
Lessons Learned from the Effort to Solve
Cooperative Path-Finding Optimally

Pavel Surynek

Faculty of Mathematics and Physics
Charles University in Prague

Czech Republic

 CJS 2014, Kitakyushu, Japan

Cooperative Path-Finding (CPF)

Pavel Surynek

 agents can move only
 each agent needs to relocate itself
 initial and goal location

 Physical limitations
 agents must not collide with each other
 must avoid obstacles

 Abstraction
 environment – undirected graph G=(V,E)

• vertices V – locations in the environment
• edges E – passable region between neighboring locations

 agents – items placed in vertices
• at most one agents per vertex
• at least one vertex empty to allow movements

A

B

abstraction

CJS 2014

CPF Formally

Pavel Surynek

 A quadruple (G, A, α0, α+), where
 G=(V,E) is an undirected graph
 A = {a1,a2,...,aμ}, where μ<|V| is a set of agents
 α0: A V is an initial arrangement of agents

• uniquely invertible function

 α+: A V is a goal arrangement of agents
• uniquely invertible function

 Time is discrete – time steps
 Moves/dynamicity

 depends on the model
 agent moves into unoccupied neighbor

• no other agent is entering the same target

 sometimes train-like movement is allowed
• only the leader needs to enter unoccupied vertex

1 2 3

all moves at once

CJS 2014

Solution to CPF

Pavel Surynek

 Solution of (G, A, α0, α+)
 sequence of arrangements of agents
 (i+1)-th arrangement obtained from i-th by legal moves
 the first arrangement determined by α0

 the last arrangement determined by α+
• all the agents in their goal locations

• The length of solution sequence = makespan
 optimal/sub-optimal makespan

v1

v2

v3

v5

v4

v8

v7
1

2

3

α0 α+

v6 v9

v1

v2

v3

v5

v4

v8

v7

2

3

v6 v9
1

 [v1, v4, v7, v8, v9, v9, v9]

 [v2, v2, v1, v4, v7, v8, v8]

 [v3, v3, v3, v2, v1, v4, v7]

makespan=7

1 2 3 4 5 6 7

Time step:

Solution of an instance of cooperative

path-finding on a graph with A={1,2,3}

CJS 2014

Motivation for CPF

Pavel Surynek

 Container rearrangement
(agent = container)

 Heavy traffic
(agent = automobile (in jam))

 Data transfer
(agent = data packet)

 Ship avoidance
(agent = ship)

CJS 2014

CPF as SAT

Pavel Surynek

 SAT = propositional satisfiability
 a formula φ over 0/1 (false/true) variables
 Is there a valuation under which φ evaluates to 1/true?

• NP-complete problem

 SAT solving and CPF
 powerful SAT solvers

• MiniSAT, clasp, glucose, glue-MiniSAT, crypto-MiniSAT, …
• intelligent search, learning, restarts, heuristics, …

 CPF SAT
• all the advanced techniques accessed almost for free

 Translation
 given a CPF Σ=(G, A, α0, A+) and a makespan η
 construct a formula φ

• satisfiable iff Σ has a solution of makespan η

(x ∨¬y) ∧ (¬x ∨ y)
Satisfied for x = 1, y = 1

CJS 2014

INVERSE Encoding of CPF

Pavel Surynek

 How to encode a question if there is a solution of makespan η
 Encode arrangements of agents at steps 1,2…,η
 Step 1 … α0
 Step η … α+

 Integer variables modeling step i
 Av

i{0,1,2,…, μ}
• Av

i = j if agent aj is located in vertex v at time step i or
• Av

i = 0 if v is empty at time step i

 Tv
i {0,1,2,…, 2deg(v)}

• 0 < Tv
i ≤ deg(v) if an agent leaves v into

the (Tv
i)-th neighbor

• deg(v)≤ Tv
i ≤ 2deg(v) if an agents enters v from

the ((Tv
i)-deg(v))-th neighbor

• Tv
i = 0 if no action taken in v

 Don’t forget constraints – valid transitions between time-steps

a
v

u
deg(u)=4

deg(v)=4
1st

2nd

3rd

4th

1st

2nd

3rd

4th

Tv
i = 3

Tu
i = 5

CJS 2014

Xj,k
i

time

V

A

DIRECT Encoding of CPF

Pavel Surynek

 Use propositional variables directly instead of integer ones
 A = {a1, a2, …, aμ}

 a set of agents
 V={v1, v2, ..., vn}

 a set of vertices

 time steps 1,2…,η
 Xj,k

i {true, false}
• TRUE iff agent ak appears in vj at time step i

• allow to represent invalid states

 Constraints
 rule out invalid states
 enforce valid transitions between time steps

 many binary clauses
 at most one agent is placed in a vertex at each time step
 support unit propagation

CJS 2014

Size of Encodings

Pavel Surynek

 Integer variables
 replace with bit vectors
 for example Av

i{0,1,2,…, μ}
• replaced with log2(μ+1) propositional variables
• extra states are forbidden

 Compact representation
 smaller than in SAT-based domain-independent planners
 knowledge compilation – distance heuristic, mutex reasoning

CJS 2014

Grid 8⨯8
INVERSE ALL-DIFFERENT DIRECT SIMPLIFIED

|Agents|

1
#Variables

#Clauses
Ratio

Length

8 358.7
31 327.9

3.748
2.616

1 489.3
7 930.4

5.325
3.057

814.4
23 241.9

28.539
2.149

1 628.8
3 384.6

2.078
2.550

4
10 019.5
55 437.0

5.532
2.641

7 834.5
34 781.9

4.440
3.103

3 257.6
115 934.3

35.589
2.272

4 072.0
17 997.8

4.420
2.374

16
11 680.3
91 344.5

7.820
3.127

67 088.3
216 745.4

3.231
3.147

13 030.4
840 540.6

64.506
2.505

13 844.8
150 259.2

10.853
2.180

32
12 510.7

122 170.3
9.765
3.733

230 753.0
646 616.2

2.802
3.168

26 060.8
2 738 584.7

105.084
2.621

26 875.2
510 672.1

19.002
2.111

Knowledge Compilation

Pavel Surynek

 Heuristics directly built-in into the encoding
 distance heuristic

• locations unreachable in a given time are forbidden
• search space reduced

 mutex reasoning
• agents are treated pair-wise
• computationally difficult

r

The location of agent r is
allowed in steps < η-9 and > 2

p

q

Although locations of agents p and q
are allowed in steps < η-11 by
distance heuristics, they cannot
occur in steps >= η-20

CJS 2014

Runtime Evaluation

Pavel Surynek

 Experimental setup
 4-connected grids of size 6×6, 8×8, 12×12
 random initial and goal arrangement
 10% of cells - obstacles

• comparison with an A*-based ID+OD

|agents|

CJS 2014

0.001

0.01

0.1

1

10

100

1000

1 2 4 6 8 10 12 14 16 18 20 22 24

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Runtime | Grid 8⨯8 | 10% obstacles

INVERSE ALL-DIFFERENT

OD+ID DIRECT

SIMPLIFIED

Grid 8⨯8
1 2 4 8 12 16 20 24

|A|

Makespan 6.4 6.1 8.1 10.5 9.8 11.0 11.9 12.7

Conclusions and Observations

Pavel Surynek

 CPF as SAT
 Advantages

 search techniques
 advanced search techniques from SAT solvers accessed

 modularity
 exchangeable modules – SAT solver, encoding

 knowledge compilation
 Disadvantages

 energy extensive solutions
 agents move too much

 size of encoded instances
 large graphs
 many time steps

 Encoded integer variables (INVERSE) vs. propositional variables (DIRECT)
 INVERSE

 smaller size of encoding
 DIRECT

 more shorter clauses - supports unit propagation
 over constrained

CJS 2014

