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Abstract.
1
The problem of cooperative path-finding is addressed in this work. A set of agents moving 

in a certain environment is given. Each agent needs to reach a given goal location. The task is to find 

spatial temporal paths for agents such that they eventually reach their goals by following these paths 

without colliding with each other. An abstraction where the environment is modeled as an undirected 

graph is adopted – vertices represent locations and edges represent passable regions. Agents are mod-

eled as elements placed in the vertices while at most one agent can be located in a vertex at a time. At 

least one vertex remains unoccupied to allow agents to move. An agent can move into unoccupied 

neighboring vertex or into a vertex being currently vacated if a certain additional condition is satisfied. 

Two novel scalable algorithms for solving cooperative path-finding in bi-connected graphs are pre-

sented.  Both algorithms target environments that are densely populated by agents. A theoretical and 

experimental evaluation shows that suggested algorithms represent a viable alternative to search based 

techniques as well as to techniques exploiting permutation groups on the studied class of the problem. 

Keywords: cooperative path-finding, multi-robot path-planning, motion coordination, (N
2
-1)-puzzle, 

N×N-puzzle,15-puzzle, sliding puzzle, domain dependent planning, makespan optimization, BIBOX, 

BIBOX-. 

1. Introduction 

A problem of cooperative path-finding– CPF (also known from literature as multi-agent or multi-

robot path-planning) [15, 16, 18, 31] is addressed in this work. The task is to find spatial-temporal 

paths for movable agents, which can be either mobile robots or some other movable objects, so that 

they eventually reach given goals without colliding with each other by following these paths. The 

agents are moving in a certain physical or a virtual environment, which is abstracted as an undirected 

graph with agents placed in its vertices. Edges of the graph represent passable regions in the envi-

ronment. The main source of the complexity of the problem arises from the possibility of interactions 

of agents with the environment and in major part from interactions among agents themselves. The 

agents need to avoid obstacles in the environment, which is embodied directly in the graph by ab-

sence of edges (or vertices), and they must not collide with each other, which is modeled by the con-

straint that at most one agent is located in a vertex at a time. 

 CPF is motivated by many real-life tasks ranging from navigation of a group of mobile robots, 

rearranging of containers in storage (see Figure 1), or ship avoidance to computer generated image-

ry where motion of multiple characters needs to be planned. All these tasks can be modeled as a CPF 

at a certain level of abstraction. Actually, the top-level abstraction generally adopted in the CPF ap-
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proach to these tasks uncovers challenges that must be inevitably faced if someone tries to solve the-

se tasks – such as the question if some arrangement of agents can be reached from another one under 

the given physical constraints. 

 The centralized approach is adopted throughout this work. That is, all the agents and the whole 

environment are fully observable to the centralized planning mechanism. The individual agents make 

no decisions by themselves; they merely execute plans found by the centralized planner. This is an 

approach adopted also in all the relevant related works. 

This work is specifically targeted on the case of CPF with environments densely populated by 

agents. Such a case is challenging from several points of view. As there is limited unoccupied space 

in the environment, agents cannot move freely towards their goals and are forced to cooperate inten-

sively with each other. 

At the same time, it is interesting to study the possibility of parallel movements of multiple agents 

at once, which may reduce the total execution time of the plan significantly. To study parallelism in 

CPF a variant of CPF called parallel CPF (pCPF) is defined. The pCPF variant additionally enables 

an agent to enter a vertex that which is simultaneously vacated by another agent if certain additional 

conditions are satisfied. The intended effect of the relaxed requirement on movements is to allow a 

chain of agents to move at once where only the leading agent needs to enter a currently unoccupied 

vertex and other agents follow it. Allowing such higher movement parallelism is a more realistic 

model in certain scenarios – especially in the case where unoccupied space is shrinking towards zero. 

1.1. Related Works 

One of the recent successful approaches to CPF was to search for a spatial-temporal path for each 

agent separately from other agents. If agents are considered separately, an approach is usually called 

decoupled [18, 19]. These techniques are build around the A* algorithm [14] in most cases which is 

used to search for a shortest path from the current location of an agent to its goal while spatial tem-

poral paths of other already scheduled agents are considered. The positive aspect of the decoupled 

approach is that it often finds plans that are near to the optimum with respect to the makespan (the 

total time or the number of steps necessary to execute the plan) as short paths for agents are preferred 

during the search. On the other hand, these methods are extremely sensitive to prioritizing agents as it 

can easily happen that the already scheduled agents block paths for not yet scheduled ones. This is 

one of the major drawback of the WHCA* algorithm [18] which is intrinsically incomplete due to 

this phenomenon (up to 100 agents in the environment are reported; approximately 10% of the envi-

ronment is occupied). The incompleteness is getting more prominent on cases with the increasing 

density of agents (see Section 4). 

In [19], authors present a complete and optimal algorithm for CPF, which uses sophisticated heu-

ristics to reduce the search space by detecting that sometimes no cooperation is necessary among 

agents. The trouble with incompleteness has been thus overcome in this approach. However, this 

method seems to be targeted on relatively sparsely populated environments where actually agents can 

travel most of the trajectory towards their goals without interacting with other agents (results for the 

occupancy of environment less than 10% are reported; up to 60 agents are reported to move in envi-

ronments containing approximately 800 vertices). 

 Several techniques for CPF are trying to exploit structural properties of the problem to increase 

the performance. For instance, graph structures are heavily exploited in [15, 16].  The undirected 

graph modeling the environment is first decomposed into sub-graphs of some interesting structure 

such as cliques and others over which various known patterns of rearranging agents can be used. The 
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search for the final plan is then performed over an abstract map whose nodes are represented by the 

sub-graphs of the original graph (experiments with up to 20 agents in the environments consisting of 

hundreds of vertices are reported). 

Another way to exploit structural properties of the problem is to observe local juxtapositions in 

the current arrangement of agents. This approach was adopted by authors in [29, 30, 31, 32]. If some 

important juxtaposition of agents is detected then known rearrangement process is applied to advance 

the situation towards an arrangement where agents are closer to their goals. These techniques turned 

out to be successful on environments containing many agents but also providing lot of unoccupied 

space (hundreds of agents moving in environment consisting of thousands of vertices are reported). 

Cooperative path-finding has been also addressed from different perspective than as a task of find-

ing a route from the initial location to the goal. A concept of so-called direction maps is introduced in 

[6, 7] to enable coherent movements of multiple agents in various complex patterns that often arise in 

computer entertainment (such as agents patrolling around some location in an RTS game and so on). 

 A rich source of related works for CPF is represented by works on motion planning over graphs 

[8, 10, 12, 13, 35]. The term of pebble motion on graph (PMG) used in these work denotes the same 

concept as CPF in fact. Particularly, important results were achieved for a special case of PMG 

known as       -puzzle or    -puzzle [11, 12, 13], which consists of a 4-connected grid of size 

    with just one vertex unoccupied. Many algebraic and complexity results are known for 

      -puzzle and for PMG generally (some of them will be discussed and used later). It is for 

instance known that finding the makespan optimal solution to the       -puzzle is an   -hard 

problem [12, 13]. 

Regarding general PMG, algorithms proving its membership into the   class are given in [8, 35] 

with asymptotic time complexities and lengths of generated solutions of         and         respec-

tively (        is a graph modeling the environment). The former one – which will be denoted as 

MIT
1
 algorithm in this work – represents an algebraic approach to CPF exploiting permutation 

groups. This algorithm is complete and is capable of solving CPF instances irrespectively of the den-

sity of population of agents (just one unoccupied vertex is sufficient in the case with bi-connected 

graph [34] to solve all the solvable instances). The algorithm regards the arrangement of agents as a 

permutation and the desired goal permutation is composed of elementary permutations over triples of 

agents. The drawback of the MIT algorithm is that it was not designed for practical use and hence 

generated solutions have typically long makespan from the pragmatic point of view despite the very 

good theoretical upper bound of        . 

1.2. Contribution, Motivation, and Organization 

The main contribution of this work is a presentation of two scalable makespan sub-optimal algo-

rithms BIBOX and BIBOX-θ that are designed for solving CPF on bi-connected graphs. From the 

pragmatic point of view, presented algorithms are primarily targeted on cases with environment 

densely populated by agents (that is, with limited unoccupied space). 

Although the targeted case of CPF is special, it has a great practical importance since many real-

life environments can be abstracted as 2D/3D grids which are typically bi-connected. Techniques for 

tackling CPF in highly occupied space are worthwhile in cases when the space is a scarce resource. 

Consider for example storage where piles of stored items can be automatically reconfigured – Figure 
 
1 This working name for the algorithm was chosen by us and it was inspired by the fact that the principal author was affiliated with Massa-

chusetts Institute of Technology (MIT) at the time publishing the article [8]. Authors themselves did not use any name for their algorithm. 
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1. Such kind of automation can save lot of space since without such automation the storage must be 

larger to make all the piles accessible. Occupying large space with buildings have considerable nega-

tive environmental and economic impacts (occupied land was in many cases arable and its occupa-

tion is difficult to revert if it is possible at all). 

Both suggested algorithms have polynomial time complexity. They were considered as an alterna-

tive to the MIT algorithm. A consideration as an alternative to search based algorithms when the 

makespan optimal solution is not needed and speed of solving is preferred is also viable. 

Notice that there is a growing interest in developing algo-

rithms of such category – the very recent contribution repre-

sented by the PUSH-AND-SWAP algorithm [9] shares lots of 

aspects with our work (complexity issues and the way of rear-

ranging agents). 

Some of the results presented in this work can be also 

found in some form in conference proceedings [20, 21, 22, 

23]. This work is accompanied with a technical report [27] 

where some additional details such as formal proofs of all the 

propositions can be found. 

The organization of the work is as follows: formal defini-

tions of PMG and pCPF are given first in Section 2. Some 

basic properties of these problems are discussed subsequent-

ly. New algorithms BIBOX and BIBOX-θ are presented in the 

main section - Section 3. The final section – Section 4 – is 

devoted to an extensive experimental evaluation of both new 

algorithms. A competitive comparison against WHCA* and 

MIT is presented. Finally, some concluding remarks are given 

and future prospects are discussed. 

2. Pebble Motion on a Graph (PMG) and Parallel 
Cooperative Path-Finding (pCPF) 

Consider an environment in which a group of mobile agents 

is moving. The agents are all identical (that is, they are all of 

the same size and have the same moving abilities). Each 

agent starts at a given initial position and it needs to reach a 

given goal position. The problem being addressed here con-

sists of finding a spatial-temporal path for each agent so that 

it eventually reaches its goal by following this path. The 

agents must not collide with each other and they must avoid 

obstacles in the environment along the whole process of relo-

cation according to constructed paths. 

The environment with obstacles within that the agents are 

moving is modeled as an undirected graph. The vertices of this graph represent positions in the envi-

ronment and the edges model passable regions from one position to another. At each time step, all the 

agents are located in some vertices while at most one agent is allowed per vertex. Some vertices may 

be vacant – precisely, at least one vertex should be vacant to allow agents to move. 
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Floor plan of a small 
automated storage 

Abstraction of the floor 
plan as an undirected 

graph 

Figure 1. Illustration of modeling the 

environment in a real scenario by undi-

rected graph. The scenario consists of a 

small automated storage with movable 

piles of stored items (labeled   to   and   

to  ). Each pile can be moved left/right/ 

forward/backward. Items in piles are 

accessible from the passage – to access 

piles  -  or  -  the storage needs to be 

rearranged. The environment is modeled 

as grid of size     which is a bi-

connected graph. 
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 If the agent is placed in a vertex at a given time step then the result of a motion is the situation 

where the agent is placed in the neighboring vertex at the following time step. The agent is allowed 

to enter the neighboring vertex supposing it is unoccupied or being vacated by another agent in a 

certain case while no other agent is trying to enter the same target vertex (precise definition of condi-

tions that the movement must satisfy will follow). 

We distinguish two variants of motion problems here, which differ in conditions on movements. 

Agents in the first one are called pebbles and the related problem is called pebble motion on a graph. 

Briefly said, it is required that the target vertex of the movement must be vacant. The second variant 

is called parallel cooperative path-finding. Movable agents in this variant are called agents and the 

condition on movements is relaxed so that it additionally allows movements into vertices that are 

currently vacated by another agent in a case when agents are moving in a chain style (like a train). 

2.1. Formal Definitions of Cooperative Path Planning Problems 

The first definition below is for the problem of pebble motion on a graph– PMG [8] which is also 

known as cooperative path-planning/finding – CPF [18,19, 29] or multi-robot/agent path-

planning/finding – MRPP [15, 16, 20, 23]. All these terms from the literature denote the same con-

cept in fact. The special variant of pebble motion on a graph is represented by       -puzzle 

(which is also known as the    -puzzle) [12, 13]. 

 

Definition 1 (pebble motion on a graph – PMG). Let         be an undirected graph and let 

                  where       be a set of pebbles. The initial arrangement and the goal ar-

rangement of pebbles in   are defined by two uniquely invertible functions   
      (that is 

  
       

     for every       with    ) and   
      respectively. A problem of pebble 

motion on a graph (PMG) is the task to find a number   and a sequence of pebble arrangements 

      
    

      
 
  such that the following conditions hold (the sequence represents arrangements 

of pebbles at each time step – the time step is indicated by the upper index): 

(i)   
      is a uniquely invertible function for every          ; 

(ii)   
 

   
  (that is, all the pebbles eventually reach their destination vertices); 

(iii) either   
       

       or    
       

          for every     and             

(that is, a pebble either stays in a vertex or moves along an edge); 

(iv) if   
       

       (that is, the pebble   moves between time steps   and    ) then  

  
       

            with     must hold for every      and             

(that is, a pebble can move into a currently unoccupied vertex only). 

The instance of PMG is formally a quadruple          
    

  . A solution to the instance   will 

be denoted as          
    

      
 
 . □ 

 

When speaking about a move at a time step  , it is referred to the time step of commencing the 

move (the move is performed instantaneously between time steps   and    ). 

The second variant of motion problem on a graph adopted in this work relaxes the condition that 

the target vertex of a pebble/agent must be vacated in the previous time step. Thus, the motion of an 

agent entering the target vertex, that is simultaneously vacated by another agent and no other agent is 

trying to enter the same target vertex, is allowed in a certain case. However, there must be some lead-

ing agent initiating such a chain of moves by moving into a currently unoccupied vertex which no 

other agent is entering at the same time step (that is, agents can move “like a chain” with the leading 

agent moving into an unoccupied vertex in the front). The problem is formalized in the following 
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definition – it is called parallel cooperative path-finding –  pCPF since the different style of moving 

basically enables higher parallelism. The same concept is sometimes also referred as multi-robot 

path-planning in the literature [22, 24, 26, 27]. 

 

 
 

Figure 2. Example of instance of PMG and pCPF. Both instances are illustrated on the same graph with the same initial 

and goal arrangements. The task is to move pebbles/agents from their initial positions specified by   
    

  to the goal posi-

tions specified by   
    

 . A solution of the makespan 6 (   ) is shown for the PMG instance and a solution of the 

makespan 4 (   ) is shown for the pCPF instance. Notice the differences in parallelism between both solutions. 

 

Definition 2 (parallel cooperative path-finding – pCPF). Again, let         be an undirected 

graph. A set of agents                   where       is given instead of the set of pebbles. Simi-

larly, the graph models the environment where the agents are moving. The initial arrangement and 

the goal arrangement of agents are defined by two uniquely invertible functions   
      (that is 

  
       

     for every       with    ) and   
      respectively. A problem of parallel 

cooperative path-finding (pCPF) is then the task to find a number   and a sequence of agent ar-

rangements       
    

      
 
  for that the following conditions hold: 

(i)   
      is a valid arrangement for every           (that is, uniquely invertible); 

(ii)   
 

   
  (that is, all the agents eventually reach their destinations); 

(iii) either   
       

       or    
       

          for every     and             

(that is, an agent either stays in a vertex or moves into the neighboring vertex); 

(iv) if   
       

       (that is, the agent   moves between time steps   and    ) then 

there must exist a sequence of distinct agents                with      such that 

  
       

             with      (   moves to a vertex that is unoccupied at time 

step  ;    is a leading agent of the chain of agents which the sequence is part of) and 

  
          

        for             (agents                 follows the lead-

er like a chain; they move all at once between time steps   and    ). 

The instance of pCPF is formally a quadruple          
    

  . A solution to the instance   

will be denoted as          
    

      
 
 . □ 

 

Notice in point (iv) that if the agent   moves into an unoccupied vertex then the required sequence 

of distinct agents consists of   itself (   ) and the latter condition in point (iv) is empty. Notice 

also that the condition on unique invertibility implies that no two agents can simultaneously enter the 

same target vertex. 

  
    

  

    
 

Solution of the problem of pebble motion 

on a graph (PMG)   with              
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The numbers   and   represent the makespan of solutions. The makespan needs to be distin-

guished from the size of solution, which is the total number of moves performed by pebbles/agents. 

Example instances of both problems and their solutions are illustrated in Figure 2. 

2.2. Known Properties of Motion Problems and Related Questions 

Notice that a solution of PMG as well as a solution of pCPF allows a pebble/agent to stay in a vertex 

for more than a single time step. It is also possible that a pebble/agent visits the same vertex several 

times within the solution. Hence, the sequence of moves for a single pebble/agent does not necessari-

ly form a simple path in the given graph. 

 Notice further that both problems intrinsically allow parallel movements of pebbles/agents. That 

is, more than one pebble/agent can perform a move in a single time step. However, pCPF allows 

higher motion parallelism due to its weaker requirements on agent movements (see Figure 2). More 

than one unoccupied vertex is necessary to obtain parallelism in PMG while only one unoccupied 

vertex is sufficient to obtain parallelism within a solution of pCPF (consider for example agents mov-

ing around a cycle). The following straightforward proposition puts into relation solutions of instanc-

es of PMG and pCPF with the same set of agents and their arrangements over the same graph. 

 

Proposition 1 (problem correspondence). Let          
    

   be an instance of PMG and let 

         
    

      
 
  be its solution. Then             is a solution to an instance of pCPF 

         
    

  .  

 

To prove the proposition it is sufficient to observe that the condition (iv) in the definition of pCPF 

is a relaxation of the corresponding condition in the definition of PMG. 

There is a variety of modifications of the defined problems. A natural additional requirement is to 

produce solutions with the makespan as short as possible (that is, the numbers   or   are required to 

be as small as possible). Unfortunately, this requirement makes both PMG and pCPF intractable. It 

was shown in [12, 13] that the optimization variant of a special case of PMG is   -hard [3] – this 

special case is generally known as    -puzzle or      -puzzle. It consists of a graph that can be 

embedded in the plane as a square 4-connected grid with a single unoccupied vertex. Thus, the opti-

mization variant of general PMG is   -hard as well. 

Here we work with restrictions of both types of problems on bi-connected graphs [34]. Hence, it 

is a reasonable question what is the complexity of these classes. Since the grid graph forming the 

mentioned    -puzzle is bi-connected, the immediate answer is that the optimization variant of 

PMG with a bi-connected graph is   -hard as well. 

Nevertheless, it is not possible to make any similar simple statement about the complexity of the 

optimization variant of pCPF. The situation here is complicated by the inherent parallelism, which 

can affect the makespan in some unforeseen way. Constructions used for the     puzzle in [12, 

13] thus no longer work. Using different technique it has been recently shown by the author that the 

optimization variant of pCPF is NP-hard too [24, 26]. 

Observe further that reported   -hard case of PMG have a single unoccupied vertex. This fact 

may raise the question how the situation is changed when there are more than one unoccupied verti-

ces as they may simplify the situation. Unfortunately, it is not the case. PMG with the fixed number 

of unoccupied vertices is still   -hard since multiple copies of the     puzzle from [12, 13] can 

be used to add as many unoccupied vertices as needed. Without providing further details, the instance 

of pCPF used in the reduction to prove the NP-hardness of the problem in [24] had many unoccupied 
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vertices and its graph was connected (even bi-connected). Altogether, a mere allowance of many 

unoccupied vertices with no additional structural conditions does not simplify the problem. 

Without the requirement on the optimality of the makespan, the situation is much easier; PMG is 

in the P class as it was shown in [8, 35]. Due to Proposition 1, pCPF is in the P class as well. Thus, it 

seems that PMG and pCPF have been already resolved. However, constructions proving the member-

ship of PMG into the P class used in [8, 35] generate solutions that are too long for practical use [21, 

22, 23]. As the makespan of the solution is of great importance in practice, this fact makes these 

methods unsuitable when some real life motion problem is abstracted as an instance of PMG. Thus, 

alternative solving methods has been developed [20, 21, 22, 23] and they are revised in this work. 

3. Sub-optimal Solving Algorithms 

The basic idea of presented sub-optimal algorithms is to exploit structural properties offered by the 

concept of bi-connectivity. It is known that bi-connected graphs can be inductively constructed as a 

union of a sequence of rings or handles while at every stage of this construction the intermediate 

graph is bi-connected [33, 34].  

After arranging agents into the last handle we do not need to care about it anymore and conse-

quently the task reduces to a task of the same type but on a smaller bi-connected graph. Fortunately, 

bi-connected graphs have another interesting property; every two vertices are connected by at least 

two vertex disjoint paths, which allow quite complex rearranging of agents. For example, an individ-

ual agent can move relatively freely. One path is traversed by the agent and alternative paths are used 

to keep unoccupied vertex always in front of the agent. In addition, handles of the decomposition 

evokes the possibility that agents within them can be rotated, which is actually used in proposed al-

gorithms. Notice that all the mentioned styles of movements are friendly to the parallelism as defined 

in pCPF – for example, agents in a handle can be rotated within a single time step. However, there 

are many technical difficulties that need to be addressed to make the above ideas workable. 

3.1. BIBOX: A Novel Algorithm for Pebble Motion on a Bi-connected Graph 

The first algorithm presented here called BIBOX was originally proposed in [20]. The input instance 

should consist of a non-trivial bi-connected graph (that is, bi-connected graph not isomorphic to a 

cycle) with exactly two unoccupied vertices. As the algorithm produces solution consisting of single 

move per time step it does not matter if PMG or pCPF is given on the input – in the following text 

pCPF will be always considered. A method how to increase parallelism in the resulting solution to 

take the advantage of the definition of pCPF will be discussed in Section 3.1.4. 

 The algorithm proceeds inductively according to the known property of bi-connected graphs that 

they can be built from a cycle by addition of a sequence of handles. Adding a handle means either to 

insert a new edge into the graph or to connect endpoints of a path consisting of new vertices some-

where into the graph. The important property is that currently built graph is bi-connected at every 

stage of the construction. 

The process of building a graph by adding handles can be reverted as well. That is, the graph can 

be deconstructed until a cycle remains by removing handles from it. If it is somehow possible to ar-

range agents whose goal positions are in the handle to be removed before it is actually removed, we 

have a good starting point for a new solving algorithm because after removal of a handle the problem 

just reduced to the smaller graph. To obtain a new algorithm it remains to show how agents can be 

arranged into the handle and how to deal with the cycle that remains at the end of the process. 
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  The process of removing of handles is presented here just for intuition. They actually do not 

need to be removed during the solving process. It is sufficient not to consider and use a handle after 

all the agents are properly arranged to their goal positions within that. 

The intuition for arranging agents in the cycle that eventually remains is to regard their ordering 

as a permutation. The goal arrangement of agents in the cycle can be also regarded as a permutation. 

Thus, we need to change ordering of agents to form another permutation. If it is possible to exchange 

a pair of agents with respect to their current ordering, then every permutation of agents can be ob-

tained. It will be shown how to utilize two unoccupied vertices to enable exchanges of agents in the 

remaining cycle. 

It is possible to build a bi-connected graph in multiple different ways by adding handles. Hence, 

the algorithm as well as the produced solution is sensitive to the selection and ordering of handles 

used in the solving process. 

3.1.1. Graph-theoretical Preliminaries 

The BIBOX algorithm is built around the notion of bi-connectivity and around graph theoretical 

properties of bi-connected graphs [33]. Let us recall the notion of bi-connectivity and related proper-

ties briefly. 

 

Definition 3 (connected graph).  An undirected graph         is connected if       and for 

any two vertices       such that     there is an undirected path connecting   and  . □ 

 

Definition 4 (bi-connected graph, non-trivial).  An undirected graph         is bi-connected if 

      and the graph           , where          and                       

  , is connected for every    . A bi-connected graph not isomorphic to a cycle will be called 

non-trivial bi-connected graph. □ 

 

Observe that, if a graph is bi-connected, then every two 

distinct vertices are connected by at least two vertex dis-

joint paths (equivalently, there is a cycle containing both 

vertices; only internal vertices of paths are considered 

when speaking about vertex disjoint paths -  vertex disjoint 

paths can intersect in their start points and endpoints). An 

example of bi-connected graph is shown in Figure 3. 

Bi-connected graphs have an important property, which 

is exploited within the algorithm. Each bi-connected graph 

can be constructed starting from a cycle by an operation of 

adding a handle [28, 33, 34]. Consider a graph        ; 

the new handle with respect to   is a sequence                    where     ,       

(called connection vertices) and      for           (   are fresh vertices). The result of the 

addition of the handle   to the graph   is a new graph            where 

                  and either              in the case of     or      

                                    in the case of    . Let the sequence of handles together 

with the initial cycle be called a handle decomposition of the given bi-connected graph. Again, see 

Figure 3 for illustrative example. 

 

   

   

   

   

        

Figure 3. Example of bi-connected graph. A 

handle decomposition is illustrated. 
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Lemma 1 (handle decomposition) [28, 33, 34]. Any bi-connected         graph can be obtained 

from a cycle by a sequence of operations of adding a handle. Moreover, the corresponding handle 

decomposition of the graph   can be found in the worst-case time of            and the worst-case 

space of           .   

 

The important property of the construction of a bi-connected graph according to its handle de-

composition is that the currently constructed graph is bi-connected at every stage of the construction. 

This property is substantially exploited in the design of the BIBOX algorithm. 

The algorithm is presented below using a pseudo-code as Algorithm 1 and Algorithm 2 (algo-

rithms are illustrated with pictures for easier understanding). The algorithm starts with the last handle 

of the handle decomposition and proceeds to the initial cycle. Agents, that goal positions are within 

the last handle, are moved to their goal positions within this handle. After that, the instance reduces 

to a smaller bi-connected graph. That is, the last handle is not considered any more since its agents do 

not need to move any more. This process is repeated until the initial cycle of the decomposition re-

mains where a different technique is used. 

 Let                
    

   be an instance of pCPF. The handle decomposition of the graph   

is formally a sequence                   with    , where    is the initial cycle and    is a 

handle for          . The order of handle additions in construction of   corresponds to their posi-

tions in the sequence (that is,    is added to    first; and    is added as the last). A handle    

      
    

       

      for              is assigned a cycle      . The cycle       consists of 

the sequence vertices on a path connecting    and    in a graph before the addition of    followed 

by vertices   
    

       

 . Specially, it is defined that         . 

The following lemma justifies two properties exploited by the algorithm. It justifies that it is pos-

sible to keep handy two unoccupied vertices in the not yet solved part of the graph since one unoccu-

pied vertex is needed to solve handles and two unoccupied vertices are needed to solve the initial 

cycle. The lemma ensures that the original goal arrangement can be transformed to an arrangement 

where unoccupied vertices are located in the initial cycle. Thanks to this property it never happens 

that an unoccupied vertex become locked in some already solved handle. Details of the transfor-

mation are discussed later. 

 

Lemma 2 (existence of two vertex disjoint paths). Let         be a bi-connected graph and let 

        and        , where             are pair-wise distinct, be two pairs of vertices. Then 

either the first or the second of the following claims holds: 

(a) There exist two vertex disjoint paths    and   such that they connect    with    and    with 

   in   respectively. 

(b) There exist two vertex disjoint paths    and   such that they connect    with    and    with 

   in   respectively.  

 

Notice that the lemma states that individual vertices in the input pair of vertices are indifferent 

with respect to connecting by vertex disjoint paths. As the proof of the lemma is rather technical, we 

refer the reader to [27] where the detailed proof can be found. The idea of proof is that the given 4-

tuple of vertices             is assigned a 4-tuple of non-negative integers such that each number 

refers to a handle of the decomposition or the initial cycle where the corresponding vertex is located. 

Then the proof proceeds inductively according to the lexicographic ordering of these 4-tuples of 

numbers. For a selected pair of vertices partial connection paths are constructed towards handles with 
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lower numbers (a certain case analysis in the worst-case time of      has to be done). Then it holds 

from the induction hypothesis that remaining parts of connection paths should exist since they con-

nect 4-tuple of vertices with lower 4-tuple of assigned numbers. 

3.1.2. Pseudo-code of the BIBOX Algorithm 

Several basic operations are introduced to express the BIBOX algorithm in an easier way. These op-

erations are formally described using pseudo-code as Algorithm 1. In addition to functions   
  and   

  

there will be a function        to represent the current arrangement of agents in   and functions 

  
         ,   

         , and            which are generalized inverses of   
 , 

  
 , and    respectively; the symbol   is used to represent an unoccupied vertex (that is,        

            and         if               ). Each undirected cycle appearing in the han-

dle decomposition of the input graph is assigned a fixed orientation. Let   be an undirected cycle (a 

set of vertices of the cycle), then the orientation of   is expressed by functions       and       

where            for     is a vertex following   (with respect to the positive orientation) and 

           is a vertex preceding   (with respect to the positive orientation). The orientation of a 

cycle given by       and       is observed also whenever vertices of the cycle are explicitly enu-

merated in the code. 

Each vertex of the input graph is either locked or unlocked. Auxiliary operations Lock     and 

Unlock    locks or unlocks a set of vertices    . The state of a vertex is used to determine wheth-

er an agent can move into it. Typically, an agent is not allowed to enter a locked vertex (see the pseu-

do-code for details). 

It is assumed that it holds that           (that is, there are exactly two unoccupied vertices in 

the graph  ). It is required by the main phase of the algorithm that the two unoccupied vertices are 

located in the first two vertices of the initial cycle within the goal arrangement. This requirement is 

treated by a function Transform-Goal and a procedure Finish-Solution. The function Transform-Goal 

determines two vertex disjoint paths from unoccupied vertices in the goal arrangement to the first 

two vertices in the initial cycle of the handle decomposition. Existence of these paths is ensured by 

Lemma 2. The goal arrangement is transformed so that finally unoccupied vertices are located in the 

initial cycle. This is done by shifting agents within the goal arrangement along the two found paths. 

After the modified instance is solved, the function Finish-Solution moves unoccupied vertices back 

to their goal locations in the original unmodified goal arrangement. The final placement of unoccu-

pied vertices is done by shifting agents along the same two paths but in the opposite direction. 

It is assumed that the input bi-connected graph   is non-trivial for further simplifying the pseudo-

code; that is, it is not isomorphic to a cycle. The case when the graph is isomorphic to a cycle can be 

treated easily in a separate branch of the execution. 

Several upper level primitives are exploited by the BIBOX algorithm. It is possible to make any 

vertex unoccupied in a connected graph (especially in a bi-connected one) – implemented by proce-

dure Make-Unoccupied. Let   be a vertex to be made unoccupied. A path   connecting   and some 

of the unoccupied vertices avoiding the locked vertices is found. Then agents along the path   are 

shifted towards the currently unoccupied vertex. 

An operation of moving an agent into an unoccupied vertex is implemented by a procedure Move-

Agent-Unoccupied – the meaning is that the unoccupied space and the agent are swapped. The proce-

dure also updates functions    and    to reflect the new arrangement of agents and constructs the 

next arrangement   
 
 for the output solution sequence. 
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Algorithm 1. Basic agent movement operations. These operations are used as building blocks for the BIBOX algorithm. 

 

procedure Make-Unoccupied    

/* Makes a vertex   unoccupied while locked 

vertices remain untouched. 

Parameters:    - a vertex to be made unoccupied. */ 

1: let     such that         and   is not locked 

2: let                    be a (shortest) path 

3:  connecting   and   in   not containing locked vertices 

4: for             do 

5:  Move-Agent-Unoccupied          

 

 

procedure Move-Agent      

/* Moves an agent  into a vertex   

avoiding locked vertices. 

Parameters:    – an agent to move, 

  - a target vertex.*/ 

/* complexity issues impose special selection of    */ 

1: let            
 
   

 
      

 
    be a path 

2:  connecting       and   in   not containing 

3:  locked vertices  

4: for              do 

5:  Lock     
 
   

6:  Make-Unoccupied     
 

  

7:  Unlock    
 
   

8:  Move-Agent-Unoccupied   
 
     

 
  

 

procedure Rotate-Cycle+      

/* Rotates agents in a cycle   in the positive direction. 

Parameters:    - a cycle to rotate 

  - unoccupied vertex,    . */ 

1: for             do 

2:  Move-Agent-Unoccupied             )  

3:               
 

 

 

procedure Rotate-Cycle−      

/* Rotates agents in the cycle   in the negative direction. 

Parameters:    - a cycle to rotate,    . */ 

1: let     such that         and   is not locked 

2: for             do 

3:  Move-Agent-Unoccupied             )  

4:               

 

procedure Move-Agent-Unoccupied      

 /* Swaps agent and the unoccupied space; vertex   is 

supposed to be unoccupied;   contains an agent. 

Parameters:      – vertices between which agent 

is moved. */ 

1:             

2:             

3:         

4:   
 

    

5:       

 

Agent   is moved to   
through cycles      ,   , 
and      . 

  
 

      
 

      
 

  
 

  

  
 

 

  

  
 

 

  
 

Vertex   is locked;   is 
unoccupied; pebbles are 
shifted along cycle       to 
make   unoccupied. 

  
 

      
 

      
 

  
   

  
 

 

  
 

  

  
 

 

  

  
 

 

Vertex   is unoccupied; 
      is rotated in the 
positive direction. 

  
 

        
 

      
 

  
 

  

  
 

 

  
 

  
 

 

  
 

  

              
              

  
 

 

 

  
 

  
 

 

Vertex   is unoccupied; 
      is rotated in the 
negative direction. 
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Figure 4. An illustration of moving an agent in bi-connected graph. The task is to move an agent   from the initial position 

to a vertex  . A paths   connecting the initial position of the agent   with   is found (the path is distinguished by color). It 

is then traversed by the agent   while the unoccupied vertex is restored in front of   after every edge traversal. This is 

possible thanks to bi-connectivity of the graph – a path connecting unoccupied vertex and the target vertex avoiding the 

vertex containing   must always exist. The symbol   stands for an anonymous agent. 

 

The next important process is moving an agent into a given target vertex. It is implemented by a 

procedure Move-Agent. Let an agent   be moved to a vertex  . A path   is found such that it con-

nects vertices       (which is a vertex currently occupied by  ) and  . 

Edges of   are then traversed by an agent  . A vertex on   just in front of   with respect to the 

direction of the movement is made unoccupied every time   needs to traverse an edge of  . The 

agent   should not move during relocation of the unoccupied vertex therefore it is locked before the 

relocation of the unoccupied vertex starts. Thus, a path along that the unoccupied vertex is moved 

must avoid the vertex containing  . Such a path always exists due to the bi-connectivity of the graph 

in which the relocation of the agent   takes place (see Figure 4 for illustration). 

 

 
 

Figure 5. An illustration of rotation of agents along a cycle. An orientation of the cycle is determined by functions       

and      . There is a single unoccupied vertex in the cycle to enable the rotation. 

 

The last basic operation is a rotation of agents along a cycle (see Figure 5). This operation is im-

plemented by procedures Rotate-Cycle
+ 

and Rotate-Cycle
−
. The former rotates agents in the positive 

direction and the latter rotates agents in the negative direction. It supposed that at least one vertex in 

the given input cycle is unoccupied and it is given as the parameter. The input unoccupied vertex 

enables the rotation; it remains on its place after the rotation is finished.  
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Algorithm 2. The BIBOX algorithm. The pseudo-code is built around operations from Algorithm 1. It solves a given agent 

motion problem on a non-trivial bi-connected graph with exactly two unoccupied vertices. The algorithm proceeds induc-

tively according to the handle decomposition of the graph of the input instance. The two unoccupied vertices are necessary 

for arranging agents within the initial cycle of the handle decomposition. 

 

function BIBOX-Solve             
    

   : pair 

/* Top level function of the BIBOX algorithm; solves 

a given problem of agent motion on a graph. 

Parameters:   - a graph modeling the environment, 

 - a set of agents, 

  
  - a initial arrangement of agents, 

  
 - a goal arrangement of agents. */ 

1: let                   be a handle decomposition of   

2:    
        Transform-Goal       

   

3:      
  

4:     

5: for            do 

6:  if        then 

7:   Solve-Regular-Handle    

8: Solve-Original-Cycle 

9: Finish-Solution      

10: return      
    

      
 
   

 

procedure Solve-Regular-Handle    

/* Places agents which destinations are within a 

handle   ; agents placed in the handle    are finally 

locked so they cannot move any more. 

Parameters:    – the index of a handle */ 

1: let       
 
   

 
      

 
                     

 /* Both unoccupied vertices must be located 

outside the currently solved handle. */ 

2: let           
 
             such that     

3: Make-Unoccupied    

4: Lock      

5: Make-Unoccupied    

6: Unlock      

7: for              do 

8:  Lock             

  /* An agent to be placed is outside the handle   . */ 

9:  if      
    

               ) then 

10:   Move-Agent   
    

       

11:   Lock       

12:   Make-Unoccupied     

13:   Unlock     

14:   Rotate-Cycle+        
   

/* An agent to be placed is inside the handle   . */ 

15:  else 

16:   Make-Unoccupied     

17:   Unlock     

18:       

19:   while     
 
    

       do 

20:    Rotate-Cycle+        
   

21:          

22:   Lock             

23:   let                     
            

24:   Move-Agent  
 
    

      

25:   Lock       

            
 

Handle decomposition 

  
 

  
 

  
 

 

      
 

      
 

  
 

        

Agent     
    

   is 
outside   ; move   to   . 

  
 

      
 

      
 

  
 

   

  
 

 

   

  
 

 

  

  
 

 

     
 

Bi-connected  
remainder 

   

Agent     
    

   is inside 
  ; move   outside      . 

  
 

      
 

      
 

  
 

   

  
 

 

   

  
 

 

  

  
 

 

     
 

Bi-connected  
remainder 
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26:   Make-Unoccupied     

27:   Unlock     

28:   while     do 

29:    Rotate-Cycle        
   

30:          

31:   Unlock      

32:   Lock             

33:   Move-Agent  
 
    

       

34:   Lock        

35:   Make-Unoccupied     

36:   Unlock     

37:   Rotate-Cycle+        
   

38: Lock             

 

procedure Solve-Original-Cycle 

/* Places agents which destinations are within the 

initial cycle; it is assumed that unoccupied vertices 

of the goal arrangement of agents are located within 

the initial cycle. */ 

1: let      and        such that         

2:  let    
    

      
      

 /* According to the assumption on the goal arrangement 

it holds that   
    

     and   
    

    . */ 

3:  for           do 

4:  Make-Unoccupied   
 ) 

5:  Lock    
  ) 

6:  Make-Unoccupied   
 ) 

7:  Unlock    
  ) 

8:  if   
    

        
   then 

9:   Exchange-Agents    
    

        
        

10: Make-Unoccupied   
 ) 

11: Lock    
  ) 

12: Make-Unoccupied   
 ) 

13: Unlock    
  ) 

 

procedure Exchange-Agents          

/* Exchanges a pair of agents within the initial 

cycle of the handle decomposition. 

Parameters:      - a pair of agents to be exchanged, 

    - a pair of neighboring vertices where 

  is used as a storage space. */ 

1:         

2: Make-Unoccupied    

3: Move-Agent-Unoccupied      

4: while         do 

5:  Rotate-Cycle+       

6: Move-Agent-Unoccupied      

7: Lock      
8: Make-Unoccupied              

9:     

10: while                   do 

11:  Rotate-Cycle+       

12:        

13: Make-Unoccupied              

14: Move-Agent-Unoccupied      

15: Move-Agent-Unoccupied                

16: Move-Agent-Unoccupied                

17: Move-Agent-Unoccupied      
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Agent      
    

   in   ; 
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18: while     do 

19:  Rotate-Cycle       

20:        

21: Move-Agent-Unoccupied      

22: while         do 

23:  Rotate-Cycle+       

24: Move-Agent-Unoccupied      

25: Unlock      

 

The process of placing agents according to the given goal arrangement is formally described as 

Algorithm 2. Agents, which goal positions are within the currently solved handle, are placed in a 

stack like manner. This process is carried out by a procedure Solve-Regular-Handle (iteration 

through the handle is at lines 7-37). Let          
    

       

      for             be a current 

handle. Suppose that an agent which goal position is in   
  for             , that is an agent 

  
    

  , is processed in the current iteration. Inductively suppose that agents   
     

  ,  
       

  , 

…,  
      

   are located in vertices        
 ,        

 , …,   
  respectively. An analogical situation 

for the next agent   
      

   must be produced at the end of the iteration. 

The agent   
    

   is moved to the vertex    and then the cycle       is positively rotated once 

which causes the agent   
    

   to move to   
  and agents   

     

  ,  
       

  ,…,  
      

   stacks 

in the cycle so that they are located in      
 ,        

 , …,   
 . We have just described one iteration 

of stacking agents into the handle   . However, the process has some difficulties. At least, two major 

cases must be distinguished. In both cases, the first step is that internal vertices of the handle    are 

locked (line 8 of Solve-Regular-Handle). 

If the agent   
    

   is not located in the internal vertices of the handle    (line 9-14 of Solve-

Regular-Handle) it is just moved to   . This is possible since an invariant holds that both unoccupied 

vertices are located outside the internal vertices of the handle and the graph without the internal ver-

tices of the handle is connected. This holds at the beginning, since both unoccupied vertices are ex-

plicitly moved outside the handle    (lines 2-6 of Solve-Regular-Handle) and it is preserved through 

all the iterations. Observe that these movements do not affect agents already stacked in the handle. 

The agent   
     

   is fixed in    by locking    and then an unoccupied vertex is relocated to    

which makes the rotation of the cycle       possible. The positive rotation of       then finishes 

the iteration. 

If the agent   
    

   is already located in some of the internal vertices of the handle    (lines 15-

37 of Solve-Regular-Handle), the above process is reused but it must be preceded by relocating 

  
     

   outside the handle. The vertex    is made unoccupied and the cycle       is positively 

rotated until the agent   
    

   gets outside the internal vertices of   ; that is,   
    

   appears in 

  . Notice, that this series of rotations preserves the order of the already stacked agents. To restore 

the situation however, the cycle must be rotated back the same number of times. A vertex   outside 

the already finished part of the graph (that is outside       and outside    for    ) is selected; the 

agent   
    

   is moved into   and it is fixed there by locking. 

The vertex    is made unoccupied again since the preceding process may move some agent into it 

(this is possible since   alone cannot rule out the existence of a path from an unoccupied vertex to    

in the bi-connected graph; there is always an alternative path). The cycle is rotated back so that in-

ductively supposed placement of   
     

  ,  
       

  ,…,  
      

   is restored. The situation is 

now the same as in the previous case with   
    

   outside the handle. 

After the last iteration within the handle    it holds that the agents   
     

  ,  
       

  ,…, 

  
    

   are located in vertices    

 ,     
 ,…,  

  respectively. Moreover it holds that unoccupied 

vertices are both outside the internal vertices of   . Thus, the solving process can continue with the 

Rotate    back; move   
from   to  . 
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next handle in the same way while the already solved handles remain unaffected by the subsequent 

steps. Notice, that only one unoccupied vertex is sufficient for stacking agents into handles. See Fig-

ure 6 for detailed illustration. 

 

 
 

Figure 6. A process of stacking an agent into a handle. Agents   ,   ,   , and    are to be stacked into    (that is, 

  
        

 ,   
        

 ,   
        

 , and   
        

 ); handles      and      are already solved (that is, 

  
        

   ,…,   
        

   , and   
        

   ,…,   
        

   ). Observe that the agent    is originally 

outside the handle while the agent    is inside. Stage (i) shows situation after agents    and    were stacked into the handle 

  . Then vacant vertex is relocated to the connection vertex   ; using empty       is rotated such that    appears in the 

second connection vertex    (stages (ii), (iii), and (iv)). The handle    then needs to be rotated back but before    must be 

moved outside the cycle associated with     (stage (v)). Finally, the agent    is moved to the first connection vertex    and 

   is rotated once so that    appears in the first internal vertex of   . The symbol   stands for an anonymous agent. 
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The initial cycle    of the handle decomposition must be treated in a different way. Here, the se-

cond unoccupied vertex is utilized. An arrangement of agents within    can be regarded as a permu-

tation. The task is to obtain the right permutation corresponding to the goal arrangement. This can be 

achieved by exchanging several pairs of agents. More precisely, if an agent residing in a vertex of    

differs from an agent that should reside in this vertex in the goal arrangement, this pair of agents is 

exchanged. The process is implemented by a procedure Solve-Original-Cycle and by an auxiliary 

procedure Exchange-Agents for exchanging a pair of agents. 

The procedure Exchange-Agents expects that first two vertices of the initial cycle are unoccupied 

in the current arrangement. However, the function generally does not preserve this property. Hence, 

the vacancy of the first two vertices of the initial cycle must be repeatedly restored (lines 4-7 and 10-

13 of Solve-Original-Cycle). The process of exchanging a pair of agents   and   itself exploits a pair 

of vertices   and   where these two vertices are connected by an edge and it holds that        

  . The vertex   is used as an auxiliary storage place. 

The need of two unoccupied vertices is imposed by the fact that an agent from    to be stored in   

must be rotated into   first. During this process, some vertex of the cycle must be unoccupied to 

make the rotation possible and the vertex   must be unoccupied as well to make storing possible. 

When exchanging the pair of agents   and   it is necessary to preserve ordering of the other verti-

ces. First, an agent occupying the vertex   is moved into the cycle    in order to make   vacant (lines 

1-3 of Exchange-Agents). Then the cycle is rotated until the agent   appears in   (since there was an 

agent in   at the beginning of the rotation, there is always some agent in   after all the rotations) and 

the agent   is stored in   (lines 4-6 of Exchange-Agents). Next, the cycle    is rotated positively so 

that   appears in             (the next vertex to   with respect to the positive orientation) while the 

number of rotations is recorded (lines 10-12 of Exchange-Agents). 

Next, agents   and   are exchanged so that ordering of   in the cycle    is the same as of   before 

the exchange (lines 13-17 of Exchange-Agents). Then, the cycle is rotated in the negative direction 

recorded number of times so that the place within the cycle where   was originally ordered appears 

in  ; thus   is ordered here (lines 18-20 of Exchange-Agents). Finally, the agent that has been located 

in   before the exchange of agents   and  , is put back into   (lines 22-25 of Exchange-Agents). 

3.1.3. Summary of Theoretical Properties and Real-life Extensions 

As the proof of soundness and completeness of the BIBOX algorithm are mainly technical, we refer 

the reader to the appendix where detailed proofs can be found. Regarding the proof of soundness it is 

necessary to verify that the following step of the algorithm is always defined particularly at non-

deterministic steps where existence of some object – vertex or path – is required (this concerns for 

example existence of paths at lines 1-3 of Move-Agent). Some special care needs to be devoted to 

verifying that its existence is ensured in the unlocked part of the graph. 

It can be shown that the worst-case time complexity of the BIBOX algorithm is         with re-

spect to the input graph        . Again, the detailed proof can be found in the appendix. It needs 

to be observed that at most     agents need to be placed in regular handles. Each agent placement in 

the handle requires        rotations of the handle and the constant number of relocations of agents 

(Move-Agent). It is not difficult to observe that single rotation by one position requires        steps 

hence we have         steps per handle rotations. For each relocation of an agent, two vertex dis-

joint paths need to be found which can be done in worst-case time of       . Then agent needs to 

traverse the path. In the worst-case,        edges need to be traversed. An unoccupied vertex needs 

to be moved in front of the agent per each edge traversal. This has to be done carefully – for example, 

we cannot afford to search for a path to the front of the agent in the original graph, as it is too much 
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time consuming. Fortunately, the relocation of the unoccupied vertex can be carried out in        

steps using the knowledge of the handle decomposition. In total, we have time of            for 

placing agents into regular handles. 

Regarding the initial cycle, it is needed to observe that at most      exchanges of pairs of agents 

are needed while the single exchange consumes        steps. Altogether, the worst-case time com-

plexity is        . Exactly the same calculation can be done for determining the total number of 

moves which is also        . As the total number of moves is the upper bound for the makespan, the 

makespan of generated solution is         as well. 

The natural question is how to apply the BIBOX algorithm if there are more than two unoccupied 

vertices in the input instance (that is,          ). It is easy to adapt the algorithm to utilize addi-

tional unoccupied vertices when it is suitable and to ignore them if they are to cause unnecessary 

movement. The utilizing additional unoccupied vertices is done through replacement of the non-

deterministic selection of an unlocked unoccupied vertex (such as that at line 1 of Make-Unoccupied) 

by the selection of the nearest one (this is also done in the real implementation). On the other hand, if 

for example rotation of a handle is to be done due to unoccupied position in the handle, which is re-

dundant in fact, then such a movement is automatically ignored. More details about this adaptation of 

the algorithm for sparse environments are given in [27]. 

Some further optimizations should be used in the real-life implementation to reduce the makespan 

of the produced solution. Here, various assumption are explicitly enforced in order to make the pseu-

do-code simpler (for example, the precondition of having first two vertices of the initial cycle of the 

handle decomposition unoccupied before a pair of vertices is exchanged within the cycle - lines 4-6 

of Solve-Original-Cycle). This approach should be avoided and lazier approach should be adopted in 

the real-life implementation (in the case of exchanging agents, locations of unoccupied vertices 

should be detected implicitly in subsequent steps by more sophisticated branching of the code). The-

se kind of more complex branching of the algorithm is used in the experimental implementation. 

 The real-life implementation of procedures Solve-Regular-Handle and Solve-Original-Cycle 

should also use more opportunistic selection of vertices to store agents (vertex   - line 23 of Solve-

Regular-Handle and vertices  ,   - line 1 of  Solve-Original-Cycle). The nearest vertex to the target 

agent should be always used. Moreover, selection of these vertices within the procedure Solve-

Original-Cycle should be done not only at the beginning, but also in every iteration of the main loop. 

3.1.4. Making Solution Parallel 

A simple post-processing step needs to be done to obtain parallel solution of pCPF. Suppose to have 

a solution of   – denoted as   
     – as a sequence of moves; that is,   

                     

               with      and         meaning that an agent    moves from    to    at time 

step  . Actually, such a sequential solution is produced by the BIBOX algorithm. Now, we need to 

distinguish which pairs of moves can be executed in parallel and which must be executed one by one 

sequentially. Following two definitions captures this intuition. 

 

Definition 5 (concurrent moves). A move         ;             is concurrent with a move 

        ;             with     if      ,             , and there is no other move 

         in   
     with       such that                        . Concurrent move are 

denoted as                  . □ 

 



Pavel Surynek 
 

20 

The definition captures the fact that although the moves are interfering they can be executed at the 

same time. The relation of concurrence is anti-reflexive due to the requirement on different agents 

involved and anti-symmetric due to the ordering of moves within the sequential solution. 

 

Definition 6 (dependent moves). A move         ;              is dependent on a move 

        ;             with     if                  , either       or       

     , and there is no other move          in   
     such that       such that         

               . The notation of dependence is                  . □ 

 

The relation of dependence of moves is reflexive and anti-symmetric due to the ordering of moves 

within the sequential solution. It puts into relation moves that must be executed sequentially as they 

either concern the same agent or they interfere spatially through shared vertices. Notice that the defi-

nition of dependence is complementary to the definition of concurrence. 

It is not difficult to show that every function      
               that satisfies conditions 

that                         whenever                   and         

                whenever                   correctly assigns execution time steps to 

moves with respect to the definition of pCPF. Particular time-step assignment function   can be 

found by the critical path method [14] for instance. Schedule obtained from the critical path method 

is optimal in certain sense – details are discussed in [27]. 

3.2. BIBOX-: An Algorithm for a Bi-connected Graphs Exploiting Optimal Macros 

The drawback of the BIBOX algorithm is that it requires at least two unoccupied vertices. Observe 

that the second unoccupied vertex is necessary only in the last stage where agents are placed into the 

initial cycle. Thus, if there is only one unoccupied vertex, the BIBOX algorithm would be able to 

place almost all the agents except those whose goal positions are within the initial cycle. 

It is possible to apply the MIT algorithm [8] to finish placement of agents in the initial cycle. The 

MIT algorithm is capable of solving instances on all the non-trivial bi-connected graphs with just one 

unoccupied vertex (the instance with just one unoccupied vertex may be unsolvable; indeed, the MIT 

algorithm can detect such a case). Thus if we combine both algorithms, the combined algorithm can 

proceed as BIBOX for placing agents into all the internal vertices of handles and it can proceed as 

MIT over the remaining initial cycle and the first handle. Unfortunately, the process how MIT places 

agents generates excessively long sequences of moves (see experiments in Section 4). 

Despite above facts the idea of using alternative solving process for the initial cycle is still prom-

ising. Since the initial cycle and the first handle constitute a structurally simple graph (these graphs 

are called -like graphs in the following text), it is feasible to try to solve selected instances of pCPF 

over these graphs makespan optimally. The good candidate instances for optimal solving are those 

from which an overall solution of any instance over the graph can be composed. Moreover, the opti-

mal solutions to selected instances can be pre-computed and stored in the database for future use. 

Since solutions from that the overall solution is composed are optimal, it is reasonable to expect that 

the makespan of the resulting solution will be short as well. Nevertheless, this is a conjecture that 

should be proven. 

3.2.1. Algebraic Foundation of the Algorithm 

The bi-connected graph, whose handle decomposition consists of an initial cycle and a single handle, 

represents structurally the simplest bi-connected graphs over that the non-trivial rearrangement of 
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agents is possible supposed there is a single unoccupied vertex (the structurally simpler bi-connected 

graph is a cycle where only rotations of agents are possible). These graphs will be referred to as 

-like graphs. 

 

Definition 7 (-like graph). Let                  ,                  , and                   be 

three sequences of vertices satisfying that            . An undirected graph          

        for such three sets is constructed as follows:          and                             
                                                                                                                      

         }. An undirected graph         is called a -like graph if there exist three sets of vertices 

 ,  , and   as above such that   is isomorphic to         . □ 

 

The notation of the set union is used over sequences in 

the definition of the set of vertices   . This is an abbrevia-

tion for the union of ranges of individual sequences. No-

tice that          itself is a -like graph and          

may be identical to   if sets  ,  , and   consist of vertices 

of  . Hence, no distinction is made between   and 

         in the following text and the notation          

is used exclusively. An example of -like graph is shown 

in Figure 7. 

There are         non-isomorphic -like graphs over a 

set of vertices   (consider the set   linearly ordered and partitioned over sub-sets  ,  , and  , where 

these sub-sets form continuous sub-sequences within the ordered  ; there is         possibilities to 

place separation points among  ,  , and  ). However, the number of all the possible instances of 

CPF with a single unoccupied vertex on a fixed -like graph           is       since the differ-

ence between the initial and the goal arrangement can be regarded as a permutation of      elements. 

Hence, it is not feasible to pre-compute and to store optimal solutions to all the instances of the prob-

lem on a fixed -like graph. The number of selected instances should be bounded polynomially to 

make their pre-computation and storing feasible. At the same time, it should be possible to compose 

solution to any instance over the -like graph from the solutions to selected instances. 

Without loss of generality, assume that the unoccupied vertex within the initial and the goal ar-

rangement of an instance over           is always     (the unoccupied vertex can be simply relo-

cated to any vertex). The algebraic structure of such instances over   is isomorphic to the group of all 

the permutations of        elements which is called a symmetric group on        elements and it 

is denoted             [2, 17]. 

A transposition is a permutation, which exchanges a pair of elements and keeps other elements 

fixed. It is well known that             can be generated by the set of transpositions. A permuta-

tion is called odd if it can be composed of an odd number of transpositions. A permutation is called 

even if it can be composed of an even number of transpositions. A permutation is either odd or even 

but not both. In fact, if a permutation is assigned a sign by a     function which is    if the permuta-

tion is even and    if the permutation is odd, then     represents a group homomorphism between 

            and the group                  where multiplication   corresponds to the product 

of two permutations, neutral element    corresponds to the identical permutation and unary minus – 

corresponds to the inverse permutation. 

                 
                 
             

Figure 7. An example of -like graph. -like 

graphs are bi-connected graphs consisting of a 

cycle and one handle. 

        

    

    

    

   

    

             
 



Pavel Surynek 
 

22 

Another simple fact, that can be derived from above statements, is that the set of all an even per-

mutations on the same set of elements forms a proper sub-group of            ; it is called an 

alternating group on        elements and it is denoted as            . 

A rotation along a 3-cycle is a permutation that rotates given three elements and keeps other 

fixed. It is easy to compose any even permutation from rotations along 3-cycles on the same set of 

elements [8]. As rotation along a 3-cycle itself it is an even permutation it can never generate an odd 

permutation. 

The number of distinct transpositions over   elements is       and the number of distinct rota-

tions along 3-cycles over   elements is      . This is polynomial hence, optimal solutions of corre-

sponding instances seem to be good candidates for storing into the database. Moreover, if the corre-

sponding instances are solvable, then they satisfy the property that a solution to any (in the case of 

transpositions) or almost any (in the case of 3-cycle rotations) instance on the same graph can be 

composed of them. 

Suppose to have a -like graph                  with                  ,             

      , and                   and a set of agents                     for the following three 

definitions. 

 

Definition 8 (even and odd case). Let   
  be an initial arrangement of agents such that   

         

     (that is,     is initially unoccupied) and let   
  be a goal arrangement of agents such that 

  
              (that is,     is finally unoccupied). If   

  forms an even permutation with respect 

to   
 , then an instance of pCPF                  

    
   is called an even case. If   

  forms an 

odd permutation with respect to   
 , then the instance   is called an odd case. □ 

 

Definition 9 (transposition case). Let   
  be an initial arrangement such that   

              

(that is,     is initially unoccupied) and let   
  be a goal arrangement such that there exist         

with       for which it holds that   
        

          
        

                      

      
       

     (agents    and    are to be exchanged while locations of other agents are 

kept; consequently     is finally unoccupied). Then an instance of pCPF                  
    

   

is called a transposition case with respect to    and   . □ 
 

 
 

Figure 8. An example of transposition and 3-cycle rotation cases a -like graph. The transposition case is shown for verti-

ces        and       . The 3-cycle rotation case is shown for vertices               , and       . A solution to any 

instance over -like graph with one vertex unoccupied can be composed of solutions to transposition and 3-cycle rotation 

cases. 
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Definition 10 (3-cycle rotation case). Let   
  be an initial arrangement such that   

              

(    is initially unoccupied). Let   
  be a goal arrangement such that there exist pair wise distinct 

           and it holds that   
        

          
        

          
        

            

                     
       

     (agents   ,   , and    are to be rotated while posi-

tions of other agents are kept;     is finally unoccupied). Then an instance of pCPF      

            
    

   is called a 3-cycle rotation case with respect to   ,   , and   . □ 

 

See Figure 8 for illustrations of transposition case and 3-cycle rotation case. Notice, that both cas-

es would be worthless if they are not solvable. Fortunately, several positive results regarding solva-

bility of these cases are shown in [8]. Following propositions and corollaries recall some of them 

(without proofs). 

 

Proposition 2 (solvability of an odd case) [8]. An odd case of pCPF                 
    

   with 

                  is solvable if and only if   contains a cycle of an odd length.  

 

Let the -like graph          with                   be denoted as         . It repre-

sents a special case where some instances over it are solvable and some are unsolvable. The case of 

         will be treated separately. 

Since the transposition is an odd permutation, the following corollary is a direct consequence of 

the above proposition. 

 

Corollary 1 (solvability of transposition case) [8]. A transposition case                 
    

   

with          non-isomorphic to          is solvable if and only if          contains a cycle of an 

odd length.  

 

Proposition 3 (solvability of an even case) [8]. An even case                 
    

   with 

         non-isomorphic to          is always solvable.  

 

Analogically, since rotation along 3-cycle is an even permutation, the following corollary is a di-

rect consequence of the above proposition. 

 

Corollary 2 (solvability of 3-cycle rotation case) [8]. A 3-cycle rotation case                 
   

  
   with          non-isomorphic to           is always solvable.  

  

Similar results hold not only for -like graphs, but also for the more general class of non-trivial 

bi-connected graphs non-isomorphic to          [8]. The important properties directly exploited by 

the algorithm are that if the input graph does not contain a cycle of an odd length and the initial and 

the goal arrangement of agents form an odd permutation then the instance is unsolvable. Similarly, if 

the input and the goal arrangements form an even permutation (and the input graph is non-

isomorphic to         ) then the instance is always solvable (observe that, this is the corollary of the 

BIBOX algorithm and Proposition 3). 

The following propositions are important with respect to the length of the overall solution com-

posed of the optimal solutions to the transposition cases and 3-cycle rotation cases. Propositions ap-

peared in [2, 8, 17] but most likely they are just a general knowledge. 
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Proposition 4 (solving an odd case). A solution to any odd case on a -like graph           can 

be composed of at most        solutions to transposition cases on the same graph.  

 

Similarly, a solution of an even case can be composed of at most        solutions to transposi-

tion cases as well. 

 

Proposition 5 (solving an even case). A solution to any even case on a -like graph           can 

be composed of at most        solutions to 3-cycle rotation cases on the same graph.  

 

 Proofs are shown within the pseudo-code of the BIBOX- algorithm. The above facts justify that 

transposition and 3-cycle rotation cases are suitable for optimal solving. The corresponding optimal 

solutions are hence good building blocks for solutions to general instances over -like graphs. It is 

out of scope of this work to give any detailed description of how to compute optimal solutions of 

instances over -like graphs. Applications of several variants of iterative deepening search for this 

task were studied in [21]. 

The case of -like graph          represents a situation where there is no simple characterization 

of solvable instances. Since it is a small graph, it is feasible to pre-compute and to store optimal solu-

tions to all the solvable instances over it. 

The solving process of the new algorithm over the initial cycle and the first handle is based on the 

knowledge of how to solve instances over -like graphs. In this context, it is necessary to guarantee 

that insolvability of an sub-instance over          does not contradict solvability of the instance as 

the whole if the initial cycle and the first handle unluckily become isomorphic to         . The fol-

lowing lemma states that this contradictory case can be always avoided. This crucial treatment en-

sures the upcoming algorithm to proceed correctly. The proof the lemma enumerates all the possible 

cases and for its length is omitted here (in can be found [27]). 

 

Lemma 3 (avoiding         ). If a non-trivial bi-connected graph   is non-isomorphic to          

then it subsumes a -like sub-graph          non-isomorphic to         . Moreover, if   contains 

an odd cycle then it subsumes          non-isomorphic to          that additionally satisfies that 

          (that is, sets   and   together form an odd cycle). Having a -like sub-graph satisfying 

above conditions, there exists a handle decomposition of                   of   such that 

              . (      denotes the sub-graph of   constructed by addition of the handle    

to the initial cycle   ).  

3.2.2. Pseudo-code of the BIBOX- Algorithm 

The new algorithm is called BIBOX- according to the concept of -like graph. Let      

          
    

   be an input pCPF instance on a bi-connected graph with a single unoccupied ver-

tex. If   is non-isomorphic to          and it subsumes a cycle of an odd length then a handle de-

composition                   of   such that    is of an odd length and       is non-

isomorphic to          is computed. Lemma 3 guarantees that this is possible. If   is isomorphic to 

         then       corresponds to  . If   does not contain an odd cycle then some arbitrary han-

dle decomposition   is computed. 

As in the case of BIBOX algorithm, the main phase of the algorithm requires that the finally unoc-

cupied vertex is located in the initial cycle   . Thus, a function Transform-Goal is applied to modify 

the goal arrangement   
  by shifting goal locations of agents along a path   to relocate the unoccu-
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pied vertex into   . The modified instance is then solved by the process implemented by the 

BIBOX- algorithm. The solution is finished by calling a function Finish-Solution which shifts agents 

back along the path  . 

 The BIBOX-  algorithm proceeds according to the handle decomposition   from the last handle 

   to the second handle   . The process of placement of agents within the individual handles of the 

handle decomposition is the same as in the case of the BIBOX algorithm. The problem of reaching 

the goal arrangement of agents within the first handle    and the initial cycle    is solved as an in-

stance over -like graph formed by    and   . It is supposed that the optimal solutions to all the 

solvable transposition and 3-cycle rotation cases over -like graphs of the size up to the certain limit 

are pre-computed and stored in the database. Next, it is supposed that the optimal solutions to all the 

instances over the -like graph          are pre-computed into the database as well. A solution to an 

instance over the -like graph is composed of the corresponding optimal solutions stored in the data-

base. If the required record is not stored in the database (which may happen when the size of the 

-like graph is greater than the limit) an alternative solving process must be used. For example, the 

solving process implemented by the MIT algorithm can be employed in such a case. 

The pseudo-code of the BIBOX- algorithm is listed as Algorithm 3. It reuses primitives, func-

tions, and procedures introduced within the context of BIBOX. For simplicity, it is supposed that all 

the required optimal solutions are stored in the database (so there is no treatment when the size of the 

-like graph exceeds the limit). 

The database with optimal solutions to selected instances over -like graphs is represented by 

three tables:       
 ,       

 , and         
 . Optimal solutions to transposition cases over a particular 

-like graph   are stored in the table       
  – records are addressed by a pair of vertices in which 

agents are transposed. Similarly, the optimal solutions to 3-cycle rotation cases are stored in the table 

      
  – records are addressed by a triple of vertices in which agents are rotated. Finally, the table 

        
  contains optimal solutions to all the solvable instances over the -like graph          - rec-

ords are addressed by permutations determined by the difference between the initial and the goal 

arrangement of agents (a function difference is used for calculating this differencing permutation). 

 
Algorithm 3. The BIBOX- algorithm. The algorithm solves a given pCPF on a non-trivial bi-connected graph with exactly 

one unoccupied vertex. It employs a pattern database containing optimal solutions to sub-problems over the initial cycle and 

the first handle. Functions and procedures from Algorithm 1 and Algorithm 2 are reused here. 

 

function BIBOX--Solve             
    

   : pair 

/* Top level function of the BIBOX-  algorithm; solves 

a given instance of pCPF with a single unoccupied vertex. 

Parameters:   - a graph modeling the environment, 

  - a set of agents, 

  
  - an initial arrangement of agents, 

  
  - a goal arrangement of agents. */ 

1: if   contains a cycle of an odd length then 

2:  let                   be a handle decomposition of   

3:   such that    is of an odd length and       is 

4:   a -like sub-graph non-isomorphic to          if possible 

/* if this is not possible then   is isomorphic to          */ 

5: else 

6:  let                   be a handle decomposition of   

  /*       is always non-isomorphic to          */ 

7:    
      Transform-Goal       

      

8:     

9:      
  

Handle decomposition 
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10: for             do 

11:  if        then 

12:   Solve-Regular-Handle    

13: let       
    

       

         

14: Lock     

15: Unlock        

16: Make-Unoccupied     

17: let  ,   be two vertex disjoint paths connecting 

18:     and    in    

19:              
20:              
21: -BOX-Solve                      

   

22: Finish-Solution    

23: return       
    

      
 
   

 

procedure -BOX-Solve               
    

   

/* Solves a sub-problem over a given -like subgraph; a set of 

goal vertices into which agents must be placed is specified. 

Parameters:           - a -like subgraph modeling the sub-problem 

       - a set of goal vertices 

      
  - an initial arrangement of agents 

      
  - a goal arrangement of agents 

(only   
     is considered) */ 

1: let                  

2: let                        
         

3: if                   then 

4:             
  difference   

    
    

5:  if       then fail /* the instance is unsolvable */ 

6:  Apply-Macro        

7: else 

8:       
  

9:  if    contains a cycle of an odd length then 

10:   for                do 

11:    if          
      then 

12:         Apply-Macro       
           

            

/*   does not contain any odd cycle */ 

13:  else 

14:   if   
  constitutes an odd permutation w.r.t.    then 

15:    fail /* the instance is unsolvable */ 

/*   
  constitutes an even permutation w.r.t.    */ 

16:   else 

17:    for                do 

18:     if          
      then 

19:        let             
        

          
       

20:            Apply-Macro       
           

              

 

function Apply-Macro      : assignment 

/* Applies a given sub-solution on a global arrangement    

and on an arrangement over -like subgraph. 

Parameters:     - a solution of a sub-problem 

   - arrangement over -like subgraph */ 

1: let                               

2: for           do 

3:  Move-Agent-Unoccupied         

4:                

5:  return    

 

A -like graph            
matched over    and   . 

   
 

      
 

      
 

  
 

  

  

   
 

          
 

   

   

                   

   
   

   
 

Transposition case over  

         

       
 

   
 

   
 

   
 

   
     

 

3-cycle rotation case over  
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The main framework of the algorithm as it was described above is represented by the function 

BIBOX--Solve which gets a pCPF instance on a non-trivial bi-connected graph               

  
    

   with just a single unoccupied vertex as a parameter and returns the length of the solution and 

the solution itself. The difference from the original BIBOX algorithm is that the handle decomposi-

tion is computed with a special care (lines 1-6) and the final solving process (lines 13-21) over the 

-like graph formed by    and    exploits the solution database. The middle section of the whole 

solving process (lines 10-12), when agents are placed into handles, is the same as in the case of the 

BIBOX algorithm. To mitigate the need of care about the location of an unoccupied vertex, the first 

connection vertex of the handle    is vacated (lines 14-16) – this vertex correspond to the vertex     

from the definition of the -like graph. Recall, that the transposition, the 3-cycle rotation, and the 

case of          suppose the unoccupied vertex to be right there. 

An auxiliary function Apply-Macro is used to apply a record   from the solution database (the op-

timal solution for a sub-instance is called a macro in this context) on the current arrangement of 

agents    in a given -like graph as well as on the global current arrangement represented by    and 

  . The optimal solution has the form of a sequence of moves where the move is an ordered pair of 

vertices of   - the first vertex contains an agent to be moved; the second vertex is unoccupied at the 

time step of execution of the move and represents the target vertex. The execution of the macro over 

the current arrangement is carried out by Move-Agent-Unoccupied; the function also constructs the 

next step in construction of the output solution. 

The very novel part in comparison with the BIBOX algorithm is the process of reaching the goal 

arrangement over a -like graph. This is represented by a function -BOX-Solve. The function gets as 

parameters the -like graph itself as           an initial and a goal arrangement of agents as   
  and 

  
  respectively, and a set of goal vertices as    which is a sub-set of vertices of  . 

If   is isomorphic to          (lines 3-6) then the goal arrangement is reached at once using a 

record from the database. It may happen that the required record is not found in the database (line 5). 

In such a case, the algorithm terminates with the answer that the given instance is unsolvable. A spe-

cial function difference is used in this execution branch. The function calculates a permutation from 

two arrangements of agents. The interpretation of a permutation calculated by the difference function 

is that it transforms an arrangement given as the first argument to an arrangement given as the second 

argument. 

If   is non-isomorphic to          and it contains an odd cycle (lines 7-12) then all the goal ar-

rangements are reachable. The goal arrangement is reached by composing several transposition cases. 

This is done by traversing the set of agents that should be placed. If the current location of an agent 

given by    differs from its goal location given by   
 , then agents at these two locations are ex-

changed using a solution for the transposition case from the database of solutions. 

If   is non-isomorphic to          and all the subsumed cycles are of an even length (lines 14-20) 

then the treatment of unsolvable cases must be done. If the goal arrangement   
  forms an odd per-

mutation with respect to the initial arrangement    then the given instance is unsolvable (lines 14-

15). The algorithm terminates with the negative answer in such a case. If this is not the case (that is, 

  
  forms an even permutation with respect to   ) then the goal arrangement is reached using 3-cycle 

rotations (lines 17-20). 

This is done almost in the same way as in the case of transposition cases in fact. Again, agents 

that should be relocated are traversed. The relocation of an agent    to its goal location   
      from 

       is done by a rotation along a 3-cycle formed by       ,   
     , and  , where   is a vertex 
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different from       ,   
     , and also different from all the goal vertices of all the already placed 

agents. Notice, that it is sufficient to traverse all the agents except last two. They must be inevitably 

placed to their goal vertices after the last 3-cycle rotation since otherwise the goal arrangement   
  

forms an odd permutation with respect to    which has been ruled out at the beginning of this branch. 

3.2.3. Summary of Theoretical Properties and Extensions of the BIBOX- Algorithm 

The detailed theoretical analysis of soundness and completeness of the BIBOX- algorithm can be 

found in [27]. The crucial ingredient for the correctness of the algorithm is represented by Lemma 3. 

 The worst-case time complexity of the algorithm is         [27] with respect to the input instance 

               
    

  . The makespan is also         [27]. This result can be obtained from the 

fact that the length of optimal solutions of special cases is bounded by        [8]. As        optimal 

solutions of special cases are necessary, the upper bound of         is obtained. 

 If the size of the database containing optimal solutions is not accounted, the space required by the 

algorithm is of            in the worst-case. The space required by the part of the database where 

optimal solutions to          are stored is      (the size of         
 ) and the space required by the 

part of the database where solutions to transposition and 3-cycle rotation cases over a -like graph 

                 are stored is          (the size of       
 ) and          (the size of       

 ) 

respectively. 

 Practically, it is better to use slightly adapted special cases. Observe that special cases as de-

scribed above preserve all the agents except the affected pair or triple at their original positions. This 

is not necessary in fact, since only agents that already reached their goal positions need to be pre-

served. Preserving other agents just imposes additional constraints on the solution and may prolong it 

unnecessarily. The no less important fact is that it is easier to find a less constrained optimal solution. 

The modified special cases, where relocation of agents that have not yet reached their goal positions 

are neglected, are called a weak transposition case and a weak 3-cycle rotation case respectively. The 

detailed description of weak special cases is given in [27]. 

4. Experimental Evaluation 

As algorithms BIBOX and BIBOX- were primarily developed as an alternative to the MIT algorithm 

[8], the experimental evaluation will be primarily aimed on the competitive comparison of BIBOX 

and BIBOX-  with MIT. Nonetheless, we also provide comparison with the WHCA* algorithm [18] 

to obtain more complete image. 

All the tested algorithms were implemented in C++. The implementation of algorithms BIBOX 

and BIBOX-  follows the presented pseudo-code. Several optimizations mentioned in Section 3.1.3 

were adopted in the implementation of BIBOX and BIBOX-  algorithms as well. 

 The database of optimal solutions used by the BIBOX-  algorithm has been generated on-line (on 

demand) by a variant of IDA* algorithm enhanced with learning [21]. Details of this algorithm are 

out of scope of this study. Pseudo-code and experimental analysis can be found in [21]. Notice, that it 

is a time consuming task to find an optimal solution to a pCPF instance even on a small -like graph. 

Therefore, the timeout of     seconds was used after that the solving process switched to the MIT 

style. The database with optimal solutions should be pre-computed off-line in the real-life applica-

tions. 

 The MIT has been re-implemented according to [8]. The algorithm is designed for general graphs, 

however the major technique concerns bi-connected partitions. Briefly said, the algorithm finds a 

configuration of vertices in the input graph on that a 3-cycle rotation is possible. At the same time, it 
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is ensured that every triple of agents can be relocated to this configuration and back to their original 

locations. By composing these three basic operations – relocation to the 3-cycle rotation configura-

tion, 3-cycle rotation there, and relocation back to original locations – we are actually able to make 

3-rotation of every triple of agents. This consequently means that agents can be relocated according 

to every even permutation by the outlined process (see also Proposition 5). If additionally there is an 

odd cycle in the input graph, all the permutations are possible. 

Similar optimization techniques as in the case of the BIBOX algorithm have been used. When an 

unoccupied vertex was necessary, the nearest unoccupied vertex was found and relocated to the loca-

tion where needed. More details about the re-implementation of the MIT algorithm can be found in 

[23]. 

The WHCA* algorithm was also re-implemented by ourselves. It searches for a path for each 

agent individually while spatial-temporal positions occupied by the already scheduled agents are 

avoided. This algorithm is inherently incomplete since some agents may block another agent and 

prevent it from moving; thus, only few of tested setups were solvable by this algorithm. 

 In order to allow reproducibility of all the presented results the source code and supporting data is 

provided at the web site: http://ktiml.mff.cuni.cz/~surynek/research/j-multirobot-2010. Additional 

experimental results and raw experimental data are provided as well. 

 Experimental evaluation has been performed on two computers. The first computer has been used 

to generate experimental results regarding runtime - runtime configuration
 1
; the second computer has 

been used to generate all the remaining results - default configuration
2
. 

4.1. Makespan Comparison 

The first series of experiments is devoted to comparison of the makespan of solutions generated by 

tested algorithms. All the tested algorithms were used to generate a sequential solution of a given 

instance, which has been parallelized subsequently by the critical path method. The result was a par-

allel solution complying with the definition of the solution of pCPF. A set of testing instances of 

pCPF consists of instances on randomly generated bi-connected 

graphs and of instances on grids. 

A randomly generated bi-connected graph has been generated ac-

cording to its handle decomposition. First, a cycle of random length 

from uniform distribution where certain minimum and maximum 

lengths were given has been generated. Then a sequence of handles 

of random lengths from uniform distribution (again the minimum 

and the maximum length of handles was given) has been added. 

Each handle has been connected to randomly selected connection 

vertices in the currently constructed graph. The addition of handles 

has terminated when the required size of the graph has been reached. 

An instance on a randomly generated graph itself further consists of 

random initial arrangement and goal arrangement of agents over the 

graph where at least the given number of vertices remains unoccu-
 
1 Runtime configuration: 2x AMD Opteron 1600 MHz, 1GB RAM, Mandriva Linux 10.1, 32-bit edition, gcc version 3.4.3, compilation 

with –O3 optimization level. 

 
2 Default configuration: 4x AMD Opteron 1800 MHz, 5GB RAM, Mandriva Linux 2009.1, 64-bit edition, gcc version 4.3.2, compilation 

with –O3 optimization level. 

        as a grid     

Figure 9. An illustration of handle 

decomposition of a grid graph. The 

ordering of the addition of individ-

ual handles is depicted by numbers 

in vertices. Three types of han-

dles/cycles are used. 
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pied. The handle decomposition used by solving algorithms was exactly that one used for generating 

the graph. 

The situation with instances over the grid is similar. The square 4-connected grid graph of a given 

size has been generated together with a random initial and a goal arrangement of agents. Again, a 

given number of vertices remain unoccupied. First, an initial cycle with   vertices was constructed 

(placed on the left upper corner of the grid); then handles were added to fill in the grid successively 

according to its rows and columns. The first row and the first column were added at the beginning 

(handles with   internal vertices). Then rows of the grid were constructed by adding handles from the 

left to the right and from the top to the bottom (handles with   internal vertex). See Figure 9 for the 

ordering of addition of vertices in the construction of the grid. 

 

 

 
 

Figure 10. Makespan comparison of solutions to instances over random bi-connected graphs. Four algorithms are com-

pared: the standard BIBOX, a variant of BIBOX where the last phase when agents are placed into the -like graph is solved 

by MIT – BIBOX/MIT, the MIT algorithm, and WHCA* with the window size of 16. Solutions were parallelized using the 

presented parallelism-increasing scheme [27] (critical-path method). Four setups of random bi-connected graphs are shown 

– random lengths handles have uniform distribution of the range:     ,     ,      , and       respectively. The makespan 

tends to decrease for the increasing number of unoccupied vertices. WHCA* was able to solve only several sparsely popu-

lated instances. 

 

Results shown in Figure 10 and Figure 11 are targeted on the comparison of the makespan. Re-

sults in Figure 10 show makespans of solutions of instances over randomly generated bi-connected 

graphs. Graphs of size up to     vertices were used (the graph had been grown by addition of han-

dles until the size of     vertices had been reached). Four graphs, which differ in the average length 

of the initial cycle and handles of the handle decomposition, were used. Lengths of the initial cycle 

and handles have the uniform distribution of the range:     ,     ,      , and      . The length of the 
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handle is equal to the number of its internal vertices.  Figure 11 is devoted to structurally regular 

graphs – grid graphs of the size    ,      , and       were used. 

Four algorithms were compared: the standard BIBOX, a variant of BIBOX where the last phase 

when agents are placed into the θ-like graph was solved by MIT – BIBOX/MIT, the MIT algorithm, 

and WHCA* with the window size of 16. 

Random initial and goal arrangements are obtained as a random permutation of agents in the ver-

tices of the graph. The random permutation is generated from identical one by applying quadratic 

number of transpositions. This process generates random arrangements of the appropriate quality (of 

randomness) for the use in the test. 

 

 

 
 

Figure 11. Makespan comparison of solutions of instances over square grids. Four algorithms are compared: the standard 

BIBOX, BIBOX/MIT, MIT, and WHCA*(16) on three grids:    ,      , and      . 

 

It can be observed that the BIBOX algorithm generates solutions of the makespan approximately 

   times to     times smaller than that of solutions generated by the MIT algorithm. In the setup 

with random bi-connected graphs, the difference between BIBOX and MIT is becoming smaller as the 

size of handles increases. In the setup with the grid graph, the BIBOX algorithm generates solutions 

that have approximately    times smaller makespan than that of the MIT algorithm. A steep decline 

of the makespan can be observed when the portion of unoccupied vertices reaches approximately 

   . This is some kind of a phase transition when agents are becoming arranged sparsely enough 

over the graph so that there are almost no interactions between them (that is, they do not need to 

avoid each other). This phase transition seems to depend on the average size of handles – for the 

smaller size of handles the ratio of the number of agents to the number of vertices characterizing this 

phase transition tends to be higher. The WHCA* algorithm generates better solutions than BIBOX in 
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most cases (the ratio between the makespan of BIBOX and WHCA* is from     to    ). However, 

WHCA* manages to do so only on sparsely occupied environments (number of unoccupied vertices 

more than    ). As WHCA* generates near optimal solutions with respect to the makespan we also 

have certain indication how far from the optimum solutions generated by BIBOX algorithms are. Let 

us note, that the most difficult instance from our test suite took WHCA* approximately 2.0 seconds 

on the runtime configuration (80 agents in the       grid). 

 

 
 

Figure 12. An evaluation of the benefit of the use of weak special cases instead of the standard ones. Four variants of the 

BIBOX- algorithm are compared: BIBOX-/T (the standard transposition case is used preferably), BIBOX-/3(the standard 

3-cycle rotation case is used preferably), BIBOX-/T|weak (the weak transposition case is used preferably), and BIBOX-

/3|weak (the weak 3-cycle rotation case is used preferably). The difference of the makespan of solution produced by these 

algorithms from those produced by the BIBOX algorithm is shown (values below zero indicate that the tested algorithm was 

better than BIBOX). Four random bi-connected graphs with the increasing number of unoccupied vertices are used; they 

have handles of lengths with uniform distribution of ranges:     ,     ,     , and      respecitvely. To make the difference 

visible, results for individual algorithms are sorted in descending order. 

 

The BIBOX/MIT algorithm exhibits performance influenced by the size of the initial -like graph. 

The larger is the graph the worse is the performance of the BIBOX/MIT algorithm. This behavior can 

be observed from the results shown in Figure 10 and Figure 11 using the fact that the longer handles 

induce larger initial -like graph. Grid graphs represent the extreme case – almost all the handles are 

of the size  . Both algorithms – BIBOX as well as BIBOX/MIT – generate solutions of the very simi-

lar makespan (the only difference is observable in the case of grid     with low occupation where 

BIBOX/MIT is marginally better). 

Regarding the makespan, the BIBOX style solving process represents the better alternative than 

MIT when at least two unoccupied vertices are provided. 
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An interesting question is whether the use of optimal solutions to weak cases instead of standard 

ones does really help. Results reported in Figure 12 are devoted to this question. A comparison of the 

BIBOX algorithm with the variants of the BIBOX- algorithm is shown. 

Four variants of the BIBOX- algorithm are compared: BIBOX-/T (the standard transposition 

case is used preferably), BIBOX-/3 (the standard 3-cycle rotation case is used preferably), BIBOX-

/T|weak (the weak transposition case is used preferably), and BIBOX-/3|weak (the weak 3-cycle 

rotation case is used preferably). Notice, that the variant presented in the pseudo-code as Algorithm 3 

prefers standard transposition cases. If the transposition case is not possible to apply, the correspond-

ing 3-cycle rotation case is used instead (which is always possible). Other variants implement the 

preference in the analogical way. 

The comparison in Figure 12 shows difference of the makespan of solution generated by men-

tioned three variants of BIBOX- from the makespan of the corresponding solution generated by the 

standard BIBOX (negative values of the difference indicate that BIBOX generated solution with the 

greater makespan). Four random bi-connected graphs were used for the experiment; the number of 

vertices was up to     (again, the graph had been grown by addition of handles until the size of     

vertices had been reached). The length of the initial cycle and handles has been selected randomly 

with the uniform distribution of ranges:     ,     ,     , and     , respectively. The relatively small 

ranges are used in order to be able to calculate all the optimal solutions of the special cases in the 

timeout of    . The size of the -like graph, on that special cases appear, directly corresponds to the 

length of the initial cycle and handles of the handle decomposition. Makespans have been collected 

for instances with   to       unoccupied vertices for each graph        . To make differences 

among performances of tested algorithms clearly visible, the difference in makespans has been sorted 

in the descending order. The difference in makespan tends to be greater for instances with few unoc-

cupied vertices (hence, it is expected that these makespans are sorted to the left or to the right margin 

in each plot). 

Results shown in Figure 12 can be interpreted as that solutions with the smallest makespan are 

produced by BIBOX-/T|weak closely followed by BIBOX-/3|weak. Hence, it is possible to con-

clude that the use of optimal solutions to weak special cases is beneficial. Moreover, a solution to a 

weak special is easier to generate since it is less constrained than the solution of the corresponding 

standard case. 

Since values of the makespan differences deviate from the uniform distribution around   margin-

ally, it is also possible to conclude that variants of BIBOX- does not improve the makespan signifi-

cantly in comparison with BIBOX on instances with at least two unoccupied vertices. Thus, the use of 

BIBOX- is substantiated only for instances with just a single unoccupied vertex (where the BIBOX 

algorithm is not applicable). 

4.2. Parallelism Evaluation 

The exact meaning of the term parallelism is the value obtained as the ratio of the total number of 

moves divided by the makespan. The result is the average number of moves performed at each time 

step. High parallelism is typically desirable since it implies the smaller makespan. 

In the experiments, we observed how the average parallelism changes while the number of unoc-

cupied vertices is increasing. The same set of setups as in the case of makespan evaluation was used. 

Results regarding bi-connected graphs are shown in Figure 13 results regarding grids are shown in 

Figure 14. The parallelism-increasing algorithm [27] was used to post-process the solutions. In case 

of WHCA* the initial solution was already parallel but in the sense of PMG; we parallelized it fur-

ther according to pCPF (which however made almost no change as in instances solvable by WHCA* 

agents were rather isolated). 
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On random bi-connected graphs, the parallelism of solutions slightly increases as the number of 

unoccupied vertices reaches approximately 50% occupancy. This behavior is yet more expressed on 

the grid graphs. The increase of the parallelism is steeper in this case. When the number of unoccu-

pied vertices is higher than some threshold a different behavior can be observed. The fewer agents 

are in the graph the lower is the parallelism. It can be also observed that parallelism correlates with 

the average length of handles of the handle decomposition – this is caused by the fact that all the 

agents in the handle are moving at once. Another characteristic, which the parallelism correlates 

with, is the diameter [33] of the graph. This correlation can be observed on tests with grid graphs in 

Figure 14. The reason for this correlation is the fact that all the agents along a path connecting two 

vertices in the graph moves at once when the unoccupied vertex is relocated. The average length of 

such paths correlates with the diameter of the graph. 

 

   

   
 

Figure 13. Average parallelism of solutions generated by tested algorithms for instances over random bi-connected 

graphs. BIBOX, BIBOX/MIT, MIT, and WHCA* are compared. Four random bi-connected graphs were used – random 

lengths of initial cycle and handles of the handle decomposition have uniform distribution of the range:     ,     ,      , 

and      . The average parallelism is the total number of moves divided by the makespan. 

 

Regarding the MIT algorithm, it can be observed that the parallelism of its solutions decreases al-

most linearly with the increasing number of unoccupied vertices. Without providing further details, 

the explanation of this behavior is that all the phases of the algorithm are rather homogenous. Thus, 

as occurrence of agents is getting linearly sparser the parallelism decreases almost linearly. Recall, 

that the BIBOX algorithm behaves differently. All the movements take place in the unfinished part of 

the graph only, which is relatively getting smaller as the BIBOX algorithm proceeds. 
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Generally, it can be concluded from Figure 13 and Figure 14 that solutions generated by the 

BIBOX and BIBOX/MIT algorithms allow higher parallelism than that of MIT. Consequently, it can 

be observed together from Figure 10, Figure 11, Figure 13, and Figure 14 that the total number of 

moves, which solutions generated by BIBOX and BIBOX/MIT consist of, are still order of magnitude 

smaller than that of MIT. Thus, the performance of the BIBOX algorithms is not caused by the higher 

parallelism but also by the smaller size of the generated sequential solutions. 

Results regarding WHCA* indicate that typically all the agents move. The explanation is that the 

no-op (that is, an agent does not move) is chosen only if it is necessary to avoid another agent, which 

is relatively rare situation. Otherwise a move through that an agent can approach its goal is chosen. 

On random bi-connected graphs WHCA* tends to reach higher parallelism than the other tested algo-

rithms. On grid it seems that no simple statement can be done. 

 

   

  
 

Figure 14. Average parallelism comparison of solutions of instances over square grids. BIBOX, BIBOX/MIT, MIT, and 

WHCA* are compared on three grids:    ,      , and      . 

  

The development of the number of movements per time step called step parallelism is shown in 

Figure 15. This experiment was done with the BIBOX algorithm only on a random bi-connected 

graph where lengths of the initial cycle and handles were randomly selected with the uniform distri-

bution with of the range     . There were exactly two unoccupied vertices in the input graph. 

Peaks in Figure 15 correspond to parallel movements along long paths. The density and height of 

peaks is getting slightly smaller as the algorithm proceeds. This is caused by the fact that the part of 

the graph affected by movements is getting smaller. Other values correspond to various rotations 

along cycles are done intensively by the algorithm. The absolute number of parallel movements cor-
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responding to these rotations does not change as the algorithm proceeds (the average size of a cycle 

in the unfinished part of the graph is still the same since the graph was generated uniformly). 

 

 
 

Figure 15. Step parallelism development of in a solution generated by BIBOX. The random bi-connected graph was gener-

ated with the length of the initial cycle and handles having uniform distribution of the range     . There were exactly two 

unoccupied vertices. The development of the step parallelism (number of moves per time step) over time is shown. 

4.3. Scalability Evaluation 

Scalability tests were aimed on the makespan of generated solution and the overall runtime necessary 

to produce the parallel solution while the number of unoccupied vertices was fixed to 2 and the size 

of the graph was varying. The overall time is the time necessary to produce a sequential solution plus 

the time needed to increase its parallelism. 

The BIBOX, BIBOX/MIT, BIBOX-/T|weak, BIBOX-/3|weak, and MIT were compared. Algo-

rithms BIBOX-/T and BIBOX-/3 were ruled out since they are outperformed by BIBOX-/T|weak 

and BIBOX-/3|weak respectively as it has been shown in Section 4.1. BIBOX-/T|weak and BIBOX-

/3|weak are slightly faster supposed that all the records in the database of optimal solutions are pre-

computed off-line (the shorter resulting solution needs to be produced than in the case of BIBOX-/T 

and BIBOX-/3). However, they are significantly faster if the optimal solutions need to be computed 

on-line (on demand) [21, 22] as the optimal solution to weak special case is easier to find than the 

optimal solution to the standard special case. 

Tests targeted on scalability used the different setup of instances of pCPF than previous tests. 

Now, approximately     instances on bi-connected graphs with the size varying from    to     

vertices were generated. Random lengths of the initial cycle and handles of the handle decomposition 

were selected randomly from uniform distribution with ranges:     ,…,      . Such selection guaran-

tees that graphs with short handles as well as graphs with long handles are included. There were ex-

actly two unoccupied vertices in all the tested instances. 

Scalability evaluation for the makespan is shown in Figure 16. The makespan for the increasing 

number of vertices is shown. Experiments in Figure 17 used the same setup (the same set of instanc-

es); the difference from Figure 16 is just that the runtime is shown. In both figures, algorithms are 

compared pair-wise from the worst performing to the best performing pair (the pair of algorithms that 

are closest to each other according to the given characteristic is compared). 

Results regarding makespan show that the MIT algorithm performs as worst while the standard 

BIBOX algorithm produces the best solutions. BIBOX/MIT, BIBOX-/T|weak and BIBOX-/3|weak 

are somewhere in the middle. The makespan of solutions generated by BIBOX-/T|weak and BIBOX-
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/3|weak sometimes jumps up to the makespan of the corresponding solution generated by 

BIBOX/MIT. This happens if BIBOX-/T|weak or BIBOX-/3|weak do not manage to compute opti-

mal solution to the special case in the given timeout of     seconds. In such a case BIBOX-/T|weak 

and BIBOX-/3|weak produces exactly the same solution as BIBOX/MIT since they have to switch to 

the MIT mode of generating (sub-optimal) solutions to special cases. 

 

 

 
 
 

Figure 16. A comparison of the scalability of tested algorithms with respect to the makespan. Five algorithms were com-

pared: BIBOX, BIBOX/MIT, BIBOX-/T|weak, BIBOX-/3|weak, and MIT. Approximately     pCPF instances over vari-

ous random bi-connected graphs containing    to     vertices were used. The range of the uniform distribution of lengths 

of handles in the random generation was:     , …,      . Algorithms are sorted from left/top to right/bottom according to 

the increasing performance (MIT – worst; BIBOX - best). Each sub-plot shows the relative comparison of two algorithms. 

 

A quite surprising result is that even though BIBOX-/T|weak and BIBOX-/3|weak compose the 

resulting solution over the -like graph consisting of the initial cycle and the first handle from the 

optimal solutions to special cases, it still has the worse makespan than the corresponding solution 

generated using agents exchanges by the BIBOX algorithm. Hence, the second unoccupied vertex has 

the significant impact on simplifying the solving process. 

Results regarding the overall runtime of tested algorithms generally show that BIBOX-/T|weak 

and BIBOX-/3|weak are as slow as the given timeout for computing optimal solutions to the special 

cases. The more interesting situation is with MIT, BIBOX/MIT, and BIBOX since they have very 

similar runtimes. The BIBOX/MIT tends to be faster than MIT while there is only marginal difference 

between BIBOX and MIT on larger graphs in favor of BIBOX. Observe that the runtime does not ex-

actly correspond to the length of the generated solutions. In other words, certain computations used 
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by BIBOX are more time consuming than that of MIT (for example BIBOX extensively searched for a 

path when agent is moved). 

 

 

 
 

 

Figure 17. A comparison of the scalability of tested algorithms with respect to the runtime. BIBOX, BIBOX/MIT, BIBOX-

/T|weak, BIBOX-/3|weak, and MIT were compared. The setup of instances is the same as for the experiment from Figure 

16. Algorithms are sorted from left/top to right/bottom according to the increasing performance. The runtime (the total time 

necessary to produce sequential solution plus the time for making it parallel) is shown. The runtime increases for the in-

creasing size of the instance (number of vertices). 

 

5. Conclusion and Future Work 

Two new algorithms – called BIBOX and BIBOX-  – for solving the abstract multi-agent cooperative 

path-finding with special regard on parallelism (so called pCPFs) were described in this work. Both 

algorithms are designed for the case when environment is modeled as a bi-connected graph and is 

densely occupied by agents. Several modified variants of the BIBOX- algorithm were described as 

well. 

The precise theoretical foundation and experimental analysis of these algorithms is provided. The 

theoretical foundation is targeted on correctness of the design of algorithms. The experimental analy-

sis is primarily targeted on comparison with the MIT algorithm that employs permutation group theo-

ry and is capable of solving pCPF instances characterized by the small unoccupied space. To provide 

the complete image with respect to the related works in cooperative path-finding the comparison with 

the WHCA* algorithm, which is one of the most commonly used benchmark algorithm for CPF, is 

given as well. 

0 

2 

4 

6 

8 

10 

12 

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

 

|V| 

Scalability comparison | Solving runtime 

BIBOX-θ/T|weak 

BIBOX-θ/3|weak 

0 

2 

4 

6 

8 

10 

12 

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

 

|V| 

Scalability comparison | Solving runtime 

BIBOX-θ/3|weak 

MIT 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 

R
u

n
ti

m
e 

(s
ec

o
n

d
) 

|V| 

Scalability comparison | Solving runtime 

MIT 

BIBOX/MIT 

0 

0.5 

1 

1.5 

2 

2.5 

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

 

|V| 

Scalability comparison | Solving runtime 

BIBOX 

MIT 

Random bi-connected 

Handles 0...2, …, 0...16 
Random bi-connected 

Handles 0...2, …, 0...16 

Random bi-connected 
Handles 0...2, …, 0...16 

Random bi-connected 

Handles 0...2, …, 0...16 



Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments 
 

39 

 Although the MIT algorithm has promising theoretical properties it has been outperformed by 

BIBOX in terms of the makespan by the order of one to two magnitudes. Although the asymptotic 

estimation for the makespan is the same for both BIBOX and MIT, the multiplication factor in the 

estimation in the case of BIBOX is smaller. Regarding the runtime, BIBOX algorithm is slightly faster 

than MIT, which itself is relatively fast (instances with graphs of hundreds of vertices occupied by 

hundreds of agents are solved within seconds on today’s commodity hardware). 

The minor drawback of the BIBOX algorithm is that it is not able to solve instances of pCPF with 

just a single unoccupied vertex. This issue has been addressed in this work by proposing modified 

algorithm called BIBOX- and its variants called BIBOX/MIT, BIBOX-/T, BIBOX-/3, BIBOX-

/T|weak, and BIBOX-/3|weak. They use a different approach to solve the situation on the simple 

bi-connected graphs consisting of one cycle and one handle connected to it – called -like graphs. 

Except the first mentioned algorithm, all the other algorithms use the database with optimal solutions 

to special instances over these -like graphs – called special cases – of which solutions to all the in-

stances over -like graphs can be composed. 

Regarding the makespan, all the alternative algorithms outperform MIT. If the database of optimal 

solutions is available in advance, then BIBOX- algorithms almost match the performance of MIT in 

terms of runtime. If the required optimal solutions to special cases are not available, they need to be 

computed on-line which is difficult. It can cause a significant slowdown of the algorithm. 

Notice, that the performance of both presented algorithms depends on the handle decomposition 

of the input graph. An interesting question is how to optimize handle decomposition in order to im-

prove makespan or runtime. Is it better to use a small number of large handles or a large number of 

small handles? This question is out of the scope of this work and it is left for future work. 

A considerable drawback of presented algorithms is their limitation on bi-connected graph. No-

tice, that search-based techniques like WHCA* are not limited to any special class of graphs. Hence, 

extension of presented algorithms to the general case is of interest. One of the possible approaches is 

to decompose a given general graph into the tree of bi-connected components [33, 34]. Any of the 

presented algorithms for bi-connected case can be used over the individual bi-connected components. 

However, agents need first to be relocated to the target bi-connected components. It may happen that 

an agent needs to go to the neighboring bi-connected component different from that where it is cur-

rently located. If the bridge connecting these components is longer than the number of unoccupied 

vertices then the relocation of the agent will not be possible. Hence, there will be relatively many 

unsolvable instances in the general case. 

Regarding future work, it is also interesting to resolve the question whether optimal solutions of 

pCPF can be approximated by a (pseudo-) polynomial time algorithm. If an approximation algorithm 

with (pseudo-) polynomial time complexity is available, it is possible to estimate how far the current 

solution is from the optimal one even for large and densely occupied instances (currently we have 

only intuition for sparsely populated instances thanks to experiments with WHCA*). Some study of 

this kind of approximation algorithms for the special case of       -puzzle has been done in [11, 

12, 13]. 

Another interesting topic for future work is to study how solutions generated by presented algo-

rithm can be improved. A first view work has been already done in [25]. It is based on identifying 

and eliminating redundancies from solutions. The performed experiments showed that it is a promis-

ing technique. 
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Appendix 

Lemma 4 (soundness of Move-Agent). If an original location of an agent  , a goal location  , and an 

unoccupied vertex are all located in the same unlocked bi-connected component of the graph  , then 

the procedure Move-Agent correctly moves the agent   from its original location to  .  

 

Proof. Recall how the procedure Move-Agent works. First, a path      
 
   

 
      

 
  connecting 

      and   that is contained in the same bi-connected component is found. The path   is then trav-

ersed while the agent   is moved along its edges. 

The proof of soundness will proceed as mathematical induction according to the number of edges 

of   already traversed. In all the steps, the agent   and the unoccupied vertex should be located in the 

bi-connected component containing  . Initially, this condition holds. Consider that an agent   is 

located in   
 

 for              and need to be moved to     
 

. The vertex   
 

 is locked and     
 

 

is made unoccupied. To make     
 

 unoccupied an unlocked path connecting the original location of 

the unoccupied vertex and     
 

 must exist in the bi-connected component. Since it is supposed that 

  
 

,     
 

, and the unoccupied vertex are all in the same bi-connected component the alternative path 

connecting     
 

 and the unoccupied vertex in this bi-connected component avoiding   
 

 must exist 

(since otherwise removal of   
 

 would make the bi-connected component disconnected which is a 

contradiction). This path is used to transfer the unoccupied vertex to     
 

. Having     
 

 unoccupied 

the vertex   
 

 is unlocked and   is moved to     
 

 along the edge    
 
      . After this step, the 

required condition holds again (a supporting illustration is shown in Figure 4).  

 

Lemma 5 (soundness of Exchange-Agents). If the arrangement of agents within the cycle    is re-

garded as a permutation, then the output arrangement produced by the procedure Exchange-Agents 

corresponds to a permutation where the input agents   and   are transposed with respect to the per-

mutation corresponding to the input arrangement.  

 

Proof. It is needed to check whether the orderings of agents between   and   and between   and   

(with respect to the positive orientation of the cycle) remain unchanged while   and   are transposed. 

This is done using detailed case analysis of what happens. Let       
    

      
  , then there are 

    agents located in    at the moment before the cycle is rotated positively (situation at line 9 of 

Exchange-Agents - see stage (i) in Figure 18). The agent   is already stored in   and the two unoccu-

pied vertices are   and            . Let agents occupying vertices of the cycle in the interval be-

tween       and   with respect to the positive orientation (excluding boundaries) are denoted 

  ,   ,…,    respectively; let agents occupying vertices of the cycle in the interval between 

            and       with respect to the positive orientation (again excluding boundaries) are 

denoted as   ,   ,…,       . The series of   positive rotation of    follows to move the agent   into 

            (see stage (ii) in Figure 18). Now, all the agents   ,   ,…,   ,   ,   ,…,       , and   

are   steps forward with respect to their location before the series of rotations. Then the second unoc-

cupied vertex (other than  ) is moved in the positive direction towards             (recall, that the 

movement in the negative direction is not possible, since   is locked at the moment - see stage (iii) in 

Figure 18). Next, agents are exchanged: that is,   is moved to   and   is moved to             (see 

stage (iv) in Figure 18 and lines 14-17 of Exchange-Agents). At this step, agents   ,   ,…,    are   

steps forward with respect to their location before the series of rotations; agent   ,   ,…,        are 

    forwards with respect to their location before the series of rotations (the difference is caused by 

the fact that unoccupied vertex went through agents   ,   ,…,        but not through agents 
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  ,   ,…,   ). Finally, the agent   is     steps forward with respect to the location of   before the 

series of rotations. 

 

 
 

Figure 18. The progression of the exchange of a pair of agents within an initial cycle of the handle decomposition. Agents 

  and   in a cycle consisting of    vertices are exchanged while the ordering of other agents within the cycle is preserved. 

The figure illustrates the progression of the procedure Exchange-Agents from line 7 to 20. 

 

The series of   rotation in the negative direction places agents   ,   ,…,    to their original posi-

tions; agents   ,   ,…,        are placed   step backward with respect to their original position be-

fore rotations, and   is   step backward with respect to the original position of   before the series of 

rotations (see stage (v) in Figure 18). This inconsistency however, is caused by a different location of 

the second unoccupied vertex which now between   and    with respect to the positive orientation of 

the cycle (this was not the case in the original arrangement before rotations). 

To see that the transposition of   and   has been really obtained, the movement of the second un-

occupied vertex into             in the negative direction can be done. This moves agents 

  ,   ,…,        to their original positions before rotations and the agent   to the original position 

of   (see stage (vi) in Figure 18). As this is a step used only for purposes of the proof, the algorithm 

actually does not perform it.  
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Proposition 6 (BIBOX - soundness and completeness). The BIBOX algorithm always terminates 

and produces a solution of a given input instance of pCPF                
    

  .  

 

Proof. To verify soundness and completeness of the BIBOX algorithm it is necessary to check pre-

conditions of each operation performed in the course of its execution. This is a trivial task in almost 

all the cases except the case of searching for a path satisfying certain conditions. This issue concerns 

the search for vertex disjoint paths   and    within the main function BIBOX-Solve at line 2 and the 

search for a path connecting a given pair of vertices avoiding the locked ones. 

The existence of vertex disjoint paths   and   has been already treated by Lemma 2. Thus, it re-

mains to verify that a required unlocked path always exists. 

A path containing unlocked vertices is constructed within the procedure Make-Unoccupied (lines 

2-3) which is called by Solve-Regular-Handle (lines 3, 5, 12, 16, 26, and 35),  Solve-Original-Cycle 

(lines 4, 6, 10, and 12), and Exchange-Agents (lines 2, 8, and 13). A pair of vertex disjoint paths con-

taining unlocked vertices constructed within the procedure Move-Agent (lines 1-5) which is called by 

Solve-Regular-Handle (lines 10, 24, and 33). All these cases must be examined. 

There will be the following invariant within Solve-Regular-Handle – at the beginning of every it-

eration of the loop at line 7, an unoccupied vertex must be located in the not yet solved part of the 

graph. More precisely, let the bi-connected subgraph without the internal vertices of the already 

solved handles be denoted as    and let    without the internal vertices of   , where    is the cur-

rently solved handle by Solve-Regular-Handle, be denoted as    (see Figure 6). Then an unoccupied 

vertex is needed to be located in     every time the loop at line 7 starts. The assumption holds at the 

beginning and it is needed to check if it holds after every iteration of the loop. Furthermore, an invar-

iant that both unoccupied vertices are located in    at the start of Solve-Regular-Handle will be also 

checked. Again, this invariant holds at the beginning. 

Vertices   and   which are used as parameters of the call of Make-Unoccupied at lines 3 and 5 

respectively of Solve-Regular-Handle are both in   . Since    is completely unlocked at lines 3 of 

Solve-Regular-Handle and it is assumed that an unoccupied vertex is located in   , an unlocked path 

connecting   and an unoccupied vertex must exist. The construction of a path within the call at line 5 

of Solve-Regular-Handle must additionally take into account that   is locked. As the subgraph    is 

bi-connected, it remains connected even if   is removed and hence the path exists. 

At line 12 of Solve-Regular-Handle, a connection vertex    of the currently solved handle    is 

being made unoccupied while internal vertices of    and the second connection vertex    are locked. 

According to above invariants and the fact that the call of Move-Agent at line 10 does not invalidate 

them, as it is prevented from using internal vertices of    by locking them at line 8, an unoccupied 

vertex is now located in    (except   ). The graph    is bi-connected and without   , which is 

locked just before, it is all unlocked and still connected. Hence the required path exists. 

The call of Make-Unoccupied at line 16 of Solve-Regular-Handle has the connection vertex    of 

the currently solved handle    as a parameter. The subgraph    is now unlocked and according to 

invariants an unoccupied vertex is located in   . Since    is connected, there exists an unlocked path 

connecting    and the unoccupied vertex. 

At line 26 of Solve-Regular-Handle, the connection vertex    of the handle    is made unoccu-

pied. The situation is that a vertex  , which is in    and outside the cycle associated with the current 

handle   , is locked while the rest of    is unlocked. Again, the unlocked part of the graph corre-

sponds to a bi-connected subgraph    from which one vertex was removed. Thus, the unlocked part 

of the graph constitutes a connected component. An unoccupied is also located in the unlocked part. 
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This holds from the invariants and from the fact that movements at lines 20 and 24 cannot relocate it 

outside    as Rotate-Cycle
+
 does not relocate the input unoccupied vertex and Move-Agent cannot go 

outside the unlocked part which is exactly    at the moment due to locking of internal vertices of    

at line 22. Hence, there exists an unlocked path connecting the unoccupied vertex and   . 

At line 35 of Solve-Regular-Handle the task is to make unoccupied a connection vertex    of the 

handle   . The situation is again very similar; the unlocked part of the graph is constituted by    

without    . Thus, unlocked vertices constitute a connected subgraph. The unoccupied vertex must be 

located in the unlocked part as it was located in    after the execution of line 26 and subsequent 

movements cannot relocate it outside    (Rotate-Cycle
−
 at line 29 does not relocate the input unoc-

cupied vertex and Move-Agent at line 33 remains in the unlocked part). Thus, there exists an un-

locked path connecting the unoccupied vertex and   . 

An unoccupied vertex is located in    at the end of the iteration of the loop starting at line 7 since 

it is    in both major execution branches (notice that calls of Rotate-Cycle
+
 at line 14 and 37 respec-

tively preserve positions the unoccupied vertex   ). Thus, the first invariant holds. Since it is as-

sumed that goal positions of unoccupied vertices are within the initial cycle, no unoccupied vertex 

can be stored in   . Hence, both unoccupied vertices are in    at the end of the execution of the loop 

(that is, they are within    with respect to the processing of next handle). 

The soundness of the procedure Solve-Original-Cycle is partially implied by the soundness of the 

procedure Exchange-Agents which is treated by Lemma 5. The basic assumption of Solve-Original-

Cycle is that both unoccupied vertices are located in the original cycle    of the handle decomposi-

tion; all the vertices of the graph except    are locked. The assumption directly corresponds to the 

second invariant preserved along the calls of Solve-Regular-Handle within the loop at lines 5-7 of 

BIBOX-Solve. 

At line 4 of Solve-Original-Cycle a vertex   
  (the first vertex of the cycle with respect to the pos-

itive orientation) is being made unoccupied. An unlocked path in the cycle from any of its vertices to 

  
  exists, hence making   

  unoccupied is possible. The situation at line 6 of Solve-Original-Cycle is 

little bit different; now the vertex   
  is locked and a vertex   

  (the second vertex of    with respect 

to the positive orientation) is being made unoccupied. Thus, an unlocked path connecting the second 

unoccupied vertex with   
  is searched. Such path exists since removing   

  from the cycle does not 

disconnect it. The situation at lines 10 and 12 of Solve-Original-Cycle is analogical. 

The soundness of the procedure Move-Agent itself is treated separately by Lemma 4. However, 

preconditions of the Lemma 4 need to be checked – that is, whether all the calls of Move-Agent 

moves an agent within the single unlocked bi-connected component and whether the unoccupied 

vertex is located in the same unlocked bi-connected component as well. 

The situation before the call of Move-Agent at line 10 of Solve-Regular-Handle is that    is un-

locked while the rest of the graph is locked. An unoccupied vertex is located in    which is ensured 

by the invariant. The task is to move an agent   
    

  , which is known to be located in    (this is, 

treated by the execution branch at line 9), to the connection vertex    of the handle   . As the unoc-

cupied vertex and both the agent   
    

   and    are located in    constituting a bi-connected com-

ponent, preconditions of Lemma 4 are satisfied. 

The call of Move-Agent at line 24 of Solve-Regular-Handle moves the agent   
    

   to a vertex   

which is located in    and outside the cycle associated with the handle    at the same time. Again, 

   is unlocked while the rest of the graph is locked. The agent   
    

   is known to be located in the 

connection vertex    of    and one of the unoccupied vertices is the second connection vertex   . 
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Thus, the unlocked vertices constitutes a bi-connected component where the agent   
    

  , the ver-

tex  , and the unoccupied vertex are located. Hence, preconditions of Lemma 4 are satisfied. 

Finally, the task of the call of Move-Agent at line 33 of Solve-Regular-Handle is to move an agent 

  
    

   to a connection vertex    of the current handle    which is assumed to be unoccupied at the 

moment. It is known that the agent   
    

   is located in   from the previous case.    is again un-

locked while the rest of the graph is locked. Thus, the agent   
    

   and the unoccupied vertex    

are both located in     which is a bi-connected component. Thus, preconditions of Lemma 4 are satis-

fied again. 

At this point, it is possible to conclude that all the steps of the algorithm are correctly defined. 

Since the number of successfully placed agents strictly increases as the algorithm proceeds, the algo-

rithm always terminates and produces a solution to the input instance.  

  

Proposition 7 (BIBOX – worst-case time complexity). The worst-case time complexity of the 

BIBOX algorithm is         with respect to an input pCPF instance                
    

  .  

 

Proof. The construction of a handle decomposition (line 1 of BIBOX-Solve) takes            steps 

(Lemma 1). The same estimation holds for transforming the goal arrangement of agents (line 2 of 

BIBOX-Solve) and augmenting the final solution (line 9 of BIBOX-Solve) according to a pair of ver-

tex disjoint paths   and  . 

 There are at most     agents (since        ) to be placed within handles of a handle decomposi-

tion                  . Placing an agent   within    with             requires at most      

rotations of the cycle       in the positive direction (procedure Rotate-Cycle
+
) in the case when   is 

needed to be moved outside   . Then, at most      rotations of       in the negative direction (pro-

cedure Rotate-Cycle
−
) are necessary to put agents in    back to their original positions; and finally, 

one rotation of       in the positive direction is necessary to get the agent   to its position within 

  . Altogether at most         rotations of       are necessary. One rotation of the cycle       

requires at most         steps. If the agent   does not need to be moved outside    only one positive 

rotation of       is needed. Thus, all the rotations needed to place the agent   consume at most 

                  steps. 

It is also necessary to move the agent   (procedure Move-Agent) during the placement operation. 

There are up to 2 calls of Move-Agent per agent placement within the handle   . A more careful 

analysis must be done here since the agent   must be moved along a path of the length up to     

while non-trivial amount of work needs to be done per each edge traversal. 

A vertex in front of the current location of   needs to be made unoccupied every time an edge is 

traversed by  . Thus a path connecting the unoccupied vertex and the location in front of   must be 

found while the vertex containing   should be avoided by the path. Agents are then shifted along the 

found path. The path should be searched in the graph constituted by the initial cycle and handles of 

the handle decomposition that contains at least one internal vertex. Such a graph contains only linear 

number of edges with respect to the number of vertices and thus the search for the path can be com-

pleted in      ) steps. The subsequent shifting of agents consumes at most     steps. Hence, the 

single traversal of an edge by the agent   requires      ) steps. Altogether,                  ) 

steps are required by operations for moving of agents. 

There are also up to   calls of the operation for making some vertex unoccupied (procedure Make-

Unoccupied) per agent placement. The operation for making some vertex unoccupied requires 

         ) steps; this is accounted to the search for a shortest path connecting the original and the 
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goal location. Shifting agents itself along the found path is less consuming; it requires at most     

steps. Thus, at most 5   +          ) steps are consumed by making vertices unoccupied in course 

of placing  . 

In total, at most                                          steps are necessary to 

place   into   . Since                 , the total number of steps is at most              

                       which is        . 

The remaining operations consume the constant time. Since there are at most     agents, the 

whole process of placing agents into handles takes         steps. 

 It remains to analyze the time required by placing agents within the original cycle   . Each agent 

  requires   operations of making a vertex unoccupied (the first and the second vertex    are made 

unoccupied – lines 4 and 6 of Solve-Original-Cycle) and at most one operation of exchanging agents. 

Since the initial and the goal position of both mentioned relocations of the unoccupied vertex are 

located in   , the operation requires only      steps in the worst-case. The operation of exchanging 

agents requires at most       rotations in the positive direction (lines 5 and 11 of Exchange-Agents) 

and at most      rotations in the negative direction (line 19 of Exchange-Agents). Next, there are   

calls of the operation for making some vertex unoccupied (call of the procedure Make-Unoccupied at 

lines 2, 8, and 13). Observe that the unoccupied vertex and the target vertex of the relocation are lo-

cated in    in all the cases. Thus, each of these operations requires at most      steps. Altogether, 

      steps are required for making vertices unoccupied during exchanging a pair of agents. The time 

consumption of the remaining operations performed during a single exchange of agents is constant. 

A single exchange of a pair of agents requires at most      
         steps in total. Placing all 

the agents into the original cycle hence consumes at most            
         steps. Since 

        , the total number of steps required for solving the initial cycle is at most     
             which is        . 

 It was shown that the worst-case time of         is necessary to solve regular handles as well as 

the initial cycle thus the worst-case time complexity of the BIBOX algorithm is        .  

 

 Using almost the same arguments as in the above proof it is possible to calculate the worst-case 

makespan of solutions generated by the BIBOX algorithm. Notice that the algorithm generates 

movement of the agent in almost every step referred in the time complexity analysis. 

 

Proposition 8 (BIBOX – makespan of the solution). The worst-case makespan of the solution pro-

duced by the BIBOX algorithm (that is, the number  ) for an input instance of pCPF      

          
    

   is        .  


