 344.5 

7.820 
3.127 

67 088.3 
216 745.4 

3.231 
3.147 

13 030.4 
840 540.6 

64.506 
2.505 

13 844.8 
150 259.2 

10.853 
2.180 

32 
12 510.7 

122 170.3 
9.765 
3.733 

230 753.0 
646 616.2 

2.802 
3.168 

26 060.8 
2 738 584.7 

105.084 
2.621 

26 875.2 
510 672.1 

19.002 
2.111 

  Note that preferences in the mentioned characteristics are sometimes contra-

dictory. We want the formula to be small, hence the number of clauses should be 

small, but over-constraining by many clauses is desirable at the same time. There-

fore, discussed preferences should not be considered literally – also because the 

considered behavior of SAT solvers appears in most cases but does not appear ab-

solutely. They are rather a simple guidance that was kept in mind when an encod-

ing is designed. 

  Static characteristics of the SIMPLIFIED encoding are compared with other three 

propositional encodings – INVERSE, ALL-DIFFERENT, and DIRECT – in Table 1.  A 

4-connected grid of size 8⨯8 various numbers of agents is shown. The winner ac-

cording to discussed preferences in each characteristic is shown in bold (results 
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over 6⨯6 and 12⨯12 indicate same conclusions and thus are omitted for space 

limitations). 

 It can be observed that the smallest encoding in terms of the number of varia-

bles and clauses is the INVERSE one while the biggest one is the DIRECT encoding 

with ALL-DIFFERENT and SIMPLIFIED encodings standing in the middle. This as-

pect seems to be disadvantageous for the proposed DIRECT encoding. However in 

terms of the clause to variable ratio and the size of clauses, the DIRECT encoding 

seems to be the best followed by the SIMPLIFIED one as they have highest number 

of shortest clauses. Whether these static advantages prevail over disadvantages of 

encodings, must be evaluated in runtime experiments. 

Runtime Evaluation of Encodings 

The speed of SAT-based optimal CPF solving with the three discussed encodings 

has been evaluated. Again, 4-connected grids of various sizes were used in exper-

iments. The runtime2 needed for finding an optimal solution has been measured 

for the number of agents ranging from 1 up to the number for which at least one 

method solves all the instances (the increasing number of agents makes the CPF 

instance more difficult). The timeout of     seconds has been used. For each 

number of agents,    random instances of bCPF have been generated and solved. 

All the testing instances were solvable. The average runtime and makespan is re-

ported. 

 Evaluation of SAT-based CPF solving would be incomplete if it is not com-

pared with other state-of-the-art solving methods. Therefore A*-based method 

OD+ID [17] is included into competitive comparison.  

 Runtime results are shown in Figure 3. Also average optimal makespans are 

shown for the sake of completeness. Results for the 8⨯8 grid indicate that SAT-

based solving with the SIMPLIFIED encoding is the best option if the occupancy of 

the graph with agents is non-trivial, that is     . Almost identical results can be 

observed in case of 6⨯6 and 12⨯12 grids. 

 The DIRECT encodings follows the SIMPLIFIED one in term of solving speed. It 

outperforms remaining two encodings INVERSE and ALL-DIFFERENT if the occu-

pancy of the graph with agents exceeds approximately    . The closest competi-

tor to presented encodings seems to the ALL-DIFFERENT encoding which is a bet-

ter option for less occupied graphs. 

 In very sparsely occupied graphs, OD+ID method is the best as lot of independ-

ence among agents can be found. However, OD+ID degrades dramatically if there 

is higher concentration of agents in the graph since agents become more interde-

pendent and independence heuristics no longer work. 

 The INVERSE encoding was always the worst option out of all the tested meth-

ods. We consider that the reason for its weak performance is that relatively long 

clauses appear in it. On the other hand, short clauses of the DIRECT encoding and 

                                                           
2 All the runtime measurements were done on an experimental server with the 4-core CPU 

Xeon 2.0GHz and 12GB RAM under Linux kernel 3.5.0-48. 
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their abundance promoting unit propagation are the main reasons for the good per-

formance of this encoding. We observed that solving of formulae of the DIRECT 

encoding by the SAT solver is relatively fast while large portion of the time is 

consumed by generating the formula (the formula is generated into file, which is 

subsequently read by the SAT solver). Hence, there is still room to increase the 

speed of SAT-based solving if the solving process is better engineered. 

 
 

Grid 8⨯8 
1 2 4 8 12 16 20 24 

|A| 

Makespan 6.4 6.1 8.1 10.5 9.8 11.0 11.9 12.7 

 

Figure 3. Runtime of SAT-based CPF solving – grid 8⨯8. Glucose 3.0 is used as an ex-

ternal solver in SAT-based solving. For each number of agents,    random instances were 

solved and the average runtime is reported. The SIMPLIFIED encoding can be solved the 

fastest for the occupancy with agents greater than    . The SIMPLIFIED and the DIRECT en-

coding are the only encodings for which all the instances have been solved in a given 

timeout of     seconds. Note that the DIRECT encoding becomes faster than the IVERSE and 

ALL-DIFFERENT encodings when the occupancy exceeds    . The average optimal 

makespan for selected numbers of agents is shown in the table in the bottom (again it is the 

average makespan out of makespans of    instances). Note that OD+ID is fastest for sparse-

ly populated graphs but its increases runtime quickly with higher number of agents. 

Discussion, Conclusions, and Future Works 

A new propositional encoding of the makespan bounded cooperative path-finding 

problem (bCPF) has been proposed. The idea of the work was to simplify further 

our unpublished encoding whose design was very simple with no elaborate tech-

nique behind. The next goal was to check how simple encodings stands with re-

spect to existing relatively elaborate encodings for the problem. The new encoding 

has been called SIMPLIFIED as it simplifies our previous encoding called DIRECT. 

 The SIMPLIFIED encoding has been used within the SAT-based framework for 

solving CPF (unbounded version) optimally. The comparison of SIMPLIFIED and 

DIRECT encodings with existing two encodings INVERSE [22] and ALL-DIFFERENT 

[23] as well as with A* search based method OD+ID [21] on random CPF instanc-
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es over 4-connected grids has been done and showed surprising results. The 

DIRECT encoding despite its relatively naive design performed better than the 

ALL-DIFFERENT encoding on instances with occupancy by agents      and al-

most always better than the INVERSE encoding. The SIMPLIFIED encoding was 

even better and it prevailed over all the other encodings in case with occupancy 

higher than approximately    . 

 Generally, the SAT-based approach turned out to be better whatever encoding 

has been used than the A* based OD+ID whenever occupancy with agents has 

been higher than trivial. This can be explained by the fact that OD+ID‘s heuristic 

cannot detect independence among agents in cases with high occupancy. Note also 

that this method can be regarded as all-in-one while in the SAT-based approach 

the SAT solver itself is an external module. It is quite unrealistic to implement 

equivalent number of propagation, learning, and heuristic techniques in the all-in-

one solution as they are in SAT solvers. Through an encoding of the problem in 

the SAT formalism, we can access all these elaborate techniques almost for free. 

We hope that lessons learned from the design of encodings for CPF can be applied 

in other areas as well. 

 It would be interesting to study models of CPF also in other formalisms than 

SAT. The promising candidate seems to be constraint satisfaction problem (CSP) 

[7] where global constraints can be used. Integer programming (IP) model are al-

so worth studying. Recently an attempt to model the problem in the answer set 

programming (ASP) formalism has been made [9]. Also, it seems that existing en-

codings are still far from theoretically smallest possible sizes. Hence, we see an 

opportunity in further reductions of the size of SAT encodings. 

 Another interesting question is if finding makespan sub-optimal solution can be 

modeled as SAT. It is known that sub-optimal methods such as [13, 25] generate 

solutions that have excessively long makespans. Their shortening is a difficult 

process as shown in [22]. The optional way may be to propose a SAT encoding 

that prefers sub-optimal solution of short makespans. 

 We are also investigating the possibility of automated generation of encodings. 

Our first examination of the problem of finding an encoding automatically indi-

cates that it belongs to   
  class. Hence, the encoding can be theoretically found by 

a QBF solver. The open question is if this process is practically feasible. 
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