
1

Solving Abstract Cooperative Path-Finding

in Densely Populated Environments

Pavel Surynek

Charles University in Prague

Faculty of Mathematics and Physics

Department of Theoretical Computer Science and Mathematical Logic

Malostranské náměstí 25, Praha, 118 00, Czech Republic

pavel.surynek@mff.cuni.cz

Abstract.
1
The problem of cooperative path-finding is addressed in this work. A set of agents moving

in a certain environment is given. Each agent needs to reach a given goal location. The task is to find

spatial temporal paths for agents such that they eventually reach their goals by following these paths

without colliding with each other. An abstraction where the environment is modeled as an undirected

graph is adopted – vertices represent locations and edges represent passable regions. Agents are mod-

eled as elements placed in the vertices while at most one agent can be located in a vertex at a time. At

least one vertex remains unoccupied to allow agents to move. An agent can move into unoccupied

neighboring vertex or into a vertex being currently vacated if a certain additional condition is satisfied.

Two novel scalable algorithms for solving cooperative path-finding in bi-connected graphs are pre-

sented. Both algorithms target environments that are densely populated by agents. A theoretical and

experimental evaluation shows that suggested algorithms represent a viable alternative to search based

techniques as well as to techniques exploiting permutation groups on the studied class of the problem.

Keywords: cooperative path-finding, multi-robot path-planning, motion coordination, (N
2
-1)-puzzle,

N×N-puzzle,15-puzzle, sliding puzzle, domain dependent planning, makespan optimization, BIBOX,

BIBOX-.

1. Introduction

A problem of cooperative path-finding– CPF (also known from literature as multi-agent or multi-

robot path-planning) [15, 16, 18, 31] is addressed in this work. The task is to find spatial-temporal

paths for movable agents, which can be either mobile robots or some other movable objects, so that

they eventually reach given goals without colliding with each other by following these paths. The

agents are moving in a certain physical or a virtual environment, which is abstracted as an undirected

graph with agents placed in its vertices. Edges of the graph represent passable regions in the envi-

ronment. The main source of the complexity of the problem arises from the possibility of interactions

of agents with the environment and in major part from interactions among agents themselves. The

agents need to avoid obstacles in the environment, which is embodied directly in the graph by ab-

sence of edges (or vertices), and they must not collide with each other, which is modeled by the con-

straint that at most one agent is located in a vertex at a time.

 CPF is motivated by many real-life tasks ranging from navigation of a group of mobile robots,

rearranging of containers in storage (see Figure 1), or ship avoidance to computer generated image-

ry where motion of multiple characters needs to be planned. All these tasks can be modeled as a CPF

at a certain level of abstraction. Actually, the top-level abstraction generally adopted in the CPF ap-

Initial version submitted to Computation Intelligence on November 17, 2010. Reviews received on December 31, 2011. Revision submitted

on February 18, 2012. Reviews for revision received on August 13, 2012. Minor revision submitted on September 11, 2012.

mailto:pavel.surynek@mff.cuni.cz

Pavel Surynek

2

proach to these tasks uncovers challenges that must be inevitably faced if someone tries to solve the-

se tasks – such as the question if some arrangement of agents can be reached from another one under

the given physical constraints.

 The centralized approach is adopted throughout this work. That is, all the agents and the whole

environment are fully observable to the centralized planning mechanism. The individual agents make

no decisions by themselves; they merely execute plans found by the centralized planner. This is an

approach adopted also in all the relevant related works.

This work is specifically targeted on the case of CPF with environments densely populated by

agents. Such a case is challenging from several points of view. As there is limited unoccupied space

in the environment, agents cannot move freely towards their goals and are forced to cooperate inten-

sively with each other.

At the same time, it is interesting to study the possibility of parallel movements of multiple agents

at once, which may reduce the total execution time of the plan significantly. To study parallelism in

CPF a variant of CPF called parallel CPF (pCPF) is defined. The pCPF variant additionally enables

an agent to enter a vertex that which is simultaneously vacated by another agent if certain additional

conditions are satisfied. The intended effect of the relaxed requirement on movements is to allow a

chain of agents to move at once where only the leading agent needs to enter a currently unoccupied

vertex and other agents follow it. Allowing such higher movement parallelism is a more realistic

model in certain scenarios – especially in the case where unoccupied space is shrinking towards zero.

1.1. Related Works

One of the recent successful approaches to CPF was to search for a spatial-temporal path for each

agent separately from other agents. If agents are considered separately, an approach is usually called

decoupled [18, 19]. These techniques are build around the A* algorithm [14] in most cases which is

used to search for a shortest path from the current location of an agent to its goal while spatial tem-

poral paths of other already scheduled agents are considered. The positive aspect of the decoupled

approach is that it often finds plans that are near to the optimum with respect to the makespan (the

total time or the number of steps necessary to execute the plan) as short paths for agents are preferred

during the search. On the other hand, these methods are extremely sensitive to prioritizing agents as it

can easily happen that the already scheduled agents block paths for not yet scheduled ones. This is

one of the major drawback of the WHCA* algorithm [18] which is intrinsically incomplete due to

this phenomenon (up to 100 agents in the environment are reported; approximately 10% of the envi-

ronment is occupied). The incompleteness is getting more prominent on cases with the increasing

density of agents (see Section 4).

In [19], authors present a complete and optimal algorithm for CPF, which uses sophisticated heu-

ristics to reduce the search space by detecting that sometimes no cooperation is necessary among

agents. The trouble with incompleteness has been thus overcome in this approach. However, this

method seems to be targeted on relatively sparsely populated environments where actually agents can

travel most of the trajectory towards their goals without interacting with other agents (results for the

occupancy of environment less than 10% are reported; up to 60 agents are reported to move in envi-

ronments containing approximately 800 vertices).

 Several techniques for CPF are trying to exploit structural properties of the problem to increase

the performance. For instance, graph structures are heavily exploited in [15, 16]. The undirected

graph modeling the environment is first decomposed into sub-graphs of some interesting structure

such as cliques and others over which various known patterns of rearranging agents can be used. The

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

3

search for the final plan is then performed over an abstract map whose nodes are represented by the

sub-graphs of the original graph (experiments with up to 20 agents in the environments consisting of

hundreds of vertices are reported).

Another way to exploit structural properties of the problem is to observe local juxtapositions in

the current arrangement of agents. This approach was adopted by authors in [29, 30, 31, 32]. If some

important juxtaposition of agents is detected then known rearrangement process is applied to advance

the situation towards an arrangement where agents are closer to their goals. These techniques turned

out to be successful on environments containing many agents but also providing lot of unoccupied

space (hundreds of agents moving in environment consisting of thousands of vertices are reported).

Cooperative path-finding has been also addressed from different perspective than as a task of find-

ing a route from the initial location to the goal. A concept of so-called direction maps is introduced in

[6, 7] to enable coherent movements of multiple agents in various complex patterns that often arise in

computer entertainment (such as agents patrolling around some location in an RTS game and so on).

 A rich source of related works for CPF is represented by works on motion planning over graphs

[8, 10, 12, 13, 35]. The term of pebble motion on graph (PMG) used in these work denotes the same

concept as CPF in fact. Particularly, important results were achieved for a special case of PMG

known as -puzzle or -puzzle [11, 12, 13], which consists of a 4-connected grid of size

 with just one vertex unoccupied. Many algebraic and complexity results are known for

 -puzzle and for PMG generally (some of them will be discussed and used later). It is for

instance known that finding the makespan optimal solution to the -puzzle is an -hard

problem [12, 13].

Regarding general PMG, algorithms proving its membership into the class are given in [8, 35]

with asymptotic time complexities and lengths of generated solutions of and respec-

tively (is a graph modeling the environment). The former one – which will be denoted as

MIT
1
 algorithm in this work – represents an algebraic approach to CPF exploiting permutation

groups. This algorithm is complete and is capable of solving CPF instances irrespectively of the den-

sity of population of agents (just one unoccupied vertex is sufficient in the case with bi-connected

graph [34] to solve all the solvable instances). The algorithm regards the arrangement of agents as a

permutation and the desired goal permutation is composed of elementary permutations over triples of

agents. The drawback of the MIT algorithm is that it was not designed for practical use and hence

generated solutions have typically long makespan from the pragmatic point of view despite the very

good theoretical upper bound of .

1.2. Contribution, Motivation, and Organization

The main contribution of this work is a presentation of two scalable makespan sub-optimal algo-

rithms BIBOX and BIBOX-θ that are designed for solving CPF on bi-connected graphs. From the

pragmatic point of view, presented algorithms are primarily targeted on cases with environment

densely populated by agents (that is, with limited unoccupied space).

Although the targeted case of CPF is special, it has a great practical importance since many real-

life environments can be abstracted as 2D/3D grids which are typically bi-connected. Techniques for

tackling CPF in highly occupied space are worthwhile in cases when the space is a scarce resource.

Consider for example storage where piles of stored items can be automatically reconfigured – Figure

1 This working name for the algorithm was chosen by us and it was inspired by the fact that the principal author was affiliated with Massa-

chusetts Institute of Technology (MIT) at the time publishing the article [8]. Authors themselves did not use any name for their algorithm.

Pavel Surynek

4

1. Such kind of automation can save lot of space since without such automation the storage must be

larger to make all the piles accessible. Occupying large space with buildings have considerable nega-

tive environmental and economic impacts (occupied land was in many cases arable and its occupa-

tion is difficult to revert if it is possible at all).

Both suggested algorithms have polynomial time complexity. They were considered as an alterna-

tive to the MIT algorithm. A consideration as an alternative to search based algorithms when the

makespan optimal solution is not needed and speed of solving is preferred is also viable.

Notice that there is a growing interest in developing algo-

rithms of such category – the very recent contribution repre-

sented by the PUSH-AND-SWAP algorithm [9] shares lots of

aspects with our work (complexity issues and the way of rear-

ranging agents).

Some of the results presented in this work can be also

found in some form in conference proceedings [20, 21, 22,

23]. This work is accompanied with a technical report [27]

where some additional details such as formal proofs of all the

propositions can be found.

The organization of the work is as follows: formal defini-

tions of PMG and pCPF are given first in Section 2. Some

basic properties of these problems are discussed subsequent-

ly. New algorithms BIBOX and BIBOX-θ are presented in the

main section - Section 3. The final section – Section 4 – is

devoted to an extensive experimental evaluation of both new

algorithms. A competitive comparison against WHCA* and

MIT is presented. Finally, some concluding remarks are given

and future prospects are discussed.

2. Pebble Motion on a Graph (PMG) and Parallel
Cooperative Path-Finding (pCPF)

Consider an environment in which a group of mobile agents

is moving. The agents are all identical (that is, they are all of

the same size and have the same moving abilities). Each

agent starts at a given initial position and it needs to reach a

given goal position. The problem being addressed here con-

sists of finding a spatial-temporal path for each agent so that

it eventually reaches its goal by following this path. The

agents must not collide with each other and they must avoid

obstacles in the environment along the whole process of relo-

cation according to constructed paths.

The environment with obstacles within that the agents are

moving is modeled as an undirected graph. The vertices of this graph represent positions in the envi-

ronment and the edges model passable regions from one position to another. At each time step, all the

agents are located in some vertices while at most one agent is allowed per vertex. Some vertices may

be vacant – precisely, at least one vertex should be vacant to allow agents to move.

p
assage

Floor plan of a small
automated storage

Abstraction of the floor
plan as an undirected

graph

Figure 1. Illustration of modeling the

environment in a real scenario by undi-

rected graph. The scenario consists of a

small automated storage with movable

piles of stored items (labeled to and

to). Each pile can be moved left/right/

forward/backward. Items in piles are

accessible from the passage – to access

piles - or - the storage needs to be

rearranged. The environment is modeled

as grid of size which is a bi-

connected graph.

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

5

 If the agent is placed in a vertex at a given time step then the result of a motion is the situation

where the agent is placed in the neighboring vertex at the following time step. The agent is allowed

to enter the neighboring vertex supposing it is unoccupied or being vacated by another agent in a

certain case while no other agent is trying to enter the same target vertex (precise definition of condi-

tions that the movement must satisfy will follow).

We distinguish two variants of motion problems here, which differ in conditions on movements.

Agents in the first one are called pebbles and the related problem is called pebble motion on a graph.

Briefly said, it is required that the target vertex of the movement must be vacant. The second variant

is called parallel cooperative path-finding. Movable agents in this variant are called agents and the

condition on movements is relaxed so that it additionally allows movements into vertices that are

currently vacated by another agent in a case when agents are moving in a chain style (like a train).

2.1. Formal Definitions of Cooperative Path Planning Problems

The first definition below is for the problem of pebble motion on a graph– PMG [8] which is also

known as cooperative path-planning/finding – CPF [18,19, 29] or multi-robot/agent path-

planning/finding – MRPP [15, 16, 20, 23]. All these terms from the literature denote the same con-

cept in fact. The special variant of pebble motion on a graph is represented by -puzzle

(which is also known as the -puzzle) [12, 13].

Definition 1 (pebble motion on a graph – PMG). Let be an undirected graph and let

 where be a set of pebbles. The initial arrangement and the goal ar-

rangement of pebbles in are defined by two uniquely invertible functions
 (that is

 for every with) and
 respectively. A problem of pebble

motion on a graph (PMG) is the task to find a number and a sequence of pebble arrangements

 such that the following conditions hold (the sequence represents arrangements

of pebbles at each time step – the time step is indicated by the upper index):

(i)
 is a uniquely invertible function for every ;

(ii)

 (that is, all the pebbles eventually reach their destination vertices);

(iii) either

 or

 for every and

(that is, a pebble either stays in a vertex or moves along an edge);

(iv) if

 (that is, the pebble moves between time steps and) then

 with must hold for every and

(that is, a pebble can move into a currently unoccupied vertex only).

The instance of PMG is formally a quadruple

 . A solution to the instance will

be denoted as

 . □

When speaking about a move at a time step , it is referred to the time step of commencing the

move (the move is performed instantaneously between time steps and).

The second variant of motion problem on a graph adopted in this work relaxes the condition that

the target vertex of a pebble/agent must be vacated in the previous time step. Thus, the motion of an

agent entering the target vertex, that is simultaneously vacated by another agent and no other agent is

trying to enter the same target vertex, is allowed in a certain case. However, there must be some lead-

ing agent initiating such a chain of moves by moving into a currently unoccupied vertex which no

other agent is entering at the same time step (that is, agents can move “like a chain” with the leading

agent moving into an unoccupied vertex in the front). The problem is formalized in the following

Pavel Surynek

6

definition – it is called parallel cooperative path-finding – pCPF since the different style of moving

basically enables higher parallelism. The same concept is sometimes also referred as multi-robot

path-planning in the literature [22, 24, 26, 27].

Figure 2. Example of instance of PMG and pCPF. Both instances are illustrated on the same graph with the same initial

and goal arrangements. The task is to move pebbles/agents from their initial positions specified by

 to the goal posi-

tions specified by

 . A solution of the makespan 6 () is shown for the PMG instance and a solution of the

makespan 4 () is shown for the pCPF instance. Notice the differences in parallelism between both solutions.

Definition 2 (parallel cooperative path-finding – pCPF). Again, let be an undirected

graph. A set of agents where is given instead of the set of pebbles. Simi-

larly, the graph models the environment where the agents are moving. The initial arrangement and

the goal arrangement of agents are defined by two uniquely invertible functions
 (that is

 for every with) and
 respectively. A problem of parallel

cooperative path-finding (pCPF) is then the task to find a number and a sequence of agent ar-

rangements

 for that the following conditions hold:

(i)
 is a valid arrangement for every (that is, uniquely invertible);

(ii)

 (that is, all the agents eventually reach their destinations);

(iii) either

 or

 for every and

(that is, an agent either stays in a vertex or moves into the neighboring vertex);

(iv) if

 (that is, the agent moves between time steps and) then

there must exist a sequence of distinct agents with such that

 with (moves to a vertex that is unoccupied at time

step ; is a leading agent of the chain of agents which the sequence is part of) and

 for (agents follows the lead-

er like a chain; they move all at once between time steps and).

The instance of pCPF is formally a quadruple

 . A solution to the instance

will be denoted as

 . □

Notice in point (iv) that if the agent moves into an unoccupied vertex then the required sequence

of distinct agents consists of itself () and the latter condition in point (iv) is empty. Notice

also that the condition on unique invertibility implies that no two agents can simultaneously enter the

same target vertex.

Solution of the problem of pebble motion

on a graph (PMG) with

Solution of the problem of parallel coopera-

tive path-finding (pCPF) with

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

7

The numbers and represent the makespan of solutions. The makespan needs to be distin-

guished from the size of solution, which is the total number of moves performed by pebbles/agents.

Example instances of both problems and their solutions are illustrated in Figure 2.

2.2. Known Properties of Motion Problems and Related Questions

Notice that a solution of PMG as well as a solution of pCPF allows a pebble/agent to stay in a vertex

for more than a single time step. It is also possible that a pebble/agent visits the same vertex several

times within the solution. Hence, the sequence of moves for a single pebble/agent does not necessari-

ly form a simple path in the given graph.

 Notice further that both problems intrinsically allow parallel movements of pebbles/agents. That

is, more than one pebble/agent can perform a move in a single time step. However, pCPF allows

higher motion parallelism due to its weaker requirements on agent movements (see Figure 2). More

than one unoccupied vertex is necessary to obtain parallelism in PMG while only one unoccupied

vertex is sufficient to obtain parallelism within a solution of pCPF (consider for example agents mov-

ing around a cycle). The following straightforward proposition puts into relation solutions of instanc-

es of PMG and pCPF with the same set of agents and their arrangements over the same graph.

Proposition 1 (problem correspondence). Let

 be an instance of PMG and let

 be its solution. Then is a solution to an instance of pCPF

 . 

To prove the proposition it is sufficient to observe that the condition (iv) in the definition of pCPF

is a relaxation of the corresponding condition in the definition of PMG.

There is a variety of modifications of the defined problems. A natural additional requirement is to

produce solutions with the makespan as short as possible (that is, the numbers or are required to

be as small as possible). Unfortunately, this requirement makes both PMG and pCPF intractable. It

was shown in [12, 13] that the optimization variant of a special case of PMG is -hard [3] – this

special case is generally known as -puzzle or -puzzle. It consists of a graph that can be

embedded in the plane as a square 4-connected grid with a single unoccupied vertex. Thus, the opti-

mization variant of general PMG is -hard as well.

Here we work with restrictions of both types of problems on bi-connected graphs [34]. Hence, it

is a reasonable question what is the complexity of these classes. Since the grid graph forming the

mentioned -puzzle is bi-connected, the immediate answer is that the optimization variant of

PMG with a bi-connected graph is -hard as well.

Nevertheless, it is not possible to make any similar simple statement about the complexity of the

optimization variant of pCPF. The situation here is complicated by the inherent parallelism, which

can affect the makespan in some unforeseen way. Constructions used for the puzzle in [12,

13] thus no longer work. Using different technique it has been recently shown by the author that the

optimization variant of pCPF is NP-hard too [24, 26].

Observe further that reported -hard case of PMG have a single unoccupied vertex. This fact

may raise the question how the situation is changed when there are more than one unoccupied verti-

ces as they may simplify the situation. Unfortunately, it is not the case. PMG with the fixed number

of unoccupied vertices is still -hard since multiple copies of the puzzle from [12, 13] can

be used to add as many unoccupied vertices as needed. Without providing further details, the instance

of pCPF used in the reduction to prove the NP-hardness of the problem in [24] had many unoccupied

Pavel Surynek

8

vertices and its graph was connected (even bi-connected). Altogether, a mere allowance of many

unoccupied vertices with no additional structural conditions does not simplify the problem.

Without the requirement on the optimality of the makespan, the situation is much easier; PMG is

in the P class as it was shown in [8, 35]. Due to Proposition 1, pCPF is in the P class as well. Thus, it

seems that PMG and pCPF have been already resolved. However, constructions proving the member-

ship of PMG into the P class used in [8, 35] generate solutions that are too long for practical use [21,

22, 23]. As the makespan of the solution is of great importance in practice, this fact makes these

methods unsuitable when some real life motion problem is abstracted as an instance of PMG. Thus,

alternative solving methods has been developed [20, 21, 22, 23] and they are revised in this work.

3. Sub-optimal Solving Algorithms

The basic idea of presented sub-optimal algorithms is to exploit structural properties offered by the

concept of bi-connectivity. It is known that bi-connected graphs can be inductively constructed as a

union of a sequence of rings or handles while at every stage of this construction the intermediate

graph is bi-connected [33, 34].

After arranging agents into the last handle we do not need to care about it anymore and conse-

quently the task reduces to a task of the same type but on a smaller bi-connected graph. Fortunately,

bi-connected graphs have another interesting property; every two vertices are connected by at least

two vertex disjoint paths, which allow quite complex rearranging of agents. For example, an individ-

ual agent can move relatively freely. One path is traversed by the agent and alternative paths are used

to keep unoccupied vertex always in front of the agent. In addition, handles of the decomposition

evokes the possibility that agents within them can be rotated, which is actually used in proposed al-

gorithms. Notice that all the mentioned styles of movements are friendly to the parallelism as defined

in pCPF – for example, agents in a handle can be rotated within a single time step. However, there

are many technical difficulties that need to be addressed to make the above ideas workable.

3.1. BIBOX: A Novel Algorithm for Pebble Motion on a Bi-connected Graph

The first algorithm presented here called BIBOX was originally proposed in [20]. The input instance

should consist of a non-trivial bi-connected graph (that is, bi-connected graph not isomorphic to a

cycle) with exactly two unoccupied vertices. As the algorithm produces solution consisting of single

move per time step it does not matter if PMG or pCPF is given on the input – in the following text

pCPF will be always considered. A method how to increase parallelism in the resulting solution to

take the advantage of the definition of pCPF will be discussed in Section 3.1.4.

 The algorithm proceeds inductively according to the known property of bi-connected graphs that

they can be built from a cycle by addition of a sequence of handles. Adding a handle means either to

insert a new edge into the graph or to connect endpoints of a path consisting of new vertices some-

where into the graph. The important property is that currently built graph is bi-connected at every

stage of the construction.

The process of building a graph by adding handles can be reverted as well. That is, the graph can

be deconstructed until a cycle remains by removing handles from it. If it is somehow possible to ar-

range agents whose goal positions are in the handle to be removed before it is actually removed, we

have a good starting point for a new solving algorithm because after removal of a handle the problem

just reduced to the smaller graph. To obtain a new algorithm it remains to show how agents can be

arranged into the handle and how to deal with the cycle that remains at the end of the process.

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

9

 The process of removing of handles is presented here just for intuition. They actually do not

need to be removed during the solving process. It is sufficient not to consider and use a handle after

all the agents are properly arranged to their goal positions within that.

The intuition for arranging agents in the cycle that eventually remains is to regard their ordering

as a permutation. The goal arrangement of agents in the cycle can be also regarded as a permutation.

Thus, we need to change ordering of agents to form another permutation. If it is possible to exchange

a pair of agents with respect to their current ordering, then every permutation of agents can be ob-

tained. It will be shown how to utilize two unoccupied vertices to enable exchanges of agents in the

remaining cycle.

It is possible to build a bi-connected graph in multiple different ways by adding handles. Hence,

the algorithm as well as the produced solution is sensitive to the selection and ordering of handles

used in the solving process.

3.1.1. Graph-theoretical Preliminaries

The BIBOX algorithm is built around the notion of bi-connectivity and around graph theoretical

properties of bi-connected graphs [33]. Let us recall the notion of bi-connectivity and related proper-

ties briefly.

Definition 3 (connected graph). An undirected graph is connected if and for

any two vertices such that there is an undirected path connecting and . □

Definition 4 (bi-connected graph, non-trivial). An undirected graph is bi-connected if

 and the graph , where and

 , is connected for every . A bi-connected graph not isomorphic to a cycle will be called

non-trivial bi-connected graph. □

Observe that, if a graph is bi-connected, then every two

distinct vertices are connected by at least two vertex dis-

joint paths (equivalently, there is a cycle containing both

vertices; only internal vertices of paths are considered

when speaking about vertex disjoint paths - vertex disjoint

paths can intersect in their start points and endpoints). An

example of bi-connected graph is shown in Figure 3.

Bi-connected graphs have an important property, which

is exploited within the algorithm. Each bi-connected graph

can be constructed starting from a cycle by an operation of

adding a handle [28, 33, 34]. Consider a graph ;

the new handle with respect to is a sequence where ,

(called connection vertices) and for (are fresh vertices). The result of the

addition of the handle to the graph is a new graph where

 and either in the case of or

 in the case of . Let the sequence of handles together

with the initial cycle be called a handle decomposition of the given bi-connected graph. Again, see

Figure 3 for illustrative example.

Figure 3. Example of bi-connected graph. A

handle decomposition is illustrated.

Pavel Surynek

10

Lemma 1 (handle decomposition) [28, 33, 34]. Any bi-connected graph can be obtained

from a cycle by a sequence of operations of adding a handle. Moreover, the corresponding handle

decomposition of the graph can be found in the worst-case time of and the worst-case

space of . 

The important property of the construction of a bi-connected graph according to its handle de-

composition is that the currently constructed graph is bi-connected at every stage of the construction.

This property is substantially exploited in the design of the BIBOX algorithm.

The algorithm is presented below using a pseudo-code as Algorithm 1 and Algorithm 2 (algo-

rithms are illustrated with pictures for easier understanding). The algorithm starts with the last handle

of the handle decomposition and proceeds to the initial cycle. Agents, that goal positions are within

the last handle, are moved to their goal positions within this handle. After that, the instance reduces

to a smaller bi-connected graph. That is, the last handle is not considered any more since its agents do

not need to move any more. This process is repeated until the initial cycle of the decomposition re-

mains where a different technique is used.

 Let

 be an instance of pCPF. The handle decomposition of the graph

is formally a sequence with , where is the initial cycle and is a

handle for . The order of handle additions in construction of corresponds to their posi-

tions in the sequence (that is, is added to first; and is added as the last). A handle

 for is assigned a cycle . The cycle consists of

the sequence vertices on a path connecting and in a graph before the addition of followed

by vertices

 . Specially, it is defined that .

The following lemma justifies two properties exploited by the algorithm. It justifies that it is pos-

sible to keep handy two unoccupied vertices in the not yet solved part of the graph since one unoccu-

pied vertex is needed to solve handles and two unoccupied vertices are needed to solve the initial

cycle. The lemma ensures that the original goal arrangement can be transformed to an arrangement

where unoccupied vertices are located in the initial cycle. Thanks to this property it never happens

that an unoccupied vertex become locked in some already solved handle. Details of the transfor-

mation are discussed later.

Lemma 2 (existence of two vertex disjoint paths). Let be a bi-connected graph and let

 and , where are pair-wise distinct, be two pairs of vertices. Then

either the first or the second of the following claims holds:

(a) There exist two vertex disjoint paths and such that they connect with and with

 in respectively.

(b) There exist two vertex disjoint paths and such that they connect with and with

 in respectively. 

Notice that the lemma states that individual vertices in the input pair of vertices are indifferent

with respect to connecting by vertex disjoint paths. As the proof of the lemma is rather technical, we

refer the reader to [27] where the detailed proof can be found. The idea of proof is that the given 4-

tuple of vertices is assigned a 4-tuple of non-negative integers such that each number

refers to a handle of the decomposition or the initial cycle where the corresponding vertex is located.

Then the proof proceeds inductively according to the lexicographic ordering of these 4-tuples of

numbers. For a selected pair of vertices partial connection paths are constructed towards handles with

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

11

lower numbers (a certain case analysis in the worst-case time of has to be done). Then it holds

from the induction hypothesis that remaining parts of connection paths should exist since they con-

nect 4-tuple of vertices with lower 4-tuple of assigned numbers.

3.1.2. Pseudo-code of the BIBOX Algorithm

Several basic operations are introduced to express the BIBOX algorithm in an easier way. These op-

erations are formally described using pseudo-code as Algorithm 1. In addition to functions
 and

there will be a function to represent the current arrangement of agents in and functions

 ,

 , and which are generalized inverses of
 ,

 , and respectively; the symbol is used to represent an unoccupied vertex (that is,

 and if). Each undirected cycle appearing in the han-

dle decomposition of the input graph is assigned a fixed orientation. Let be an undirected cycle (a

set of vertices of the cycle), then the orientation of is expressed by functions and

where for is a vertex following (with respect to the positive orientation) and

 is a vertex preceding (with respect to the positive orientation). The orientation of a

cycle given by and is observed also whenever vertices of the cycle are explicitly enu-

merated in the code.

Each vertex of the input graph is either locked or unlocked. Auxiliary operations Lock and

Unlock locks or unlocks a set of vertices . The state of a vertex is used to determine wheth-

er an agent can move into it. Typically, an agent is not allowed to enter a locked vertex (see the pseu-

do-code for details).

It is assumed that it holds that (that is, there are exactly two unoccupied vertices in

the graph). It is required by the main phase of the algorithm that the two unoccupied vertices are

located in the first two vertices of the initial cycle within the goal arrangement. This requirement is

treated by a function Transform-Goal and a procedure Finish-Solution. The function Transform-Goal

determines two vertex disjoint paths from unoccupied vertices in the goal arrangement to the first

two vertices in the initial cycle of the handle decomposition. Existence of these paths is ensured by

Lemma 2. The goal arrangement is transformed so that finally unoccupied vertices are located in the

initial cycle. This is done by shifting agents within the goal arrangement along the two found paths.

After the modified instance is solved, the function Finish-Solution moves unoccupied vertices back

to their goal locations in the original unmodified goal arrangement. The final placement of unoccu-

pied vertices is done by shifting agents along the same two paths but in the opposite direction.

It is assumed that the input bi-connected graph is non-trivial for further simplifying the pseudo-

code; that is, it is not isomorphic to a cycle. The case when the graph is isomorphic to a cycle can be

treated easily in a separate branch of the execution.

Several upper level primitives are exploited by the BIBOX algorithm. It is possible to make any

vertex unoccupied in a connected graph (especially in a bi-connected one) – implemented by proce-

dure Make-Unoccupied. Let be a vertex to be made unoccupied. A path connecting and some

of the unoccupied vertices avoiding the locked vertices is found. Then agents along the path are

shifted towards the currently unoccupied vertex.

An operation of moving an agent into an unoccupied vertex is implemented by a procedure Move-

Agent-Unoccupied – the meaning is that the unoccupied space and the agent are swapped. The proce-

dure also updates functions and to reflect the new arrangement of agents and constructs the

next arrangement

 for the output solution sequence.

Pavel Surynek

12

Algorithm 1. Basic agent movement operations. These operations are used as building blocks for the BIBOX algorithm.

procedure Make-Unoccupied

/* Makes a vertex unoccupied while locked

vertices remain untouched.

Parameters: - a vertex to be made unoccupied. */

1: let such that and is not locked

2: let be a (shortest) path

3: connecting and in not containing locked vertices

4: for do

5: Move-Agent-Unoccupied

procedure Move-Agent

/* Moves an agent into a vertex

avoiding locked vertices.

Parameters: – an agent to move,

 - a target vertex.*/

/* complexity issues impose special selection of */

1: let

 be a path

2: connecting and in not containing

3: locked vertices

4: for do

5: Lock

6: Make-Unoccupied

7: Unlock

8: Move-Agent-Unoccupied

procedure Rotate-Cycle+

/* Rotates agents in a cycle in the positive direction.

Parameters: - a cycle to rotate

 - unoccupied vertex, . */

1: for do

2: Move-Agent-Unoccupied)

3:

procedure Rotate-Cycle−

/* Rotates agents in the cycle in the negative direction.

Parameters: - a cycle to rotate, . */

1: let such that and is not locked

2: for do

3: Move-Agent-Unoccupied)

4:

procedure Move-Agent-Unoccupied

 /* Swaps agent and the unoccupied space; vertex is

supposed to be unoccupied; contains an agent.

Parameters: – vertices between which agent

is moved. */

1:

2:

3:

4:

5:

Agent is moved to
through cycles , ,
and .

Vertex is locked; is
unoccupied; pebbles are
shifted along cycle to
make unoccupied.

Vertex is unoccupied;
 is rotated in the
positive direction.

Vertex is unoccupied;
 is rotated in the
negative direction.

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

13

Figure 4. An illustration of moving an agent in bi-connected graph. The task is to move an agent from the initial position

to a vertex . A paths connecting the initial position of the agent with is found (the path is distinguished by color). It

is then traversed by the agent while the unoccupied vertex is restored in front of after every edge traversal. This is

possible thanks to bi-connectivity of the graph – a path connecting unoccupied vertex and the target vertex avoiding the

vertex containing must always exist. The symbol stands for an anonymous agent.

The next important process is moving an agent into a given target vertex. It is implemented by a

procedure Move-Agent. Let an agent be moved to a vertex . A path is found such that it con-

nects vertices (which is a vertex currently occupied by) and .

Edges of are then traversed by an agent . A vertex on just in front of with respect to the

direction of the movement is made unoccupied every time needs to traverse an edge of . The

agent should not move during relocation of the unoccupied vertex therefore it is locked before the

relocation of the unoccupied vertex starts. Thus, a path along that the unoccupied vertex is moved

must avoid the vertex containing . Such a path always exists due to the bi-connectivity of the graph

in which the relocation of the agent takes place (see Figure 4 for illustration).

Figure 5. An illustration of rotation of agents along a cycle. An orientation of the cycle is determined by functions

and . There is a single unoccupied vertex in the cycle to enable the rotation.

The last basic operation is a rotation of agents along a cycle (see Figure 5). This operation is im-

plemented by procedures Rotate-Cycle
+

and Rotate-Cycle
−
. The former rotates agents in the positive

direction and the latter rotates agents in the negative direction. It supposed that at least one vertex in

the given input cycle is unoccupied and it is given as the parameter. The input unoccupied vertex

enables the rotation; it remains on its place after the rotation is finished.

Original state

P
o
s
it
iv

e
 o

ri
e

n
ta

ti
o

n

Positive rotation Negative rotation

+ −

Initial

arrangement

Goal

arrangement

Pavel Surynek

14

Algorithm 2. The BIBOX algorithm. The pseudo-code is built around operations from Algorithm 1. It solves a given agent

motion problem on a non-trivial bi-connected graph with exactly two unoccupied vertices. The algorithm proceeds induc-

tively according to the handle decomposition of the graph of the input instance. The two unoccupied vertices are necessary

for arranging agents within the initial cycle of the handle decomposition.

function BIBOX-Solve

 : pair

/* Top level function of the BIBOX algorithm; solves

a given problem of agent motion on a graph.

Parameters: - a graph modeling the environment,

 - a set of agents,

 - a initial arrangement of agents,

 - a goal arrangement of agents. */

1: let be a handle decomposition of

2:
 Transform-Goal

3:

4:

5: for do

6: if then

7: Solve-Regular-Handle

8: Solve-Original-Cycle

9: Finish-Solution

10: return

procedure Solve-Regular-Handle

/* Places agents which destinations are within a

handle ; agents placed in the handle are finally

locked so they cannot move any more.

Parameters: – the index of a handle */

1: let

 /* Both unoccupied vertices must be located

outside the currently solved handle. */

2: let

 such that

3: Make-Unoccupied

4: Lock

5: Make-Unoccupied

6: Unlock

7: for do

8: Lock

 /* An agent to be placed is outside the handle . */

9: if

) then

10: Move-Agent

11: Lock

12: Make-Unoccupied

13: Unlock

14: Rotate-Cycle+

/* An agent to be placed is inside the handle . */

15: else

16: Make-Unoccupied

17: Unlock

18:

19: while

 do

20: Rotate-Cycle+

21:

22: Lock

23: let

24: Move-Agent

25: Lock

Handle decomposition

Agent

 is
outside ; move to .

Bi-connected
remainder

Agent

 is inside
 ; move outside .

Bi-connected
remainder

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

15

26: Make-Unoccupied

27: Unlock

28: while do

29: Rotate-Cycle

30:

31: Unlock

32: Lock

33: Move-Agent

34: Lock

35: Make-Unoccupied

36: Unlock

37: Rotate-Cycle+

38: Lock

procedure Solve-Original-Cycle

/* Places agents which destinations are within the

initial cycle; it is assumed that unoccupied vertices

of the goal arrangement of agents are located within

the initial cycle. */

1: let and such that

2: let

 /* According to the assumption on the goal arrangement

it holds that

 and

 . */

3: for do

4: Make-Unoccupied
)

5: Lock
)

6: Make-Unoccupied
)

7: Unlock
)

8: if

 then

9: Exchange-Agents

10: Make-Unoccupied
)

11: Lock
)

12: Make-Unoccupied
)

13: Unlock
)

procedure Exchange-Agents

/* Exchanges a pair of agents within the initial

cycle of the handle decomposition.

Parameters: - a pair of agents to be exchanged,

 - a pair of neighboring vertices where

 is used as a storage space. */

1:

2: Make-Unoccupied

3: Move-Agent-Unoccupied

4: while do

5: Rotate-Cycle+

6: Move-Agent-Unoccupied

7: Lock
8: Make-Unoccupied

9:

10: while do

11: Rotate-Cycle+

12:

13: Make-Unoccupied

14: Move-Agent-Unoccupied

15: Move-Agent-Unoccupied

16: Move-Agent-Unoccupied

17: Move-Agent-Unoccupied

Bi-connected
remainder

Agent

 in ;
rotate once forward.

Bi-connected
remainder

Move into ; rotate
forward such that ap-
pears in .

Exchange and (ap-
pears in).

Vertices
 and

 are
made unoccupied.

Agent

 is out-
side ; rotated
back; move into .

Pavel Surynek

16

18: while do

19: Rotate-Cycle

20:

21: Move-Agent-Unoccupied

22: while do

23: Rotate-Cycle+

24: Move-Agent-Unoccupied

25: Unlock

The process of placing agents according to the given goal arrangement is formally described as

Algorithm 2. Agents, which goal positions are within the currently solved handle, are placed in a

stack like manner. This process is carried out by a procedure Solve-Regular-Handle (iteration

through the handle is at lines 7-37). Let

 for be a current

handle. Suppose that an agent which goal position is in
 for , that is an agent

 , is processed in the current iteration. Inductively suppose that agents

 ,

 ,

…,

 are located in vertices
 ,

 , …,
 respectively. An analogical situation

for the next agent

 must be produced at the end of the iteration.

The agent

 is moved to the vertex and then the cycle is positively rotated once

which causes the agent

 to move to
 and agents

 ,

 ,…,

 stacks

in the cycle so that they are located in
 ,

 , …,
 . We have just described one iteration

of stacking agents into the handle . However, the process has some difficulties. At least, two major

cases must be distinguished. In both cases, the first step is that internal vertices of the handle are

locked (line 8 of Solve-Regular-Handle).

If the agent

 is not located in the internal vertices of the handle (line 9-14 of Solve-

Regular-Handle) it is just moved to . This is possible since an invariant holds that both unoccupied

vertices are located outside the internal vertices of the handle and the graph without the internal ver-

tices of the handle is connected. This holds at the beginning, since both unoccupied vertices are ex-

plicitly moved outside the handle (lines 2-6 of Solve-Regular-Handle) and it is preserved through

all the iterations. Observe that these movements do not affect agents already stacked in the handle.

The agent

 is fixed in by locking and then an unoccupied vertex is relocated to

which makes the rotation of the cycle possible. The positive rotation of then finishes

the iteration.

If the agent

 is already located in some of the internal vertices of the handle (lines 15-

37 of Solve-Regular-Handle), the above process is reused but it must be preceded by relocating

 outside the handle. The vertex is made unoccupied and the cycle is positively

rotated until the agent

 gets outside the internal vertices of ; that is,

 appears in

 . Notice, that this series of rotations preserves the order of the already stacked agents. To restore

the situation however, the cycle must be rotated back the same number of times. A vertex outside

the already finished part of the graph (that is outside and outside for) is selected; the

agent

 is moved into and it is fixed there by locking.

The vertex is made unoccupied again since the preceding process may move some agent into it

(this is possible since alone cannot rule out the existence of a path from an unoccupied vertex to

in the bi-connected graph; there is always an alternative path). The cycle is rotated back so that in-

ductively supposed placement of

 ,

 ,…,

 is restored. The situation is

now the same as in the previous case with

 outside the handle.

After the last iteration within the handle it holds that the agents

 ,

 ,…,

 are located in vertices

 ,
 ,…,

 respectively. Moreover it holds that unoccupied

vertices are both outside the internal vertices of . Thus, the solving process can continue with the

Rotate back; move
from to .

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

17

next handle in the same way while the already solved handles remain unaffected by the subsequent

steps. Notice, that only one unoccupied vertex is sufficient for stacking agents into handles. See Fig-

ure 6 for detailed illustration.

Figure 6. A process of stacking an agent into a handle. Agents , , , and are to be stacked into (that is,

 ,

 ,

 , and

); handles and are already solved (that is,

 ,…,

 , and

 ,…,

). Observe that the agent is originally

outside the handle while the agent is inside. Stage (i) shows situation after agents and were stacked into the handle

 . Then vacant vertex is relocated to the connection vertex ; using empty is rotated such that appears in the

second connection vertex (stages (ii), (iii), and (iv)). The handle then needs to be rotated back but before must be

moved outside the cycle associated with (stage (v)). Finally, the agent is moved to the first connection vertex and

 is rotated once so that appears in the first internal vertex of . The symbol stands for an anonymous agent.

Stage (i)

Stage (ii)

Stage (iii)
Stage (iv)

Stage (v) Stage (vi)

Pavel Surynek

18

The initial cycle of the handle decomposition must be treated in a different way. Here, the se-

cond unoccupied vertex is utilized. An arrangement of agents within can be regarded as a permu-

tation. The task is to obtain the right permutation corresponding to the goal arrangement. This can be

achieved by exchanging several pairs of agents. More precisely, if an agent residing in a vertex of

differs from an agent that should reside in this vertex in the goal arrangement, this pair of agents is

exchanged. The process is implemented by a procedure Solve-Original-Cycle and by an auxiliary

procedure Exchange-Agents for exchanging a pair of agents.

The procedure Exchange-Agents expects that first two vertices of the initial cycle are unoccupied

in the current arrangement. However, the function generally does not preserve this property. Hence,

the vacancy of the first two vertices of the initial cycle must be repeatedly restored (lines 4-7 and 10-

13 of Solve-Original-Cycle). The process of exchanging a pair of agents and itself exploits a pair

of vertices and where these two vertices are connected by an edge and it holds that

 . The vertex is used as an auxiliary storage place.

The need of two unoccupied vertices is imposed by the fact that an agent from to be stored in

must be rotated into first. During this process, some vertex of the cycle must be unoccupied to

make the rotation possible and the vertex must be unoccupied as well to make storing possible.

When exchanging the pair of agents and it is necessary to preserve ordering of the other verti-

ces. First, an agent occupying the vertex is moved into the cycle in order to make vacant (lines

1-3 of Exchange-Agents). Then the cycle is rotated until the agent appears in (since there was an

agent in at the beginning of the rotation, there is always some agent in after all the rotations) and

the agent is stored in (lines 4-6 of Exchange-Agents). Next, the cycle is rotated positively so

that appears in (the next vertex to with respect to the positive orientation) while the

number of rotations is recorded (lines 10-12 of Exchange-Agents).

Next, agents and are exchanged so that ordering of in the cycle is the same as of before

the exchange (lines 13-17 of Exchange-Agents). Then, the cycle is rotated in the negative direction

recorded number of times so that the place within the cycle where was originally ordered appears

in ; thus is ordered here (lines 18-20 of Exchange-Agents). Finally, the agent that has been located

in before the exchange of agents and , is put back into (lines 22-25 of Exchange-Agents).

3.1.3. Summary of Theoretical Properties and Real-life Extensions

As the proof of soundness and completeness of the BIBOX algorithm are mainly technical, we refer

the reader to the appendix where detailed proofs can be found. Regarding the proof of soundness it is

necessary to verify that the following step of the algorithm is always defined particularly at non-

deterministic steps where existence of some object – vertex or path – is required (this concerns for

example existence of paths at lines 1-3 of Move-Agent). Some special care needs to be devoted to

verifying that its existence is ensured in the unlocked part of the graph.

It can be shown that the worst-case time complexity of the BIBOX algorithm is with re-

spect to the input graph . Again, the detailed proof can be found in the appendix. It needs

to be observed that at most agents need to be placed in regular handles. Each agent placement in

the handle requires rotations of the handle and the constant number of relocations of agents

(Move-Agent). It is not difficult to observe that single rotation by one position requires steps

hence we have steps per handle rotations. For each relocation of an agent, two vertex dis-

joint paths need to be found which can be done in worst-case time of . Then agent needs to

traverse the path. In the worst-case, edges need to be traversed. An unoccupied vertex needs

to be moved in front of the agent per each edge traversal. This has to be done carefully – for example,

we cannot afford to search for a path to the front of the agent in the original graph, as it is too much

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

19

time consuming. Fortunately, the relocation of the unoccupied vertex can be carried out in

steps using the knowledge of the handle decomposition. In total, we have time of for

placing agents into regular handles.

Regarding the initial cycle, it is needed to observe that at most exchanges of pairs of agents

are needed while the single exchange consumes steps. Altogether, the worst-case time com-

plexity is . Exactly the same calculation can be done for determining the total number of

moves which is also . As the total number of moves is the upper bound for the makespan, the

makespan of generated solution is as well.

The natural question is how to apply the BIBOX algorithm if there are more than two unoccupied

vertices in the input instance (that is,). It is easy to adapt the algorithm to utilize addi-

tional unoccupied vertices when it is suitable and to ignore them if they are to cause unnecessary

movement. The utilizing additional unoccupied vertices is done through replacement of the non-

deterministic selection of an unlocked unoccupied vertex (such as that at line 1 of Make-Unoccupied)

by the selection of the nearest one (this is also done in the real implementation). On the other hand, if

for example rotation of a handle is to be done due to unoccupied position in the handle, which is re-

dundant in fact, then such a movement is automatically ignored. More details about this adaptation of

the algorithm for sparse environments are given in [27].

Some further optimizations should be used in the real-life implementation to reduce the makespan

of the produced solution. Here, various assumption are explicitly enforced in order to make the pseu-

do-code simpler (for example, the precondition of having first two vertices of the initial cycle of the

handle decomposition unoccupied before a pair of vertices is exchanged within the cycle - lines 4-6

of Solve-Original-Cycle). This approach should be avoided and lazier approach should be adopted in

the real-life implementation (in the case of exchanging agents, locations of unoccupied vertices

should be detected implicitly in subsequent steps by more sophisticated branching of the code). The-

se kind of more complex branching of the algorithm is used in the experimental implementation.

 The real-life implementation of procedures Solve-Regular-Handle and Solve-Original-Cycle

should also use more opportunistic selection of vertices to store agents (vertex - line 23 of Solve-

Regular-Handle and vertices , - line 1 of Solve-Original-Cycle). The nearest vertex to the target

agent should be always used. Moreover, selection of these vertices within the procedure Solve-

Original-Cycle should be done not only at the beginning, but also in every iteration of the main loop.

3.1.4. Making Solution Parallel

A simple post-processing step needs to be done to obtain parallel solution of pCPF. Suppose to have

a solution of – denoted as
 – as a sequence of moves; that is,

 with and meaning that an agent moves from to at time

step . Actually, such a sequential solution is produced by the BIBOX algorithm. Now, we need to

distinguish which pairs of moves can be executed in parallel and which must be executed one by one

sequentially. Following two definitions captures this intuition.

Definition 5 (concurrent moves). A move ; is concurrent with a move

 ; with if , , and there is no other move

 in
 with such that . Concurrent move are

denoted as . □

Pavel Surynek

20

The definition captures the fact that although the moves are interfering they can be executed at the

same time. The relation of concurrence is anti-reflexive due to the requirement on different agents

involved and anti-symmetric due to the ordering of moves within the sequential solution.

Definition 6 (dependent moves). A move ; is dependent on a move

 ; with if , either or

 , and there is no other move in
 such that such that

 . The notation of dependence is . □

The relation of dependence of moves is reflexive and anti-symmetric due to the ordering of moves

within the sequential solution. It puts into relation moves that must be executed sequentially as they

either concern the same agent or they interfere spatially through shared vertices. Notice that the defi-

nition of dependence is complementary to the definition of concurrence.

It is not difficult to show that every function
 that satisfies conditions

that whenever and

 whenever correctly assigns execution time steps to

moves with respect to the definition of pCPF. Particular time-step assignment function can be

found by the critical path method [14] for instance. Schedule obtained from the critical path method

is optimal in certain sense – details are discussed in [27].

3.2. BIBOX-: An Algorithm for a Bi-connected Graphs Exploiting Optimal Macros

The drawback of the BIBOX algorithm is that it requires at least two unoccupied vertices. Observe

that the second unoccupied vertex is necessary only in the last stage where agents are placed into the

initial cycle. Thus, if there is only one unoccupied vertex, the BIBOX algorithm would be able to

place almost all the agents except those whose goal positions are within the initial cycle.

It is possible to apply the MIT algorithm [8] to finish placement of agents in the initial cycle. The

MIT algorithm is capable of solving instances on all the non-trivial bi-connected graphs with just one

unoccupied vertex (the instance with just one unoccupied vertex may be unsolvable; indeed, the MIT

algorithm can detect such a case). Thus if we combine both algorithms, the combined algorithm can

proceed as BIBOX for placing agents into all the internal vertices of handles and it can proceed as

MIT over the remaining initial cycle and the first handle. Unfortunately, the process how MIT places

agents generates excessively long sequences of moves (see experiments in Section 4).

Despite above facts the idea of using alternative solving process for the initial cycle is still prom-

ising. Since the initial cycle and the first handle constitute a structurally simple graph (these graphs

are called -like graphs in the following text), it is feasible to try to solve selected instances of pCPF

over these graphs makespan optimally. The good candidate instances for optimal solving are those

from which an overall solution of any instance over the graph can be composed. Moreover, the opti-

mal solutions to selected instances can be pre-computed and stored in the database for future use.

Since solutions from that the overall solution is composed are optimal, it is reasonable to expect that

the makespan of the resulting solution will be short as well. Nevertheless, this is a conjecture that

should be proven.

3.2.1. Algebraic Foundation of the Algorithm

The bi-connected graph, whose handle decomposition consists of an initial cycle and a single handle,

represents structurally the simplest bi-connected graphs over that the non-trivial rearrangement of

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

21

agents is possible supposed there is a single unoccupied vertex (the structurally simpler bi-connected

graph is a cycle where only rotations of agents are possible). These graphs will be referred to as

-like graphs.

Definition 7 (-like graph). Let , , and be

three sequences of vertices satisfying that . An undirected graph

 for such three sets is constructed as follows: and

 }. An undirected graph is called a -like graph if there exist three sets of vertices

 , , and as above such that is isomorphic to . □

The notation of the set union is used over sequences in

the definition of the set of vertices . This is an abbrevia-

tion for the union of ranges of individual sequences. No-

tice that itself is a -like graph and

may be identical to if sets , , and consist of vertices

of . Hence, no distinction is made between and

 in the following text and the notation

is used exclusively. An example of -like graph is shown

in Figure 7.

There are non-isomorphic -like graphs over a

set of vertices (consider the set linearly ordered and partitioned over sub-sets , , and , where

these sub-sets form continuous sub-sequences within the ordered ; there is possibilities to

place separation points among , , and). However, the number of all the possible instances of

CPF with a single unoccupied vertex on a fixed -like graph is since the differ-

ence between the initial and the goal arrangement can be regarded as a permutation of elements.

Hence, it is not feasible to pre-compute and to store optimal solutions to all the instances of the prob-

lem on a fixed -like graph. The number of selected instances should be bounded polynomially to

make their pre-computation and storing feasible. At the same time, it should be possible to compose

solution to any instance over the -like graph from the solutions to selected instances.

Without loss of generality, assume that the unoccupied vertex within the initial and the goal ar-

rangement of an instance over is always (the unoccupied vertex can be simply relo-

cated to any vertex). The algebraic structure of such instances over is isomorphic to the group of all

the permutations of elements which is called a symmetric group on elements and it

is denoted [2, 17].

A transposition is a permutation, which exchanges a pair of elements and keeps other elements

fixed. It is well known that can be generated by the set of transpositions. A permuta-

tion is called odd if it can be composed of an odd number of transpositions. A permutation is called

even if it can be composed of an even number of transpositions. A permutation is either odd or even

but not both. In fact, if a permutation is assigned a sign by a function which is if the permuta-

tion is even and if the permutation is odd, then represents a group homomorphism between

 and the group where multiplication corresponds to the product

of two permutations, neutral element corresponds to the identical permutation and unary minus –

corresponds to the inverse permutation.

Figure 7. An example of -like graph. -like

graphs are bi-connected graphs consisting of a

cycle and one handle.

Pavel Surynek

22

Another simple fact, that can be derived from above statements, is that the set of all an even per-

mutations on the same set of elements forms a proper sub-group of ; it is called an

alternating group on elements and it is denoted as .

A rotation along a 3-cycle is a permutation that rotates given three elements and keeps other

fixed. It is easy to compose any even permutation from rotations along 3-cycles on the same set of

elements [8]. As rotation along a 3-cycle itself it is an even permutation it can never generate an odd

permutation.

The number of distinct transpositions over elements is and the number of distinct rota-

tions along 3-cycles over elements is . This is polynomial hence, optimal solutions of corre-

sponding instances seem to be good candidates for storing into the database. Moreover, if the corre-

sponding instances are solvable, then they satisfy the property that a solution to any (in the case of

transpositions) or almost any (in the case of 3-cycle rotations) instance on the same graph can be

composed of them.

Suppose to have a -like graph with ,

 , and and a set of agents for the following three

definitions.

Definition 8 (even and odd case). Let
 be an initial arrangement of agents such that

 (that is, is initially unoccupied) and let
 be a goal arrangement of agents such that

 (that is, is finally unoccupied). If

 forms an even permutation with respect

to
 , then an instance of pCPF

 is called an even case. If

 forms an

odd permutation with respect to
 , then the instance is called an odd case. □

Definition 9 (transposition case). Let
 be an initial arrangement such that

(that is, is initially unoccupied) and let
 be a goal arrangement such that there exist

with for which it holds that

 (agents and are to be exchanged while locations of other agents are

kept; consequently is finally unoccupied). Then an instance of pCPF

is called a transposition case with respect to and . □

Figure 8. An example of transposition and 3-cycle rotation cases a -like graph. The transposition case is shown for verti-

ces and . The 3-cycle rotation case is shown for vertices , and . A solution to any

instance over -like graph with one vertex unoccupied can be composed of solutions to transposition and 3-cycle rotation

cases.

Transposition case

3-cycle rotation case

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

23

Definition 10 (3-cycle rotation case). Let
 be an initial arrangement such that

(is initially unoccupied). Let
 be a goal arrangement such that there exist pair wise distinct

 and it holds that

 (agents , , and are to be rotated while posi-

tions of other agents are kept; is finally unoccupied). Then an instance of pCPF

 is called a 3-cycle rotation case with respect to , , and . □

See Figure 8 for illustrations of transposition case and 3-cycle rotation case. Notice, that both cas-

es would be worthless if they are not solvable. Fortunately, several positive results regarding solva-

bility of these cases are shown in [8]. Following propositions and corollaries recall some of them

(without proofs).

Proposition 2 (solvability of an odd case) [8]. An odd case of pCPF

 with

 is solvable if and only if contains a cycle of an odd length. 

Let the -like graph with be denoted as . It repre-

sents a special case where some instances over it are solvable and some are unsolvable. The case of

 will be treated separately.

Since the transposition is an odd permutation, the following corollary is a direct consequence of

the above proposition.

Corollary 1 (solvability of transposition case) [8]. A transposition case

with non-isomorphic to is solvable if and only if contains a cycle of an

odd length. 

Proposition 3 (solvability of an even case) [8]. An even case

 with

 non-isomorphic to is always solvable. 

Analogically, since rotation along 3-cycle is an even permutation, the following corollary is a di-

rect consequence of the above proposition.

Corollary 2 (solvability of 3-cycle rotation case) [8]. A 3-cycle rotation case

 with non-isomorphic to is always solvable. 

Similar results hold not only for -like graphs, but also for the more general class of non-trivial

bi-connected graphs non-isomorphic to [8]. The important properties directly exploited by

the algorithm are that if the input graph does not contain a cycle of an odd length and the initial and

the goal arrangement of agents form an odd permutation then the instance is unsolvable. Similarly, if

the input and the goal arrangements form an even permutation (and the input graph is non-

isomorphic to) then the instance is always solvable (observe that, this is the corollary of the

BIBOX algorithm and Proposition 3).

The following propositions are important with respect to the length of the overall solution com-

posed of the optimal solutions to the transposition cases and 3-cycle rotation cases. Propositions ap-

peared in [2, 8, 17] but most likely they are just a general knowledge.

Pavel Surynek

24

Proposition 4 (solving an odd case). A solution to any odd case on a -like graph can

be composed of at most solutions to transposition cases on the same graph. 

Similarly, a solution of an even case can be composed of at most solutions to transposi-

tion cases as well.

Proposition 5 (solving an even case). A solution to any even case on a -like graph can

be composed of at most solutions to 3-cycle rotation cases on the same graph. 

 Proofs are shown within the pseudo-code of the BIBOX- algorithm. The above facts justify that

transposition and 3-cycle rotation cases are suitable for optimal solving. The corresponding optimal

solutions are hence good building blocks for solutions to general instances over -like graphs. It is

out of scope of this work to give any detailed description of how to compute optimal solutions of

instances over -like graphs. Applications of several variants of iterative deepening search for this

task were studied in [21].

The case of -like graph represents a situation where there is no simple characterization

of solvable instances. Since it is a small graph, it is feasible to pre-compute and to store optimal solu-

tions to all the solvable instances over it.

The solving process of the new algorithm over the initial cycle and the first handle is based on the

knowledge of how to solve instances over -like graphs. In this context, it is necessary to guarantee

that insolvability of an sub-instance over does not contradict solvability of the instance as

the whole if the initial cycle and the first handle unluckily become isomorphic to . The fol-

lowing lemma states that this contradictory case can be always avoided. This crucial treatment en-

sures the upcoming algorithm to proceed correctly. The proof the lemma enumerates all the possible

cases and for its length is omitted here (in can be found [27]).

Lemma 3 (avoiding). If a non-trivial bi-connected graph is non-isomorphic to

then it subsumes a -like sub-graph non-isomorphic to . Moreover, if contains

an odd cycle then it subsumes non-isomorphic to that additionally satisfies that

 (that is, sets and together form an odd cycle). Having a -like sub-graph satisfying

above conditions, there exists a handle decomposition of of such that

 . (denotes the sub-graph of constructed by addition of the handle

to the initial cycle). 

3.2.2. Pseudo-code of the BIBOX- Algorithm

The new algorithm is called BIBOX- according to the concept of -like graph. Let

 be an input pCPF instance on a bi-connected graph with a single unoccupied ver-

tex. If is non-isomorphic to and it subsumes a cycle of an odd length then a handle de-

composition of such that is of an odd length and is non-

isomorphic to is computed. Lemma 3 guarantees that this is possible. If is isomorphic to

 then corresponds to . If does not contain an odd cycle then some arbitrary han-

dle decomposition is computed.

As in the case of BIBOX algorithm, the main phase of the algorithm requires that the finally unoc-

cupied vertex is located in the initial cycle . Thus, a function Transform-Goal is applied to modify

the goal arrangement
 by shifting goal locations of agents along a path to relocate the unoccu-

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

25

pied vertex into . The modified instance is then solved by the process implemented by the

BIBOX- algorithm. The solution is finished by calling a function Finish-Solution which shifts agents

back along the path .

 The BIBOX- algorithm proceeds according to the handle decomposition from the last handle

 to the second handle . The process of placement of agents within the individual handles of the

handle decomposition is the same as in the case of the BIBOX algorithm. The problem of reaching

the goal arrangement of agents within the first handle and the initial cycle is solved as an in-

stance over -like graph formed by and . It is supposed that the optimal solutions to all the

solvable transposition and 3-cycle rotation cases over -like graphs of the size up to the certain limit

are pre-computed and stored in the database. Next, it is supposed that the optimal solutions to all the

instances over the -like graph are pre-computed into the database as well. A solution to an

instance over the -like graph is composed of the corresponding optimal solutions stored in the data-

base. If the required record is not stored in the database (which may happen when the size of the

-like graph is greater than the limit) an alternative solving process must be used. For example, the

solving process implemented by the MIT algorithm can be employed in such a case.

The pseudo-code of the BIBOX- algorithm is listed as Algorithm 3. It reuses primitives, func-

tions, and procedures introduced within the context of BIBOX. For simplicity, it is supposed that all

the required optimal solutions are stored in the database (so there is no treatment when the size of the

-like graph exceeds the limit).

The database with optimal solutions to selected instances over -like graphs is represented by

three tables:
 ,

 , and
 . Optimal solutions to transposition cases over a particular

-like graph are stored in the table
 – records are addressed by a pair of vertices in which

agents are transposed. Similarly, the optimal solutions to 3-cycle rotation cases are stored in the table

 – records are addressed by a triple of vertices in which agents are rotated. Finally, the table

 contains optimal solutions to all the solvable instances over the -like graph - rec-

ords are addressed by permutations determined by the difference between the initial and the goal

arrangement of agents (a function difference is used for calculating this differencing permutation).

Algorithm 3. The BIBOX- algorithm. The algorithm solves a given pCPF on a non-trivial bi-connected graph with exactly

one unoccupied vertex. It employs a pattern database containing optimal solutions to sub-problems over the initial cycle and

the first handle. Functions and procedures from Algorithm 1 and Algorithm 2 are reused here.

function BIBOX--Solve

 : pair

/* Top level function of the BIBOX- algorithm; solves

a given instance of pCPF with a single unoccupied vertex.

Parameters: - a graph modeling the environment,

 - a set of agents,

 - an initial arrangement of agents,

 - a goal arrangement of agents. */

1: if contains a cycle of an odd length then

2: let be a handle decomposition of

3: such that is of an odd length and is

4: a -like sub-graph non-isomorphic to if possible

/* if this is not possible then is isomorphic to */

5: else

6: let be a handle decomposition of

 /* is always non-isomorphic to */

7:
 Transform-Goal

8:

9:

Handle decomposition

Pavel Surynek

26

10: for do

11: if then

12: Solve-Regular-Handle

13: let

14: Lock

15: Unlock

16: Make-Unoccupied

17: let , be two vertex disjoint paths connecting

18: and in

19:
20:
21: -BOX-Solve

22: Finish-Solution

23: return

procedure -BOX-Solve

/* Solves a sub-problem over a given -like subgraph; a set of

goal vertices into which agents must be placed is specified.

Parameters: - a -like subgraph modeling the sub-problem

 - a set of goal vertices

 - an initial arrangement of agents

 - a goal arrangement of agents

(only
 is considered) */

1: let

2: let

3: if then

4:
 difference

5: if then fail /* the instance is unsolvable */

6: Apply-Macro

7: else

8:

9: if contains a cycle of an odd length then

10: for do

11: if
 then

12: Apply-Macro

/* does not contain any odd cycle */

13: else

14: if
 constitutes an odd permutation w.r.t. then

15: fail /* the instance is unsolvable */

/*
 constitutes an even permutation w.r.t. */

16: else

17: for do

18: if
 then

19: let

20: Apply-Macro

function Apply-Macro : assignment

/* Applies a given sub-solution on a global arrangement

and on an arrangement over -like subgraph.

Parameters: - a solution of a sub-problem

 - arrangement over -like subgraph */

1: let

2: for do

3: Move-Agent-Unoccupied

4:

5: return

A -like graph
matched over and .

Transposition case over

3-cycle rotation case over

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

27

The main framework of the algorithm as it was described above is represented by the function

BIBOX--Solve which gets a pCPF instance on a non-trivial bi-connected graph

 with just a single unoccupied vertex as a parameter and returns the length of the solution and

the solution itself. The difference from the original BIBOX algorithm is that the handle decomposi-

tion is computed with a special care (lines 1-6) and the final solving process (lines 13-21) over the

-like graph formed by and exploits the solution database. The middle section of the whole

solving process (lines 10-12), when agents are placed into handles, is the same as in the case of the

BIBOX algorithm. To mitigate the need of care about the location of an unoccupied vertex, the first

connection vertex of the handle is vacated (lines 14-16) – this vertex correspond to the vertex

from the definition of the -like graph. Recall, that the transposition, the 3-cycle rotation, and the

case of suppose the unoccupied vertex to be right there.

An auxiliary function Apply-Macro is used to apply a record from the solution database (the op-

timal solution for a sub-instance is called a macro in this context) on the current arrangement of

agents in a given -like graph as well as on the global current arrangement represented by and

 . The optimal solution has the form of a sequence of moves where the move is an ordered pair of

vertices of - the first vertex contains an agent to be moved; the second vertex is unoccupied at the

time step of execution of the move and represents the target vertex. The execution of the macro over

the current arrangement is carried out by Move-Agent-Unoccupied; the function also constructs the

next step in construction of the output solution.

The very novel part in comparison with the BIBOX algorithm is the process of reaching the goal

arrangement over a -like graph. This is represented by a function -BOX-Solve. The function gets as

parameters the -like graph itself as an initial and a goal arrangement of agents as
 and

 respectively, and a set of goal vertices as which is a sub-set of vertices of .

If is isomorphic to (lines 3-6) then the goal arrangement is reached at once using a

record from the database. It may happen that the required record is not found in the database (line 5).

In such a case, the algorithm terminates with the answer that the given instance is unsolvable. A spe-

cial function difference is used in this execution branch. The function calculates a permutation from

two arrangements of agents. The interpretation of a permutation calculated by the difference function

is that it transforms an arrangement given as the first argument to an arrangement given as the second

argument.

If is non-isomorphic to and it contains an odd cycle (lines 7-12) then all the goal ar-

rangements are reachable. The goal arrangement is reached by composing several transposition cases.

This is done by traversing the set of agents that should be placed. If the current location of an agent

given by differs from its goal location given by
 , then agents at these two locations are ex-

changed using a solution for the transposition case from the database of solutions.

If is non-isomorphic to and all the subsumed cycles are of an even length (lines 14-20)

then the treatment of unsolvable cases must be done. If the goal arrangement
 forms an odd per-

mutation with respect to the initial arrangement then the given instance is unsolvable (lines 14-

15). The algorithm terminates with the negative answer in such a case. If this is not the case (that is,

 forms an even permutation with respect to) then the goal arrangement is reached using 3-cycle

rotations (lines 17-20).

This is done almost in the same way as in the case of transposition cases in fact. Again, agents

that should be relocated are traversed. The relocation of an agent to its goal location
 from

 is done by a rotation along a 3-cycle formed by ,
 , and , where is a vertex

Pavel Surynek

28

different from ,
 , and also different from all the goal vertices of all the already placed

agents. Notice, that it is sufficient to traverse all the agents except last two. They must be inevitably

placed to their goal vertices after the last 3-cycle rotation since otherwise the goal arrangement

forms an odd permutation with respect to which has been ruled out at the beginning of this branch.

3.2.3. Summary of Theoretical Properties and Extensions of the BIBOX- Algorithm

The detailed theoretical analysis of soundness and completeness of the BIBOX- algorithm can be

found in [27]. The crucial ingredient for the correctness of the algorithm is represented by Lemma 3.

 The worst-case time complexity of the algorithm is [27] with respect to the input instance

 . The makespan is also [27]. This result can be obtained from the

fact that the length of optimal solutions of special cases is bounded by [8]. As optimal

solutions of special cases are necessary, the upper bound of is obtained.

 If the size of the database containing optimal solutions is not accounted, the space required by the

algorithm is of in the worst-case. The space required by the part of the database where

optimal solutions to are stored is (the size of
) and the space required by the

part of the database where solutions to transposition and 3-cycle rotation cases over a -like graph

 are stored is (the size of
) and (the size of

)

respectively.

 Practically, it is better to use slightly adapted special cases. Observe that special cases as de-

scribed above preserve all the agents except the affected pair or triple at their original positions. This

is not necessary in fact, since only agents that already reached their goal positions need to be pre-

served. Preserving other agents just imposes additional constraints on the solution and may prolong it

unnecessarily. The no less important fact is that it is easier to find a less constrained optimal solution.

The modified special cases, where relocation of agents that have not yet reached their goal positions

are neglected, are called a weak transposition case and a weak 3-cycle rotation case respectively. The

detailed description of weak special cases is given in [27].

4. Experimental Evaluation

As algorithms BIBOX and BIBOX- were primarily developed as an alternative to the MIT algorithm

[8], the experimental evaluation will be primarily aimed on the competitive comparison of BIBOX

and BIBOX- with MIT. Nonetheless, we also provide comparison with the WHCA* algorithm [18]

to obtain more complete image.

All the tested algorithms were implemented in C++. The implementation of algorithms BIBOX

and BIBOX- follows the presented pseudo-code. Several optimizations mentioned in Section 3.1.3

were adopted in the implementation of BIBOX and BIBOX- algorithms as well.

 The database of optimal solutions used by the BIBOX- algorithm has been generated on-line (on

demand) by a variant of IDA* algorithm enhanced with learning [21]. Details of this algorithm are

out of scope of this study. Pseudo-code and experimental analysis can be found in [21]. Notice, that it

is a time consuming task to find an optimal solution to a pCPF instance even on a small -like graph.

Therefore, the timeout of seconds was used after that the solving process switched to the MIT

style. The database with optimal solutions should be pre-computed off-line in the real-life applica-

tions.

 The MIT has been re-implemented according to [8]. The algorithm is designed for general graphs,

however the major technique concerns bi-connected partitions. Briefly said, the algorithm finds a

configuration of vertices in the input graph on that a 3-cycle rotation is possible. At the same time, it

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

29

is ensured that every triple of agents can be relocated to this configuration and back to their original

locations. By composing these three basic operations – relocation to the 3-cycle rotation configura-

tion, 3-cycle rotation there, and relocation back to original locations – we are actually able to make

3-rotation of every triple of agents. This consequently means that agents can be relocated according

to every even permutation by the outlined process (see also Proposition 5). If additionally there is an

odd cycle in the input graph, all the permutations are possible.

Similar optimization techniques as in the case of the BIBOX algorithm have been used. When an

unoccupied vertex was necessary, the nearest unoccupied vertex was found and relocated to the loca-

tion where needed. More details about the re-implementation of the MIT algorithm can be found in

[23].

The WHCA* algorithm was also re-implemented by ourselves. It searches for a path for each

agent individually while spatial-temporal positions occupied by the already scheduled agents are

avoided. This algorithm is inherently incomplete since some agents may block another agent and

prevent it from moving; thus, only few of tested setups were solvable by this algorithm.

 In order to allow reproducibility of all the presented results the source code and supporting data is

provided at the web site: http://ktiml.mff.cuni.cz/~surynek/research/j-multirobot-2010. Additional

experimental results and raw experimental data are provided as well.

 Experimental evaluation has been performed on two computers. The first computer has been used

to generate experimental results regarding runtime - runtime configuration
 1
; the second computer has

been used to generate all the remaining results - default configuration
2
.

4.1. Makespan Comparison

The first series of experiments is devoted to comparison of the makespan of solutions generated by

tested algorithms. All the tested algorithms were used to generate a sequential solution of a given

instance, which has been parallelized subsequently by the critical path method. The result was a par-

allel solution complying with the definition of the solution of pCPF. A set of testing instances of

pCPF consists of instances on randomly generated bi-connected

graphs and of instances on grids.

A randomly generated bi-connected graph has been generated ac-

cording to its handle decomposition. First, a cycle of random length

from uniform distribution where certain minimum and maximum

lengths were given has been generated. Then a sequence of handles

of random lengths from uniform distribution (again the minimum

and the maximum length of handles was given) has been added.

Each handle has been connected to randomly selected connection

vertices in the currently constructed graph. The addition of handles

has terminated when the required size of the graph has been reached.

An instance on a randomly generated graph itself further consists of

random initial arrangement and goal arrangement of agents over the

graph where at least the given number of vertices remains unoccu-

1 Runtime configuration: 2x AMD Opteron 1600 MHz, 1GB RAM, Mandriva Linux 10.1, 32-bit edition, gcc version 3.4.3, compilation

with –O3 optimization level.

2 Default configuration: 4x AMD Opteron 1800 MHz, 5GB RAM, Mandriva Linux 2009.1, 64-bit edition, gcc version 4.3.2, compilation

with –O3 optimization level.

 as a grid

Figure 9. An illustration of handle

decomposition of a grid graph. The

ordering of the addition of individ-

ual handles is depicted by numbers

in vertices. Three types of han-

dles/cycles are used.

Handle
length

4

2

1

http://ktiml.mff.cuni.cz/~surynek/research/j-multirobot-2010

Pavel Surynek

30

pied. The handle decomposition used by solving algorithms was exactly that one used for generating

the graph.

The situation with instances over the grid is similar. The square 4-connected grid graph of a given

size has been generated together with a random initial and a goal arrangement of agents. Again, a

given number of vertices remain unoccupied. First, an initial cycle with vertices was constructed

(placed on the left upper corner of the grid); then handles were added to fill in the grid successively

according to its rows and columns. The first row and the first column were added at the beginning

(handles with internal vertices). Then rows of the grid were constructed by adding handles from the

left to the right and from the top to the bottom (handles with internal vertex). See Figure 9 for the

ordering of addition of vertices in the construction of the grid.

Figure 10. Makespan comparison of solutions to instances over random bi-connected graphs. Four algorithms are com-

pared: the standard BIBOX, a variant of BIBOX where the last phase when agents are placed into the -like graph is solved

by MIT – BIBOX/MIT, the MIT algorithm, and WHCA* with the window size of 16. Solutions were parallelized using the

presented parallelism-increasing scheme [27] (critical-path method). Four setups of random bi-connected graphs are shown

– random lengths handles have uniform distribution of the range: , , , and respectively. The makespan

tends to decrease for the increasing number of unoccupied vertices. WHCA* was able to solve only several sparsely popu-

lated instances.

Results shown in Figure 10 and Figure 11 are targeted on the comparison of the makespan. Re-

sults in Figure 10 show makespans of solutions of instances over randomly generated bi-connected

graphs. Graphs of size up to vertices were used (the graph had been grown by addition of han-

dles until the size of vertices had been reached). Four graphs, which differ in the average length

of the initial cycle and handles of the handle decomposition, were used. Lengths of the initial cycle

and handles have the uniform distribution of the range: , , , and . The length of the

1

10

100

1000

10000

100000

0 40 80 120 160 200 240

ζ=
M

ak
e

sp
an

Number of unoccupied vertices

Makespan | Random Bi-connected 0..4

MIT

BIBOX/MIT

BIBOX

WHCA*(16)

1

10

100

1000

10000

100000

0 40 80 120 160 200 240

ζ=
M

ak
es

p
an

Number of unoccupied vertices

Makespan | Random Bi-connected 0..8

MIT

BIBOX/MIT

BIBOX

WHCA*(16)

1

10

100

1000

10000

100000

0 40 80 120 160 200 240

ζ=
M

ak
e

sp
an

Number of unoccupied vertices

Makespan | Random Bi-connected 0..16

MIT

BIBOX/MIT

BIBOX

WHCA*(16)

1

10

100

1000

10000

100000

1000000

0 40 80 120 160 200 240 280 320

ζ=
M

ak
e

sp
an

Number of unoccupied vertices

Makespan | Random Bi-connected 0..32

MIT

BIBOX/MIT

BIBOX

WHCA*(16)

|V| = 259 |V| = 248

|V| = 269 |V| = 344

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

31

handle is equal to the number of its internal vertices. Figure 11 is devoted to structurally regular

graphs – grid graphs of the size , , and were used.

Four algorithms were compared: the standard BIBOX, a variant of BIBOX where the last phase

when agents are placed into the θ-like graph was solved by MIT – BIBOX/MIT, the MIT algorithm,

and WHCA* with the window size of 16.

Random initial and goal arrangements are obtained as a random permutation of agents in the ver-

tices of the graph. The random permutation is generated from identical one by applying quadratic

number of transpositions. This process generates random arrangements of the appropriate quality (of

randomness) for the use in the test.

Figure 11. Makespan comparison of solutions of instances over square grids. Four algorithms are compared: the standard

BIBOX, BIBOX/MIT, MIT, and WHCA*(16) on three grids: , , and .

It can be observed that the BIBOX algorithm generates solutions of the makespan approximately

 times to times smaller than that of solutions generated by the MIT algorithm. In the setup

with random bi-connected graphs, the difference between BIBOX and MIT is becoming smaller as the

size of handles increases. In the setup with the grid graph, the BIBOX algorithm generates solutions

that have approximately times smaller makespan than that of the MIT algorithm. A steep decline

of the makespan can be observed when the portion of unoccupied vertices reaches approximately

 . This is some kind of a phase transition when agents are becoming arranged sparsely enough

over the graph so that there are almost no interactions between them (that is, they do not need to

avoid each other). This phase transition seems to depend on the average size of handles – for the

smaller size of handles the ratio of the number of agents to the number of vertices characterizing this

phase transition tends to be higher. The WHCA* algorithm generates better solutions than BIBOX in

1

10

100

1000

10000

0 10 20 30 40 50 60

ζ=
M

ak
e

sp
an

Number of unoccupied vertices

Makespan | Grid 8x8

MIT

BIBOX/MIT

BIBOX

WHCA*(16)

1

10

100

1000

10000

100000

0 40 80 120 160 200 240

ζ=
M

ak
e

sp
an

Number of unoccupied vertices

Makespan | Grid 16x16

MIT

BIBOX/MIT

BIBOX

WHCA*(16)

1

10

100

1000

10000

100000

1000000

0 80 160 240 320 400 480 560 640 720 800 880 960

ζ=
M

ak
e

sp
an

Number of unoccupied vertices

Makespan | Grid 32x32

MIT

BIBOX/MIT

BIBOX

WHCA*(16)

|V| = 1024

|V| = 64 |V| = 256

Pavel Surynek

32

most cases (the ratio between the makespan of BIBOX and WHCA* is from to). However,

WHCA* manages to do so only on sparsely occupied environments (number of unoccupied vertices

more than). As WHCA* generates near optimal solutions with respect to the makespan we also

have certain indication how far from the optimum solutions generated by BIBOX algorithms are. Let

us note, that the most difficult instance from our test suite took WHCA* approximately 2.0 seconds

on the runtime configuration (80 agents in the grid).

Figure 12. An evaluation of the benefit of the use of weak special cases instead of the standard ones. Four variants of the

BIBOX- algorithm are compared: BIBOX-/T (the standard transposition case is used preferably), BIBOX-/3(the standard

3-cycle rotation case is used preferably), BIBOX-/T|weak (the weak transposition case is used preferably), and BIBOX-

/3|weak (the weak 3-cycle rotation case is used preferably). The difference of the makespan of solution produced by these

algorithms from those produced by the BIBOX algorithm is shown (values below zero indicate that the tested algorithm was

better than BIBOX). Four random bi-connected graphs with the increasing number of unoccupied vertices are used; they

have handles of lengths with uniform distribution of ranges: , , , and respecitvely. To make the difference

visible, results for individual algorithms are sorted in descending order.

The BIBOX/MIT algorithm exhibits performance influenced by the size of the initial -like graph.

The larger is the graph the worse is the performance of the BIBOX/MIT algorithm. This behavior can

be observed from the results shown in Figure 10 and Figure 11 using the fact that the longer handles

induce larger initial -like graph. Grid graphs represent the extreme case – almost all the handles are

of the size . Both algorithms – BIBOX as well as BIBOX/MIT – generate solutions of the very simi-

lar makespan (the only difference is observable in the case of grid with low occupation where

BIBOX/MIT is marginally better).

Regarding the makespan, the BIBOX style solving process represents the better alternative than

MIT when at least two unoccupied vertices are provided.

-100.00

-50.00

0.00

50.00

100.00

150.00

0 80 160 240

Δ
ζ

=
M

ak
es

p
an

 -
 M

ak
es

p
an

(B
IB

O
X

)

Makespan| Random Bi-connected 0..2

BIBOX-θ/T

BIBOX-θ/3

BIBOX-θ/3|weak

BIBOX-θ/T|weak

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

0 80 160 240

Δ
ζ

=
M

ak
es

p
an

 -
 M

ak
es

p
an

(B
IB

O
X

)

Makespan | Random Bi-connected 0..3

BIBOX-θ/T

BIBOX-θ/3

BIBOX-θ/3|weak

BIBOX-θ/T|weak

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 80 160 240

Δ
ζ

=
M

ak
es

p
an

 -
 M

ak
es

p
an

(B
IB

O
X

)

Makespan | Random Bi-connected 0..4

BIBOX-θ/T

BIBOX-θ/3

BIBOX-θ/3|weak

BIBOX-θ/T|weak

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

0 80 160 240

Δ
ζ

=
M

ak
es

p
an

 -
 M

ak
es

p
an

(B
IB

O
X

)

Makespan | Random Bi-connected 0..5

BIBOX-θ/T

BIBOX-θ/3

BIBOX-θ/3|weak

BIBOX-θ/T|weak

|V| = 257 |V| = 257

|V| = 257 |V| = 259

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

33

An interesting question is whether the use of optimal solutions to weak cases instead of standard

ones does really help. Results reported in Figure 12 are devoted to this question. A comparison of the

BIBOX algorithm with the variants of the BIBOX- algorithm is shown.

Four variants of the BIBOX- algorithm are compared: BIBOX-/T (the standard transposition

case is used preferably), BIBOX-/3 (the standard 3-cycle rotation case is used preferably), BIBOX-

/T|weak (the weak transposition case is used preferably), and BIBOX-/3|weak (the weak 3-cycle

rotation case is used preferably). Notice, that the variant presented in the pseudo-code as Algorithm 3

prefers standard transposition cases. If the transposition case is not possible to apply, the correspond-

ing 3-cycle rotation case is used instead (which is always possible). Other variants implement the

preference in the analogical way.

The comparison in Figure 12 shows difference of the makespan of solution generated by men-

tioned three variants of BIBOX- from the makespan of the corresponding solution generated by the

standard BIBOX (negative values of the difference indicate that BIBOX generated solution with the

greater makespan). Four random bi-connected graphs were used for the experiment; the number of

vertices was up to (again, the graph had been grown by addition of handles until the size of

vertices had been reached). The length of the initial cycle and handles has been selected randomly

with the uniform distribution of ranges: , , , and , respectively. The relatively small

ranges are used in order to be able to calculate all the optimal solutions of the special cases in the

timeout of . The size of the -like graph, on that special cases appear, directly corresponds to the

length of the initial cycle and handles of the handle decomposition. Makespans have been collected

for instances with to unoccupied vertices for each graph . To make differences

among performances of tested algorithms clearly visible, the difference in makespans has been sorted

in the descending order. The difference in makespan tends to be greater for instances with few unoc-

cupied vertices (hence, it is expected that these makespans are sorted to the left or to the right margin

in each plot).

Results shown in Figure 12 can be interpreted as that solutions with the smallest makespan are

produced by BIBOX-/T|weak closely followed by BIBOX-/3|weak. Hence, it is possible to con-

clude that the use of optimal solutions to weak special cases is beneficial. Moreover, a solution to a

weak special is easier to generate since it is less constrained than the solution of the corresponding

standard case.

Since values of the makespan differences deviate from the uniform distribution around margin-

ally, it is also possible to conclude that variants of BIBOX- does not improve the makespan signifi-

cantly in comparison with BIBOX on instances with at least two unoccupied vertices. Thus, the use of

BIBOX- is substantiated only for instances with just a single unoccupied vertex (where the BIBOX

algorithm is not applicable).

4.2. Parallelism Evaluation

The exact meaning of the term parallelism is the value obtained as the ratio of the total number of

moves divided by the makespan. The result is the average number of moves performed at each time

step. High parallelism is typically desirable since it implies the smaller makespan.

In the experiments, we observed how the average parallelism changes while the number of unoc-

cupied vertices is increasing. The same set of setups as in the case of makespan evaluation was used.

Results regarding bi-connected graphs are shown in Figure 13 results regarding grids are shown in

Figure 14. The parallelism-increasing algorithm [27] was used to post-process the solutions. In case

of WHCA* the initial solution was already parallel but in the sense of PMG; we parallelized it fur-

ther according to pCPF (which however made almost no change as in instances solvable by WHCA*

agents were rather isolated).

Pavel Surynek

34

On random bi-connected graphs, the parallelism of solutions slightly increases as the number of

unoccupied vertices reaches approximately 50% occupancy. This behavior is yet more expressed on

the grid graphs. The increase of the parallelism is steeper in this case. When the number of unoccu-

pied vertices is higher than some threshold a different behavior can be observed. The fewer agents

are in the graph the lower is the parallelism. It can be also observed that parallelism correlates with

the average length of handles of the handle decomposition – this is caused by the fact that all the

agents in the handle are moving at once. Another characteristic, which the parallelism correlates

with, is the diameter [33] of the graph. This correlation can be observed on tests with grid graphs in

Figure 14. The reason for this correlation is the fact that all the agents along a path connecting two

vertices in the graph moves at once when the unoccupied vertex is relocated. The average length of

such paths correlates with the diameter of the graph.

Figure 13. Average parallelism of solutions generated by tested algorithms for instances over random bi-connected

graphs. BIBOX, BIBOX/MIT, MIT, and WHCA* are compared. Four random bi-connected graphs were used – random

lengths of initial cycle and handles of the handle decomposition have uniform distribution of the range: , , ,

and . The average parallelism is the total number of moves divided by the makespan.

Regarding the MIT algorithm, it can be observed that the parallelism of its solutions decreases al-

most linearly with the increasing number of unoccupied vertices. Without providing further details,

the explanation of this behavior is that all the phases of the algorithm are rather homogenous. Thus,

as occurrence of agents is getting linearly sparser the parallelism decreases almost linearly. Recall,

that the BIBOX algorithm behaves differently. All the movements take place in the unfinished part of

the graph only, which is relatively getting smaller as the BIBOX algorithm proceeds.

0

5

10

15

20

25

0 40 80 120 160 200 240

M
o

ve
s

/
M

ak
e

sp
an

Number of unoccupied vertices

Parallelism | Random Bi-connected 0..4

BIBOX

BIBOX/MIT

MIT

WHCA*(16)

0

5

10

15

0 40 80 120 160 200 240

M
o

ve
s

/
M

ak
e

sp
an

Number of unoccupied vertices

Parallelism | Random Bi-connected 0..8

BIBOX

BIBOX/MIT

MIT

WHCA*(16)

0

5

10

15

20

25

30

0 40 80 120 160 200 240

M
o

ve
s

/
M

ak
e

sp
an

Number of unoccupied vertices

Parallelism | Random Bi-connected 0..16

MIT

BIBOX

BIBOX/MIT

WHCA*(16)

0

5

10

15

20

25

30

35

40

45

50

0 40 80 120 160 200 240 280 320

M
o

ve
s

/
M

ak
e

sp
an

Number of unoccupied vertices

Parallelism | Random Bi-connected 0..32

MIT

BIBOX

BIBOX/MIT

WHCA*(16)

|V| = 344 |V| = 269

|V| = 248 |V| = 259

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

35

Generally, it can be concluded from Figure 13 and Figure 14 that solutions generated by the

BIBOX and BIBOX/MIT algorithms allow higher parallelism than that of MIT. Consequently, it can

be observed together from Figure 10, Figure 11, Figure 13, and Figure 14 that the total number of

moves, which solutions generated by BIBOX and BIBOX/MIT consist of, are still order of magnitude

smaller than that of MIT. Thus, the performance of the BIBOX algorithms is not caused by the higher

parallelism but also by the smaller size of the generated sequential solutions.

Results regarding WHCA* indicate that typically all the agents move. The explanation is that the

no-op (that is, an agent does not move) is chosen only if it is necessary to avoid another agent, which

is relatively rare situation. Otherwise a move through that an agent can approach its goal is chosen.

On random bi-connected graphs WHCA* tends to reach higher parallelism than the other tested algo-

rithms. On grid it seems that no simple statement can be done.

Figure 14. Average parallelism comparison of solutions of instances over square grids. BIBOX, BIBOX/MIT, MIT, and

WHCA* are compared on three grids: , , and .

The development of the number of movements per time step called step parallelism is shown in

Figure 15. This experiment was done with the BIBOX algorithm only on a random bi-connected

graph where lengths of the initial cycle and handles were randomly selected with the uniform distri-

bution with of the range . There were exactly two unoccupied vertices in the input graph.

Peaks in Figure 15 correspond to parallel movements along long paths. The density and height of

peaks is getting slightly smaller as the algorithm proceeds. This is caused by the fact that the part of

the graph affected by movements is getting smaller. Other values correspond to various rotations

along cycles are done intensively by the algorithm. The absolute number of parallel movements cor-

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60

M
o

ve
s

/
M

ak
e

sp
an

Number of unoccupied vertices

Parallelism | Grid 8x8

BIBOX

BIBOX/MIT

MIT

WHCA*(16)

0

2

4

6

8

10

12

14

0 40 80 120 160 200 240

M
o

ve
s

/
M

ak
e

sp
an

Number of unoccupied vertices

Parallelism | Grid 16x16
BIBOX/MIT

BIBOX

MIT

WHCA*(16)

0

5

10

15

20

25

0 80 160 240 320 400 480 560 640 720 800 880 960

M
o

ve
s

/
M

ak
e

sp
an

Number of unoccupied vertices

Parallelism | Grid 32x32 BIBOX/MIT

BIBOX

MIT

WHCA*(16)

|V| = 1024

|V| = 64 |V| = 256

Pavel Surynek

36

responding to these rotations does not change as the algorithm proceeds (the average size of a cycle

in the unfinished part of the graph is still the same since the graph was generated uniformly).

Figure 15. Step parallelism development of in a solution generated by BIBOX. The random bi-connected graph was gener-

ated with the length of the initial cycle and handles having uniform distribution of the range . There were exactly two

unoccupied vertices. The development of the step parallelism (number of moves per time step) over time is shown.

4.3. Scalability Evaluation

Scalability tests were aimed on the makespan of generated solution and the overall runtime necessary

to produce the parallel solution while the number of unoccupied vertices was fixed to 2 and the size

of the graph was varying. The overall time is the time necessary to produce a sequential solution plus

the time needed to increase its parallelism.

The BIBOX, BIBOX/MIT, BIBOX-/T|weak, BIBOX-/3|weak, and MIT were compared. Algo-

rithms BIBOX-/T and BIBOX-/3 were ruled out since they are outperformed by BIBOX-/T|weak

and BIBOX-/3|weak respectively as it has been shown in Section 4.1. BIBOX-/T|weak and BIBOX-

/3|weak are slightly faster supposed that all the records in the database of optimal solutions are pre-

computed off-line (the shorter resulting solution needs to be produced than in the case of BIBOX-/T

and BIBOX-/3). However, they are significantly faster if the optimal solutions need to be computed

on-line (on demand) [21, 22] as the optimal solution to weak special case is easier to find than the

optimal solution to the standard special case.

Tests targeted on scalability used the different setup of instances of pCPF than previous tests.

Now, approximately instances on bi-connected graphs with the size varying from to

vertices were generated. Random lengths of the initial cycle and handles of the handle decomposition

were selected randomly from uniform distribution with ranges: ,…, . Such selection guaran-

tees that graphs with short handles as well as graphs with long handles are included. There were ex-

actly two unoccupied vertices in all the tested instances.

Scalability evaluation for the makespan is shown in Figure 16. The makespan for the increasing

number of vertices is shown. Experiments in Figure 17 used the same setup (the same set of instanc-

es); the difference from Figure 16 is just that the runtime is shown. In both figures, algorithms are

compared pair-wise from the worst performing to the best performing pair (the pair of algorithms that

are closest to each other according to the given characteristic is compared).

Results regarding makespan show that the MIT algorithm performs as worst while the standard

BIBOX algorithm produces the best solutions. BIBOX/MIT, BIBOX-/T|weak and BIBOX-/3|weak

are somewhere in the middle. The makespan of solutions generated by BIBOX-/T|weak and BIBOX-

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

N
u

m
b

er
 o

f
m

o
ve

s

Time step

Step paralellism development | Random Bi-connected 0..4

|V| = 259

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

37

/3|weak sometimes jumps up to the makespan of the corresponding solution generated by

BIBOX/MIT. This happens if BIBOX-/T|weak or BIBOX-/3|weak do not manage to compute opti-

mal solution to the special case in the given timeout of seconds. In such a case BIBOX-/T|weak

and BIBOX-/3|weak produces exactly the same solution as BIBOX/MIT since they have to switch to

the MIT mode of generating (sub-optimal) solutions to special cases.

Figure 16. A comparison of the scalability of tested algorithms with respect to the makespan. Five algorithms were com-

pared: BIBOX, BIBOX/MIT, BIBOX-/T|weak, BIBOX-/3|weak, and MIT. Approximately pCPF instances over vari-

ous random bi-connected graphs containing to vertices were used. The range of the uniform distribution of lengths

of handles in the random generation was: , …, . Algorithms are sorted from left/top to right/bottom according to

the increasing performance (MIT – worst; BIBOX - best). Each sub-plot shows the relative comparison of two algorithms.

A quite surprising result is that even though BIBOX-/T|weak and BIBOX-/3|weak compose the

resulting solution over the -like graph consisting of the initial cycle and the first handle from the

optimal solutions to special cases, it still has the worse makespan than the corresponding solution

generated using agents exchanges by the BIBOX algorithm. Hence, the second unoccupied vertex has

the significant impact on simplifying the solving process.

Results regarding the overall runtime of tested algorithms generally show that BIBOX-/T|weak

and BIBOX-/3|weak are as slow as the given timeout for computing optimal solutions to the special

cases. The more interesting situation is with MIT, BIBOX/MIT, and BIBOX since they have very

similar runtimes. The BIBOX/MIT tends to be faster than MIT while there is only marginal difference

between BIBOX and MIT on larger graphs in favor of BIBOX. Observe that the runtime does not ex-

actly correspond to the length of the generated solutions. In other words, certain computations used

1

10

100

1000

10000

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

ζ
=

M
ak

e
sp

an

|V|

Scalability comparison | Makespan

BIBOX/MIT

MIT

0

500

1000

1500

2000

2500

3000

3500

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

ζ
=

M
ak

e
sp

an

|V|

Scalability comparison | Makespan

BIBOX-θ/3|weak

BIBOX/MIT

0

500

1000

1500

2000

2500

3000

3500

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

ζ
=

M
ak

e
sp

an

|V|

Scalability comparison | Makespan

BIBOX-θ/T|weak

BIBOX-θ/3|weak

0

500

1000

1500

2000

2500

3000

3500

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

ζ
=

M
ak

e
sp

an

|V|

Scalability comparison | Makespan

BIBOX-θ/T|weak

BIBOX

Random bi-connected
Handles 0...2, …, 0...16

Random bi-connected
Handles 0...2, …, 0...16

Random bi-connected

Handles 0...2, …, 0...16

Random bi-connected
Handles 0...2, …, 0...16

Pavel Surynek

38

by BIBOX are more time consuming than that of MIT (for example BIBOX extensively searched for a

path when agent is moved).

Figure 17. A comparison of the scalability of tested algorithms with respect to the runtime. BIBOX, BIBOX/MIT, BIBOX-

/T|weak, BIBOX-/3|weak, and MIT were compared. The setup of instances is the same as for the experiment from Figure

16. Algorithms are sorted from left/top to right/bottom according to the increasing performance. The runtime (the total time

necessary to produce sequential solution plus the time for making it parallel) is shown. The runtime increases for the in-

creasing size of the instance (number of vertices).

5. Conclusion and Future Work

Two new algorithms – called BIBOX and BIBOX- – for solving the abstract multi-agent cooperative

path-finding with special regard on parallelism (so called pCPFs) were described in this work. Both

algorithms are designed for the case when environment is modeled as a bi-connected graph and is

densely occupied by agents. Several modified variants of the BIBOX- algorithm were described as

well.

The precise theoretical foundation and experimental analysis of these algorithms is provided. The

theoretical foundation is targeted on correctness of the design of algorithms. The experimental analy-

sis is primarily targeted on comparison with the MIT algorithm that employs permutation group theo-

ry and is capable of solving pCPF instances characterized by the small unoccupied space. To provide

the complete image with respect to the related works in cooperative path-finding the comparison with

the WHCA* algorithm, which is one of the most commonly used benchmark algorithm for CPF, is

given as well.

0

2

4

6

8

10

12

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

R
u

n
ti

m
e

(s
ec

o
n

d
s)

|V|

Scalability comparison | Solving runtime

BIBOX-θ/T|weak

BIBOX-θ/3|weak

0

2

4

6

8

10

12

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

R
u

n
ti

m
e

(s
ec

o
n

d
s)

|V|

Scalability comparison | Solving runtime

BIBOX-θ/3|weak

MIT

0

0.5

1

1.5

2

2.5

3

3.5

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

R
u

n
ti

m
e

(s
ec

o
n

d
)

|V|

Scalability comparison | Solving runtime

MIT

BIBOX/MIT

0

0.5

1

1.5

2

2.5

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

R
u

n
ti

m
e

(s
ec

o
n

d
s)

|V|

Scalability comparison | Solving runtime

BIBOX

MIT

Random bi-connected

Handles 0...2, …, 0...16
Random bi-connected

Handles 0...2, …, 0...16

Random bi-connected
Handles 0...2, …, 0...16

Random bi-connected

Handles 0...2, …, 0...16

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

39

 Although the MIT algorithm has promising theoretical properties it has been outperformed by

BIBOX in terms of the makespan by the order of one to two magnitudes. Although the asymptotic

estimation for the makespan is the same for both BIBOX and MIT, the multiplication factor in the

estimation in the case of BIBOX is smaller. Regarding the runtime, BIBOX algorithm is slightly faster

than MIT, which itself is relatively fast (instances with graphs of hundreds of vertices occupied by

hundreds of agents are solved within seconds on today’s commodity hardware).

The minor drawback of the BIBOX algorithm is that it is not able to solve instances of pCPF with

just a single unoccupied vertex. This issue has been addressed in this work by proposing modified

algorithm called BIBOX- and its variants called BIBOX/MIT, BIBOX-/T, BIBOX-/3, BIBOX-

/T|weak, and BIBOX-/3|weak. They use a different approach to solve the situation on the simple

bi-connected graphs consisting of one cycle and one handle connected to it – called -like graphs.

Except the first mentioned algorithm, all the other algorithms use the database with optimal solutions

to special instances over these -like graphs – called special cases – of which solutions to all the in-

stances over -like graphs can be composed.

Regarding the makespan, all the alternative algorithms outperform MIT. If the database of optimal

solutions is available in advance, then BIBOX- algorithms almost match the performance of MIT in

terms of runtime. If the required optimal solutions to special cases are not available, they need to be

computed on-line which is difficult. It can cause a significant slowdown of the algorithm.

Notice, that the performance of both presented algorithms depends on the handle decomposition

of the input graph. An interesting question is how to optimize handle decomposition in order to im-

prove makespan or runtime. Is it better to use a small number of large handles or a large number of

small handles? This question is out of the scope of this work and it is left for future work.

A considerable drawback of presented algorithms is their limitation on bi-connected graph. No-

tice, that search-based techniques like WHCA* are not limited to any special class of graphs. Hence,

extension of presented algorithms to the general case is of interest. One of the possible approaches is

to decompose a given general graph into the tree of bi-connected components [33, 34]. Any of the

presented algorithms for bi-connected case can be used over the individual bi-connected components.

However, agents need first to be relocated to the target bi-connected components. It may happen that

an agent needs to go to the neighboring bi-connected component different from that where it is cur-

rently located. If the bridge connecting these components is longer than the number of unoccupied

vertices then the relocation of the agent will not be possible. Hence, there will be relatively many

unsolvable instances in the general case.

Regarding future work, it is also interesting to resolve the question whether optimal solutions of

pCPF can be approximated by a (pseudo-) polynomial time algorithm. If an approximation algorithm

with (pseudo-) polynomial time complexity is available, it is possible to estimate how far the current

solution is from the optimal one even for large and densely occupied instances (currently we have

only intuition for sparsely populated instances thanks to experiments with WHCA*). Some study of

this kind of approximation algorithms for the special case of -puzzle has been done in [11,

12, 13].

Another interesting topic for future work is to study how solutions generated by presented algo-

rithm can be improved. A first view work has been already done in [25]. It is based on identifying

and eliminating redundancies from solutions. The performed experiments showed that it is a promis-

ing technique.

Pavel Surynek

40

Acknowledgments

This work is supported by The Czech Science Foundation (Grantová agentura České republiky -

GAČR) under contracts number 201/09/P318 and GAP103/10/1287, by The Ministry of Education,

Youth and Sports, Czech Republic (Ministerstvo školství, mládeže a tělovýchovy ČR – MŠMT ČR)

under the contract number MSM 0021620838, and by Japan Society for the Promotion of Science

(JSPS) within the post-doctoral fellowship of the author (reference number P11743).

 I would like to express grateful thanks to anonymous reviewers for their thorough comments.

Their recommendations helped me to improve the paper dramatically from its original version.

References

1. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (Second edition),

MIT Press and McGraw-Hill, 2001, ISBN 0-262-03293-7.

2. J. D. Dixon and B. Mortimer. Permutation Groups. Graduate Texts in Mathematics, Volume 163,

Springer, 1996, ISBN 978-0-387-94599-6.

3. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., 1979, ISBN: 978-0716710455.

4. J. E. Hopcroft, R. Motwani, J. D. Ullman. Introduction to Automata Theory, Languages, and Computa-

tion. Addison Wesley, 2000, ISBN: 978-0201441246.

5. E. Hordern. Sliding Piece Puzzles. Oxford University Press, 1986, ISBN: 978-0198532040.

6. M. R. Jansen and N. R. Sturtevant. Direction maps for cooperative pathfinding. Proceedings of (AIIDE

2008), pp..AAAI Press, 2008.

7. M. R. Jansen and N. R. Sturtevant. A new approach to cooperative pathfinding. Proceedings of AAMAS

2008, pp. 1401 - 1404, 2008.

8. D. Kornhauser, G. L. Miller, and P. G. Spirakis. Coordinating Pebble Motion on Graphs, the Diameter

of Permutation Groups, and Applications. Proceedings of the 25th Annual Symposium on Foundations of

Computer Science (FOCS 1984), pp. 241-250, IEEE Press, 1984.

9. R. Luna, K. E. Berkis. Push-and-Swap: Fast Co-operative Path-Finding with Completeness Guarantees.

Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 294-

300, IJCAI/AAAI Press, 2011.

10. C. H. Papadimitriou, P. Raghavan, M. Sudan, and H. Tamaki. Motion Planning on a Graph. Proceed-

ings of the 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pp. 511-520,

IEEE Press, 1994.

11. I. Parberry. A Real-Time Algorithm for the (n²-1)-Puzzle. Information Processing Letters, Volume

56(1),pp. 23-28, Elsevier,1995.

12. D. Ratner and M. K. Warmuth. Finding a Shortest Solution for the N×N Extension of the 15-PUZZLE Is

Intractable. Proceedings of the 5th National Conference on Artificial Intelligence (AAAI 1986), pp. 168-

172, Morgan Kaufmann Publishers, 1986.

13. D. Ratner and M. K. Warmuth. N×N Puzzle and Related Relocation Problems. Journal of Symbolic

Computation, Volume 10 (2), pp. 111-138, Elsevier, 1990.

14. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (second edition). Prentice Hall,

2003, ISBN: 978-0137903955.

15. M. R. K. Ryan. Graph Decomposition for Efficient Multi-Robot Path-Planning. Proceedings of the 20th

International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2003-2008, IJCAI Conference,

2007.

16. M. R. K. Ryan. Exploiting Subgraph Structure in Multi-Robot Path-Planning. Journal of Artificial Intelli-

gence Research (JAIR), Volume 31, pp. 497-542, AAAI Press, 2008.

17. P. E. Schupp and R. C. Lyndon. Combinatorial group theory. Springer, 2001, ISBN 978-3-540-41158-1.

18. D. Silver. Cooperative Pathfinding. Proceedings of the 1st Artificial Intelligence and Interactive Digital

Entertainment Conference (AIIDE 2005), pp. 117-122, AAAI Press.

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

41

19. T. Standley. Finding Optimal Solutions to Cooperative Pathfinding Problems. Proceedings of the 24th

AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 173-178, AAAI Press, 2010.

20. P. Surynek. A Novel Approach to Path Planning for Multiple Robots in Bi-connected Graphs. Proceed-

ings of the 2009 IEEE International Conference on Robotics and Automation (ICRA 2009), pp. 3613-

3619, IEEE Press, 2009.

21. P. Surynek. Towards Shorter Solutions for Problems of Path Planning for Multiple Robots in θ-like Envi-

ronments. Proceedings of the 22nd International FLAIRS Conference (FLAIRS 2009), pp. 207-212, AAAI

Press, 2009.

22. P. Surynek. Making Solutions of Multi-Robot Path-Planning Problems Shorter Using Weak Transposi-

tions and Critical Path Parallelism. Proceedings of the 2009 International Symposium on Combinatorial

Search (SoCS 2009), University of Southern California, 2009, http://www.search-conference.org/

index.php/Main/SOCS09 [July 2009].

23. P. Surynek. An Application of Pebble Motion on Graphs to Abstract Multi-robot Path-planning. Proceed-

ings of the 21st International Conference on Tools with Artificial Intelligence (ICTAI 2009), pp. 151-158,

IEEE Press, 2009.

24. P. Surynek. An Optimization Variant of Multi-Robot Path-Planning is Intractable. Proceedings of the

24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 1261-1263, AAAI Press, 2010.

25. P. Surynek and P. Koupý.Improving Solutions of Problems of Motion on Graphs by Redundancy Elimina-

tion. Proceedings of the ECAI 2010 Workshop on Spatio-Temporal Dynamics (ECAI STeDy 2010), pp.

37-42, University of Bremen, 2010.

26. P. Surynek. Abstract Path Planning for Multiple Robots: A Theoretical Study. Technical Report, ITI Se-

ries, 2010-503, http://iti.mff.cuni.cz/series/index.html,Institute for Theoretical Computer Science, Charles

University in Prague, Czech Republic, 2010.

27. P. Surynek. Abstract Path Planning for Multiple Robots: An Empirical Study. Technical Report, ITI Se-

ries, 2010-504, http://iti.mff.cuni.cz/series/index.html,Institute for Theoretical Computer Science, Charles

University in Prague, Czech Republic, 2010.

28. R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing, Volume 1

(2), pp. 146-160, Society for Industrial and Applied Mathematics, 1972.

29. K. C. Wang and A.Botea. Tractable Cooperative path-finding on Grid Maps. Proceedings of the 21st In-

ternational Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 1870-1875, IJCAI Conference,

2009.

30. K. C. Wang. Bridging the Gap between Centralised and Decentralised Multi-Agent Pathfinding. Proceed-

ings of the 14th Annual AAAI/SIGART Doctoral Consortium (AAAI-DC 2009), pp. 23-24, AAAI Press,

2009.

31. K. C. Wang and A.Botea. Fast and Memory-Efficient Multi-Agent Pathfinding. Proceedings of the Eight-

eenth International Conference on Automated Planning and Scheduling (ICAPS 2008), Australia, pp. 380-

387, AAAI Press, 2008, ISBN 978-1-57735-386-7.

32. K. C. Wang and A. Botea. Scalable Multi-Agent Pathfinding on Grid Maps with Tractability and Com-

pleteness Guarantees. Proceedings of the European Conference on Artificial Intelligence (ECAI 2010),

IOS Press, 2010.

33. D. B. West. Introduction to Graph Theory. Prentice Hall, 2000, ISBN: 978-0130144003.

34. J. Westbrook, R. E. Tarjan. Maintaining bridge-connected and biconnected components on-line.

Algorithmica, Volume 7, Number 5&6, pp. 433–464, Springer, 1992.

35. R. M. Wilson. Graph Puzzles, Homotopy, and the Alternating Group. Journal of Combinatorial Theory,

Ser. B 16, pp. 86-96, Elsevier, 1974.

http://www.search-conference.org/index.php/Main/SOCS09
http://www.search-conference.org/index.php/Main/SOCS09
http://iti.mff.cuni.cz/series/index.html
http://iti.mff.cuni.cz/series/index.html

Pavel Surynek

42

Appendix

Lemma 4 (soundness of Move-Agent). If an original location of an agent , a goal location , and an

unoccupied vertex are all located in the same unlocked bi-connected component of the graph , then

the procedure Move-Agent correctly moves the agent from its original location to . 

Proof. Recall how the procedure Move-Agent works. First, a path

 connecting

 and that is contained in the same bi-connected component is found. The path is then trav-

ersed while the agent is moved along its edges.

The proof of soundness will proceed as mathematical induction according to the number of edges

of already traversed. In all the steps, the agent and the unoccupied vertex should be located in the

bi-connected component containing . Initially, this condition holds. Consider that an agent is

located in

 for and need to be moved to

. The vertex

 is locked and

is made unoccupied. To make

 unoccupied an unlocked path connecting the original location of

the unoccupied vertex and

 must exist in the bi-connected component. Since it is supposed that

,

, and the unoccupied vertex are all in the same bi-connected component the alternative path

connecting

 and the unoccupied vertex in this bi-connected component avoiding

 must exist

(since otherwise removal of

 would make the bi-connected component disconnected which is a

contradiction). This path is used to transfer the unoccupied vertex to

. Having

 unoccupied

the vertex

 is unlocked and is moved to

 along the edge

 . After this step, the

required condition holds again (a supporting illustration is shown in Figure 4). 

Lemma 5 (soundness of Exchange-Agents). If the arrangement of agents within the cycle is re-

garded as a permutation, then the output arrangement produced by the procedure Exchange-Agents

corresponds to a permutation where the input agents and are transposed with respect to the per-

mutation corresponding to the input arrangement. 

Proof. It is needed to check whether the orderings of agents between and and between and

(with respect to the positive orientation of the cycle) remain unchanged while and are transposed.

This is done using detailed case analysis of what happens. Let

 , then there are

 agents located in at the moment before the cycle is rotated positively (situation at line 9 of

Exchange-Agents - see stage (i) in Figure 18). The agent is already stored in and the two unoccu-

pied vertices are and . Let agents occupying vertices of the cycle in the interval be-

tween and with respect to the positive orientation (excluding boundaries) are denoted

 , ,…, respectively; let agents occupying vertices of the cycle in the interval between

 and with respect to the positive orientation (again excluding boundaries) are

denoted as , ,…, . The series of positive rotation of follows to move the agent into

 (see stage (ii) in Figure 18). Now, all the agents , ,…, , , ,…, , and

are steps forward with respect to their location before the series of rotations. Then the second unoc-

cupied vertex (other than) is moved in the positive direction towards (recall, that the

movement in the negative direction is not possible, since is locked at the moment - see stage (iii) in

Figure 18). Next, agents are exchanged: that is, is moved to and is moved to (see

stage (iv) in Figure 18 and lines 14-17 of Exchange-Agents). At this step, agents , ,…, are

steps forward with respect to their location before the series of rotations; agent , ,…, are

 forwards with respect to their location before the series of rotations (the difference is caused by

the fact that unoccupied vertex went through agents , ,…, but not through agents

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

43

 , ,…,). Finally, the agent is steps forward with respect to the location of before the

series of rotations.

Figure 18. The progression of the exchange of a pair of agents within an initial cycle of the handle decomposition. Agents

 and in a cycle consisting of vertices are exchanged while the ordering of other agents within the cycle is preserved.

The figure illustrates the progression of the procedure Exchange-Agents from line 7 to 20.

The series of rotation in the negative direction places agents , ,…, to their original posi-

tions; agents , ,…, are placed step backward with respect to their original position be-

fore rotations, and is step backward with respect to the original position of before the series of

rotations (see stage (v) in Figure 18). This inconsistency however, is caused by a different location of

the second unoccupied vertex which now between and with respect to the positive orientation of

the cycle (this was not the case in the original arrangement before rotations).

To see that the transposition of and has been really obtained, the movement of the second un-

occupied vertex into in the negative direction can be done. This moves agents

 , ,…, to their original positions before rotations and the agent to the original position

of (see stage (vi) in Figure 18). As this is a step used only for purposes of the proof, the algorithm

actually does not perform it. 

Positive orientation The number of positive rotations

The second unoccupied moved to Agents and exchanged

The second unoccupied moved to The cycle rotated time negatively

Stage (i)

Stage (iii)

Stage (ii)

Stage (iv)

Stage (v) Stage (vi)

Pavel Surynek

44

Proposition 6 (BIBOX - soundness and completeness). The BIBOX algorithm always terminates

and produces a solution of a given input instance of pCPF

 . 

Proof. To verify soundness and completeness of the BIBOX algorithm it is necessary to check pre-

conditions of each operation performed in the course of its execution. This is a trivial task in almost

all the cases except the case of searching for a path satisfying certain conditions. This issue concerns

the search for vertex disjoint paths and within the main function BIBOX-Solve at line 2 and the

search for a path connecting a given pair of vertices avoiding the locked ones.

The existence of vertex disjoint paths and has been already treated by Lemma 2. Thus, it re-

mains to verify that a required unlocked path always exists.

A path containing unlocked vertices is constructed within the procedure Make-Unoccupied (lines

2-3) which is called by Solve-Regular-Handle (lines 3, 5, 12, 16, 26, and 35), Solve-Original-Cycle

(lines 4, 6, 10, and 12), and Exchange-Agents (lines 2, 8, and 13). A pair of vertex disjoint paths con-

taining unlocked vertices constructed within the procedure Move-Agent (lines 1-5) which is called by

Solve-Regular-Handle (lines 10, 24, and 33). All these cases must be examined.

There will be the following invariant within Solve-Regular-Handle – at the beginning of every it-

eration of the loop at line 7, an unoccupied vertex must be located in the not yet solved part of the

graph. More precisely, let the bi-connected subgraph without the internal vertices of the already

solved handles be denoted as and let without the internal vertices of , where is the cur-

rently solved handle by Solve-Regular-Handle, be denoted as (see Figure 6). Then an unoccupied

vertex is needed to be located in every time the loop at line 7 starts. The assumption holds at the

beginning and it is needed to check if it holds after every iteration of the loop. Furthermore, an invar-

iant that both unoccupied vertices are located in at the start of Solve-Regular-Handle will be also

checked. Again, this invariant holds at the beginning.

Vertices and which are used as parameters of the call of Make-Unoccupied at lines 3 and 5

respectively of Solve-Regular-Handle are both in . Since is completely unlocked at lines 3 of

Solve-Regular-Handle and it is assumed that an unoccupied vertex is located in , an unlocked path

connecting and an unoccupied vertex must exist. The construction of a path within the call at line 5

of Solve-Regular-Handle must additionally take into account that is locked. As the subgraph is

bi-connected, it remains connected even if is removed and hence the path exists.

At line 12 of Solve-Regular-Handle, a connection vertex of the currently solved handle is

being made unoccupied while internal vertices of and the second connection vertex are locked.

According to above invariants and the fact that the call of Move-Agent at line 10 does not invalidate

them, as it is prevented from using internal vertices of by locking them at line 8, an unoccupied

vertex is now located in (except). The graph is bi-connected and without , which is

locked just before, it is all unlocked and still connected. Hence the required path exists.

The call of Make-Unoccupied at line 16 of Solve-Regular-Handle has the connection vertex of

the currently solved handle as a parameter. The subgraph is now unlocked and according to

invariants an unoccupied vertex is located in . Since is connected, there exists an unlocked path

connecting and the unoccupied vertex.

At line 26 of Solve-Regular-Handle, the connection vertex of the handle is made unoccu-

pied. The situation is that a vertex , which is in and outside the cycle associated with the current

handle , is locked while the rest of is unlocked. Again, the unlocked part of the graph corre-

sponds to a bi-connected subgraph from which one vertex was removed. Thus, the unlocked part

of the graph constitutes a connected component. An unoccupied is also located in the unlocked part.

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

45

This holds from the invariants and from the fact that movements at lines 20 and 24 cannot relocate it

outside as Rotate-Cycle
+
 does not relocate the input unoccupied vertex and Move-Agent cannot go

outside the unlocked part which is exactly at the moment due to locking of internal vertices of

at line 22. Hence, there exists an unlocked path connecting the unoccupied vertex and .

At line 35 of Solve-Regular-Handle the task is to make unoccupied a connection vertex of the

handle . The situation is again very similar; the unlocked part of the graph is constituted by

without . Thus, unlocked vertices constitute a connected subgraph. The unoccupied vertex must be

located in the unlocked part as it was located in after the execution of line 26 and subsequent

movements cannot relocate it outside (Rotate-Cycle
−
 at line 29 does not relocate the input unoc-

cupied vertex and Move-Agent at line 33 remains in the unlocked part). Thus, there exists an un-

locked path connecting the unoccupied vertex and .

An unoccupied vertex is located in at the end of the iteration of the loop starting at line 7 since

it is in both major execution branches (notice that calls of Rotate-Cycle
+
 at line 14 and 37 respec-

tively preserve positions the unoccupied vertex). Thus, the first invariant holds. Since it is as-

sumed that goal positions of unoccupied vertices are within the initial cycle, no unoccupied vertex

can be stored in . Hence, both unoccupied vertices are in at the end of the execution of the loop

(that is, they are within with respect to the processing of next handle).

The soundness of the procedure Solve-Original-Cycle is partially implied by the soundness of the

procedure Exchange-Agents which is treated by Lemma 5. The basic assumption of Solve-Original-

Cycle is that both unoccupied vertices are located in the original cycle of the handle decomposi-

tion; all the vertices of the graph except are locked. The assumption directly corresponds to the

second invariant preserved along the calls of Solve-Regular-Handle within the loop at lines 5-7 of

BIBOX-Solve.

At line 4 of Solve-Original-Cycle a vertex
 (the first vertex of the cycle with respect to the pos-

itive orientation) is being made unoccupied. An unlocked path in the cycle from any of its vertices to

 exists, hence making

 unoccupied is possible. The situation at line 6 of Solve-Original-Cycle is

little bit different; now the vertex
 is locked and a vertex

 (the second vertex of with respect

to the positive orientation) is being made unoccupied. Thus, an unlocked path connecting the second

unoccupied vertex with
 is searched. Such path exists since removing

 from the cycle does not

disconnect it. The situation at lines 10 and 12 of Solve-Original-Cycle is analogical.

The soundness of the procedure Move-Agent itself is treated separately by Lemma 4. However,

preconditions of the Lemma 4 need to be checked – that is, whether all the calls of Move-Agent

moves an agent within the single unlocked bi-connected component and whether the unoccupied

vertex is located in the same unlocked bi-connected component as well.

The situation before the call of Move-Agent at line 10 of Solve-Regular-Handle is that is un-

locked while the rest of the graph is locked. An unoccupied vertex is located in which is ensured

by the invariant. The task is to move an agent

 , which is known to be located in (this is,

treated by the execution branch at line 9), to the connection vertex of the handle . As the unoc-

cupied vertex and both the agent

 and are located in constituting a bi-connected com-

ponent, preconditions of Lemma 4 are satisfied.

The call of Move-Agent at line 24 of Solve-Regular-Handle moves the agent

 to a vertex

which is located in and outside the cycle associated with the handle at the same time. Again,

 is unlocked while the rest of the graph is locked. The agent

 is known to be located in the

connection vertex of and one of the unoccupied vertices is the second connection vertex .

Pavel Surynek

46

Thus, the unlocked vertices constitutes a bi-connected component where the agent

 , the ver-

tex , and the unoccupied vertex are located. Hence, preconditions of Lemma 4 are satisfied.

Finally, the task of the call of Move-Agent at line 33 of Solve-Regular-Handle is to move an agent

 to a connection vertex of the current handle which is assumed to be unoccupied at the

moment. It is known that the agent

 is located in from the previous case. is again un-

locked while the rest of the graph is locked. Thus, the agent

 and the unoccupied vertex

are both located in which is a bi-connected component. Thus, preconditions of Lemma 4 are satis-

fied again.

At this point, it is possible to conclude that all the steps of the algorithm are correctly defined.

Since the number of successfully placed agents strictly increases as the algorithm proceeds, the algo-

rithm always terminates and produces a solution to the input instance. 

Proposition 7 (BIBOX – worst-case time complexity). The worst-case time complexity of the

BIBOX algorithm is with respect to an input pCPF instance

 . 

Proof. The construction of a handle decomposition (line 1 of BIBOX-Solve) takes steps

(Lemma 1). The same estimation holds for transforming the goal arrangement of agents (line 2 of

BIBOX-Solve) and augmenting the final solution (line 9 of BIBOX-Solve) according to a pair of ver-

tex disjoint paths and .

 There are at most agents (since) to be placed within handles of a handle decomposi-

tion . Placing an agent within with requires at most

rotations of the cycle in the positive direction (procedure Rotate-Cycle
+
) in the case when is

needed to be moved outside . Then, at most rotations of in the negative direction (pro-

cedure Rotate-Cycle
−
) are necessary to put agents in back to their original positions; and finally,

one rotation of in the positive direction is necessary to get the agent to its position within

 . Altogether at most rotations of are necessary. One rotation of the cycle

requires at most steps. If the agent does not need to be moved outside only one positive

rotation of is needed. Thus, all the rotations needed to place the agent consume at most

 steps.

It is also necessary to move the agent (procedure Move-Agent) during the placement operation.

There are up to 2 calls of Move-Agent per agent placement within the handle . A more careful

analysis must be done here since the agent must be moved along a path of the length up to

while non-trivial amount of work needs to be done per each edge traversal.

A vertex in front of the current location of needs to be made unoccupied every time an edge is

traversed by . Thus a path connecting the unoccupied vertex and the location in front of must be

found while the vertex containing should be avoided by the path. Agents are then shifted along the

found path. The path should be searched in the graph constituted by the initial cycle and handles of

the handle decomposition that contains at least one internal vertex. Such a graph contains only linear

number of edges with respect to the number of vertices and thus the search for the path can be com-

pleted in) steps. The subsequent shifting of agents consumes at most steps. Hence, the

single traversal of an edge by the agent requires) steps. Altogether,)

steps are required by operations for moving of agents.

There are also up to calls of the operation for making some vertex unoccupied (procedure Make-

Unoccupied) per agent placement. The operation for making some vertex unoccupied requires

) steps; this is accounted to the search for a shortest path connecting the original and the

Solving Abstract Cooperative Path-Finding Problems in Densely Populated Environments

47

goal location. Shifting agents itself along the found path is less consuming; it requires at most

steps. Thus, at most 5 +) steps are consumed by making vertices unoccupied in course

of placing .

In total, at most steps are necessary to

place into . Since , the total number of steps is at most

 which is .

The remaining operations consume the constant time. Since there are at most agents, the

whole process of placing agents into handles takes steps.

 It remains to analyze the time required by placing agents within the original cycle . Each agent

 requires operations of making a vertex unoccupied (the first and the second vertex are made

unoccupied – lines 4 and 6 of Solve-Original-Cycle) and at most one operation of exchanging agents.

Since the initial and the goal position of both mentioned relocations of the unoccupied vertex are

located in , the operation requires only steps in the worst-case. The operation of exchanging

agents requires at most rotations in the positive direction (lines 5 and 11 of Exchange-Agents)

and at most rotations in the negative direction (line 19 of Exchange-Agents). Next, there are

calls of the operation for making some vertex unoccupied (call of the procedure Make-Unoccupied at

lines 2, 8, and 13). Observe that the unoccupied vertex and the target vertex of the relocation are lo-

cated in in all the cases. Thus, each of these operations requires at most steps. Altogether,

 steps are required for making vertices unoccupied during exchanging a pair of agents. The time

consumption of the remaining operations performed during a single exchange of agents is constant.

A single exchange of a pair of agents requires at most
 steps in total. Placing all

the agents into the original cycle hence consumes at most
 steps. Since

 , the total number of steps required for solving the initial cycle is at most
 which is .

 It was shown that the worst-case time of is necessary to solve regular handles as well as

the initial cycle thus the worst-case time complexity of the BIBOX algorithm is . 

 Using almost the same arguments as in the above proof it is possible to calculate the worst-case

makespan of solutions generated by the BIBOX algorithm. Notice that the algorithm generates

movement of the agent in almost every step referred in the time complexity analysis.

Proposition 8 (BIBOX – makespan of the solution). The worst-case makespan of the solution pro-

duced by the BIBOX algorithm (that is, the number) for an input instance of pCPF

 is . 

