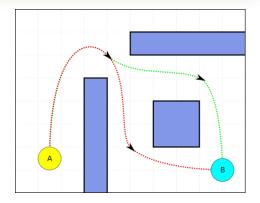
Lessons Learned from the Effort to Solve Cooperative Path-Finding Optimally

Pavel Surynek

Faculty of Mathematics and Physics Charles University in Prague Czech Republic

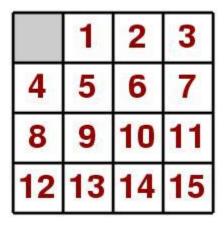
CJS 2014, Kitakyushu, Japan

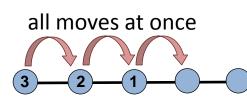
CJS 2014


abstraction

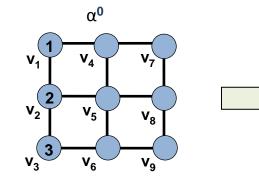
Cooperative Path-Finding (CPF)

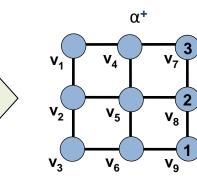
- agents can move only
 - each agent needs to relocate itself
 - initial and goal location
- Physical limitations
 - agents must not collide with each other
 - must avoid obstacles


Abstraction


- environment undirected graph G=(V,E)
 - vertices V locations in the environment
 - edges E passable region between neighboring locations
- agents items placed in vertices
 - at most one agents per vertex
 - at least one vertex empty to allow movements

CPF Formally


- A **quadruple** (G, A, α^0 , α^+), where
 - G=(V,E) is an undirected graph
 - A = { $a_1, a_2, ..., a_\mu$ }, where $\mu < |V|$ is a set of agents
 - α^0 : A \rightarrow V is an **initial arrangement of agents**
 - uniquely invertible function
 - α^+ : A \rightarrow V is a **goal arrangement of agents**
 - uniquely invertible function
- Time is discrete time steps
- Moves/dynamicity
 - depends on the model
 - agent moves into unoccupied neighbor
 - no other agent is entering the same target
 - sometimes train-like movement is allowed
 - only the leader needs to enter unoccupied vertex



Solution to CPF

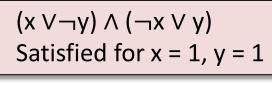
- **Solution** of (G, A, α^0 , α^+)
 - sequence of arrangements of agents
 - (i+1)-th arrangement obtained from i-th by legal moves
 - the first arrangement determined by α⁰
 - the last arrangement determined by α⁺
 - all the agents in their goal locations
- The length of solution sequence = makespan
 - optimal/sub-optimal makespan

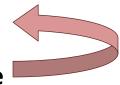
Solution of an instance of cooperative path-finding on a graph with $A=\{1,2,3\}$

makespan=7	[v ₁ , [v ₂ , [v ₃ ,	v ₂ ,	v ₁ ,	v ₄ ,	v ₇ ,	v ₈ ,	U -
Time step:	1	2	3	4	5	6	7

Motivation for CPF

- Container rearrangement (agent = container)
- Heavy traffic


 (agent = automobile (in jam))
- Data transfer
 (agent = data packet)
- Ship avoidance (agent = ship)



CPF as **SAT**

SAT = propositional satisfiability

- a formula φ over 0/1 (false/true) variables
- Is there a valuation under which φ evaluates to 1/true?
 - NP-complete problem
- SAT solving and CPF
 - powerful SAT solvers
 - MiniSAT, clasp, glucose, glue-MiniSAT, crypto-MiniSAT, ...
 - intelligent search, learning, restarts, heuristics, ...
 - CPF \Rightarrow SAT
 - all the advanced techniques accessed almost for free
- Translation
 - given a CPF Σ=(G, A, α^0 , A⁺) and a **makespan** η
 - construct a formula φ
 - satisfiable iff Σ has a solution of makespan η

INVERSE Encoding of CPF

- How to encode a question if there is a solution of makespan η
 - Encode arrangements of agents at steps 1,2...,η
 - **Step 1** ... α⁰
 - Step η ... α⁺
- Integer variables modeling step i
 - A_vⁱ ∈ {0,1,2,..., μ}
 - A_vⁱ = j if agent a_j is located in vertex v at time step i or
 - A_vⁱ = 0 if v is <u>empty</u> at time step i
 - $T_v^i \in \{0, 1, 2, ..., 2 deg(v)\}$
 - 0 < T_vⁱ ≤ deg(v) if an agent leaves v into the (T_vⁱ)-th neighbor
 - deg(v)≤ T_vⁱ ≤ 2deg(v) if an agents enters v from the ((T_vⁱ)-deg(v))-th neighbor
 - T_vⁱ = 0 if <u>no action</u> taken in v
- Don't forget constraints valid transitions between time-steps

T.,ⁱ = 5

2nd

deg(u)=4

2nd

deg(v)=4

∆th **∆**th

1 st

 $\frac{T_v^i = 3}{1^{st}}$

DIRECT Encoding of CPF

X_{j,k}ⁱ

Α

V

time

Use propositional variables <u>directly</u> instead of integer ones

- A = {a₁, a₂, ..., a_μ}
 - a set of agents
- V={v₁, v₂, ..., v_n}
 - a set of vertices
- time steps 1,2...,η
- X_{j,k}ⁱ ∈ {true, false}
 - TRUE iff agent a_k appears in v_i at time step *i*
 - allow to represent invalid states

Constraints

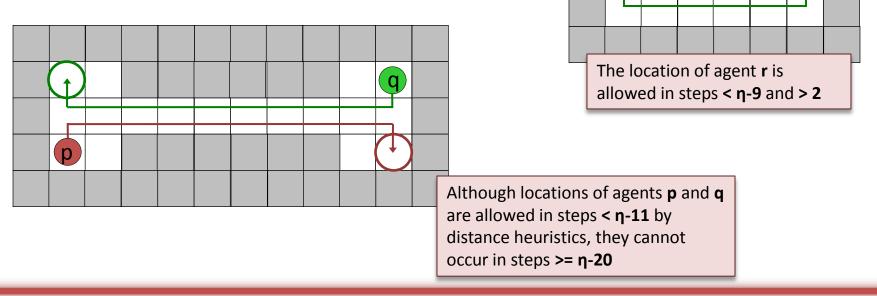
- rule out invalid states
- enforce valid transitions between time steps
 - many binary clauses
 - **at most one** agent is placed in a vertex at each time step
 - support unit propagation

Size of Encodings

Integer variables

- replace with bit vectors
- for example $A_v^i \in \{0, 1, 2, ..., \mu\}$
 - replaced with [log₂(μ+1)] propositional variables
 - extra states are forbidden

Compact representation

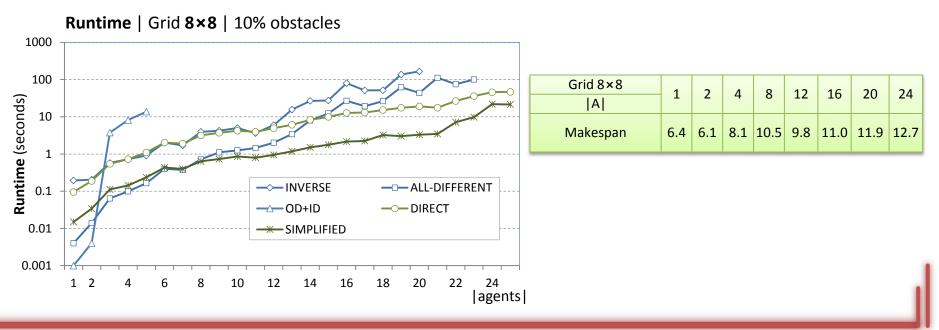

- smaller than in SAT-based domain-independent planners
- knowledge compilation distance heuristic, mutex reasoning

Grid 8×8 Agents		INVERSE		ALL-DIFFERENT		DIRECT		SIMPLIFIED		
1	#Variables #Clauses	Ratio Length	8 358.7 31 327.9	3.748 2.616	1 489.3 7 930.4	5.325 3.057	814.4 23 241.9	28.539 2.149	1 628.8 3 384.6	2.078 2.550
	4		10 019.5 55 437.0	5.532 2.641	7 834.5 34 781.9	4.440 3.103	3 257.6 115 934.3	35.589 2.272	4 072.0 17 997.8	4.420 2.374
	16		11 680.3 91 344.5	7.820 3.127	67 088.3 216 745.4	3.231 3.147	13 030.4 840 540.6	64.506 2.505	13 844.8 150 259.2	10.853 2.180
32		12 510.7 122 170.3	9.765 3.733	230 753.0 646 616.2	2.802 3.168	26 060.8 2 738 584.7	105.084 2.621	26 875.2 510 672.1	19.002 2.111	

Knowledge Compilation

Heuristics directly built-in into the encoding

- distance heuristic
 - locations unreachable in a given time are forbidden
 - search space reduced
- mutex reasoning
 - agents are treated pair-wise
 - computationally difficult



Pavel Surynek

Runtime Evaluation

Experimental setup

- 4-connected grids of size 6×6, 8×8, 12×12
- random initial and goal arrangement
- 10% of cells obstacles
 - comparison with an A*-based ID+OD

Pavel Surynek

Conclusions and Observations

- **CPF** as **SAT**
 - Advantages
 - search techniques
 - advanced search techniques from SAT solvers accessed
 - modularity
 - exchangeable modules SAT solver, encoding
 - knowledge compilation
 - Disadvantages
 - energy extensive solutions
 - agents move too much
 - size of encoded instances
 - large graphs
 - many time steps
- Encoded integer variables (INVERSE) vs. propositional variables (DIRECT)
 - INVERSE
 - smaller size of encoding
 - DIRECT
 - more shorter clauses supports unit propagation
 - over constrained