
Lessons Learned from the Effort to Solve
Cooperative Path-Finding Optimally

Pavel Surynek

Faculty of Mathematics and Physics
Charles University in Prague

Czech Republic

 CJS 2014, Kitakyushu, Japan

Cooperative Path-Finding (CPF)

Pavel Surynek

 agents can move only
 each agent needs to relocate itself
 initial and goal location

 Physical limitations
 agents must not collide with each other
 must avoid obstacles

 Abstraction
 environment – undirected graph G=(V,E)

• vertices V – locations in the environment
• edges E – passable region between neighboring locations

 agents – items placed in vertices
• at most one agents per vertex
• at least one vertex empty to allow movements

A

B

abstraction

CJS 2014

CPF Formally

Pavel Surynek

 A quadruple (G, A, α0, α+), where
 G=(V,E) is an undirected graph
 A = {a1,a2,...,aμ}, where μ<|V| is a set of agents
 α0: A V is an initial arrangement of agents

• uniquely invertible function

 α+: A V is a goal arrangement of agents
• uniquely invertible function

 Time is discrete – time steps
 Moves/dynamicity

 depends on the model
 agent moves into unoccupied neighbor

• no other agent is entering the same target

 sometimes train-like movement is allowed
• only the leader needs to enter unoccupied vertex

1 2 3

all moves at once

CJS 2014

Solution to CPF

Pavel Surynek

 Solution of (G, A, α0, α+)
 sequence of arrangements of agents
 (i+1)-th arrangement obtained from i-th by legal moves
 the first arrangement determined by α0

 the last arrangement determined by α+
• all the agents in their goal locations

• The length of solution sequence = makespan
 optimal/sub-optimal makespan

v1

v2

v3

v5

v4

v8

v7
1

2

3

α0 α+

v6 v9

v1

v2

v3

v5

v4

v8

v7

2

3

v6 v9
1

 [v1, v4, v7, v8, v9, v9, v9]

 [v2, v2, v1, v4, v7, v8, v8]

 [v3, v3, v3, v2, v1, v4, v7]

makespan=7

1 2 3 4 5 6 7

Time step:

Solution of an instance of cooperative

path-finding on a graph with A={1,2,3}

CJS 2014

Motivation for CPF

Pavel Surynek

 Container rearrangement
(agent = container)

 Heavy traffic
(agent = automobile (in jam))

 Data transfer
(agent = data packet)

 Ship avoidance
(agent = ship)

CJS 2014

CPF as SAT

Pavel Surynek

 SAT = propositional satisfiability
 a formula φ over 0/1 (false/true) variables
 Is there a valuation under which φ evaluates to 1/true?

• NP-complete problem

 SAT solving and CPF
 powerful SAT solvers

• MiniSAT, clasp, glucose, glue-MiniSAT, crypto-MiniSAT, …
• intelligent search, learning, restarts, heuristics, …

 CPF  SAT
• all the advanced techniques accessed almost for free

 Translation
 given a CPF Σ=(G, A, α0, A+) and a makespan η
 construct a formula φ

• satisfiable iff Σ has a solution of makespan η

(x ∨¬y) ∧ (¬x ∨ y)
Satisfied for x = 1, y = 1

CJS 2014

INVERSE Encoding of CPF

Pavel Surynek

 How to encode a question if there is a solution of makespan η
 Encode arrangements of agents at steps 1,2…,η
 Step 1 … α0
 Step η … α+

 Integer variables modeling step i
 Av

i{0,1,2,…, μ}
• Av

i = j if agent aj is located in vertex v at time step i or
• Av

i = 0 if v is empty at time step i

 Tv
i {0,1,2,…, 2deg(v)}

• 0 < Tv
i ≤ deg(v) if an agent leaves v into

the (Tv
i)-th neighbor

• deg(v)≤ Tv
i ≤ 2deg(v) if an agents enters v from

the ((Tv
i)-deg(v))-th neighbor

• Tv
i = 0 if no action taken in v

 Don’t forget constraints – valid transitions between time-steps

a
v

u
deg(u)=4

deg(v)=4
1st

2nd

3rd

4th

1st

2nd

3rd

4th

Tv
i = 3

Tu
i = 5

CJS 2014

Xj,k
i

time

V

A

DIRECT Encoding of CPF

Pavel Surynek

 Use propositional variables directly instead of integer ones
 A = {a1, a2, …, aμ}

 a set of agents
 V={v1, v2, ..., vn}

 a set of vertices

 time steps 1,2…,η
 Xj,k

i {true, false}
• TRUE iff agent ak appears in vj at time step i

• allow to represent invalid states

 Constraints
 rule out invalid states
 enforce valid transitions between time steps

 many binary clauses
 at most one agent is placed in a vertex at each time step
 support unit propagation

CJS 2014

Size of Encodings

Pavel Surynek

 Integer variables
 replace with bit vectors
 for example Av

i{0,1,2,…, μ}
• replaced with log2(μ+1) propositional variables
• extra states are forbidden

  Compact representation
 smaller than in SAT-based domain-independent planners
 knowledge compilation – distance heuristic, mutex reasoning

CJS 2014

Grid 8⨯8
INVERSE ALL-DIFFERENT DIRECT SIMPLIFIED

|Agents|

1
#Variables

#Clauses
Ratio

Length

8 358.7
31 327.9

3.748
2.616

1 489.3
7 930.4

5.325
3.057

814.4
23 241.9

28.539
2.149

1 628.8
3 384.6

2.078
2.550

4
10 019.5
55 437.0

5.532
2.641

7 834.5
34 781.9

4.440
3.103

3 257.6
115 934.3

35.589
2.272

4 072.0
17 997.8

4.420
2.374

16
11 680.3
91 344.5

7.820
3.127

67 088.3
216 745.4

3.231
3.147

13 030.4
840 540.6

64.506
2.505

13 844.8
150 259.2

10.853
2.180

32
12 510.7

122 170.3
9.765
3.733

230 753.0
646 616.2

2.802
3.168

26 060.8
2 738 584.7

105.084
2.621

26 875.2
510 672.1

19.002
2.111

Knowledge Compilation

Pavel Surynek

 Heuristics directly built-in into the encoding
 distance heuristic

• locations unreachable in a given time are forbidden
• search space reduced

 mutex reasoning
• agents are treated pair-wise
• computationally difficult

r

The location of agent r is
allowed in steps < η-9 and > 2

p

q

Although locations of agents p and q
are allowed in steps < η-11 by
distance heuristics, they cannot
occur in steps >= η-20

CJS 2014

Runtime Evaluation

Pavel Surynek

 Experimental setup
 4-connected grids of size 6×6, 8×8, 12×12
 random initial and goal arrangement
 10% of cells - obstacles

• comparison with an A*-based ID+OD

|agents|

CJS 2014

0.001

0.01

0.1

1

10

100

1000

1 2 4 6 8 10 12 14 16 18 20 22 24

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Runtime | Grid 8⨯8 | 10% obstacles

INVERSE ALL-DIFFERENT

OD+ID DIRECT

SIMPLIFIED

Grid 8⨯8
1 2 4 8 12 16 20 24

|A|

Makespan 6.4 6.1 8.1 10.5 9.8 11.0 11.9 12.7

Conclusions and Observations

Pavel Surynek

 CPF as SAT
 Advantages

 search techniques
 advanced search techniques from SAT solvers accessed

 modularity
 exchangeable modules – SAT solver, encoding

 knowledge compilation
 Disadvantages

 energy extensive solutions
 agents move too much

 size of encoded instances
 large graphs
 many time steps

 Encoded integer variables (INVERSE) vs. propositional variables (DIRECT)
 INVERSE

 smaller size of encoding
 DIRECT

 more shorter clauses - supports unit propagation
 over constrained

CJS 2014

