
The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 1 -

Near Optimal Cooperative Path Planning in Hard Setups through

Satisfiability Solving

Pavel Surynek
*1,*2

*1
 Charles University Prague

*2
 Kobe University

Czech Republic Japan

A new approach to cooperative path-planning is presented. The makespan of a solution to a path-planning instance is op-

timized by a SAT solver. A sub-optimal solution to the instance is obtained by some existing method first. Then it is submit-

ted to the optimization process which decomposes it into small subsequences. Each sub-sequence of the original solution is

subsequently replaced by the optimal sub-solution found by the SAT solver. The process is repeated until a fixed point is

reached. This is the first method capable of producing near optimal solutions for densely populated instances.

1. Introduction and Motivation

Cooperative path-planning recently attracted considerable inter-

est of the AI community. This interest is motivated by the broad

range of areas where cooperative path-planning can be applied

(robotics, computer entertainment, traffic optimization, etc.) as

well as by challenging aspects which it offers. The task consists

in finding spatial temporal paths for agents which want to reach

certain destinations without colliding with each other. One of the

most important break-through in solving the task is represented

by the WHCA* algorithm (Silver, 2005) which decouples the

search for cooperative plan into searches for plans for individual

agents. Recently, an optimal decoupled method appeared (Stand-

ley & Korf, 2011). The common drawback of decoupled ap-

proach is that it is applicable only on instances with small occu-

pancy of the environment by agents.

 The opposite of the spectrum of solving algorithms is repre-

sented by complete sub-optimal methods (Surynek, 2009; Luna

& Berkis, 2011). These algorithms are able to provide solution

irrespectively of the portion of space occupied by agents. Espe-

cially good performance is reported for highly occupied instances.

On the other side, long solutions are usually generated for sparse-

ly populated environments.

 Here we are trying to contribute to a not yet addressed case

with high occupancy and the requirement on solution to have

short makespan. We use the SAT solving technology in a novel

and unique way to address this case. First a sub-optimal solution

is generated by some of the existent fast algorithms. The sub-

optimal solution is then decomposed into small sub-sequences

that are replaced by optimal sub-solutions generated by a SAT

solver. The process is iterated until the makespan converges.

This decomposition of the original problem allowed us to exploit

the strongest aspect of SAT solvers – their ability to satisfy rela-

tively small yet complex enough SAT instance very quickly.

 The rest of the paper describes cooperative path planning for-

mally first. Then our special domain dependent SAT encoding

and the optimization method are introduced. An experimental

comparison with several existent techniques is presented finally.

2. Cooperative Path-Planning Formally

An undirected graph is used to model the environment. Let

 be such a graph. The placement of agents in the

environment is modeled by assigning them vertices of the graph.

Let be a finite set of agents. An arrangement

of agents in vertices of graph is fully described by a location

function ; the interpretation is that an agent is

located in a vertex . At most one agent can be located in

each vertex; that is is uniquely invertible. A generalized in-

verse of denoted as will provide us an

agent located in a given vertex or if the vertex is empty.

Definition 1 (COOPERATIVE PATH PLANNING). An instance of

cooperative path-planning (CPP) problem is a quadruple

 where location functions and

define the initial and the goal arrangement of a set of agents in

 respectively. □

 An arrangement at the -th time step can be transformed by

a transition action which instantaneously moves agents in the

non-colliding way to form a new arrangement . The result-

ing arrangement must satisfy the following validity condi-

tions:

(i) either or

 holds (agents move along edges or not move at all),

(ii)
 (agents move

to vacant vertices only), and

(iii) (no two agents

enter the same target).

 The task in cooperative path planning is to transform using

above valid transitions to .

Definition 2 (SOLUTION, MAKESPAN). A solution of a

makespan to a cooperative path planning instance

 is a sequence of arrangements

 where and is a result of valid transfor-

mation of for every . □

If it is a question whether there is a solution of of the

makespan at most a given bound we are speaking about the

bounded variant. Notice that due to no-ops introduced in valid

transitions it is equivalent to finding a solution of the makespan

equal to the given bound.
Contact: Pavel Surynek, Kobe University,

5-1-1 Fukae-minami-machi, Higashinada-ku, Kobe 658-0022,

Japan. pavel.surynek@mff.cuni.cz, Phone: 078-4316262.

OS-04

mailto:pavel.surynek@mff.cuni.cz

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 2 -

3. SAT Encoding of Bounded CPP

Our goal was to devise a SAT encoding of bounded CPP suitable

for relatively densely populated environments. At the same time

we needed to keep the encoding compact. We followed the clas-

sical Graphplan inspired encodings as for we also encode each

time step. Our design is similar to that of SATPLAN (Kautz &

Selman, 1999) and SASE (Huang et al., 2010) encodings. But

unlike these generic encodings we were working with the specif-

ic domain so we could facilitate the domain knowledge in the

design of the instance encoding.

 We a priori know what the candidates for multi-valued state

variables are in our domain – basically, these are represented by

location function and its inverse. Using techniques proposed by

Rintanen (2006) each state variable can be encoded by a loga-

rithmic number of propositional variables with respect to the

number its values. Another considerable aspect is how to encode

transition actions together with validity conditions.

 Representing arrangement of agents by inverse locations (that

is, there is a state variable for each vertex) allowed us to encode

transitions efficiently. There are two primitive actions for each

edge adjacent to the given vertex plus one no-op action. Half of

the primitive actions corresponding to a vertex are for incoming

agents while the other half is for outgoing agents. If the outgoing

primitive action is selected it is necessary to propagate the selec-

tion as corresponding selection of incoming primitive action in

the target vertex. Representing the selection of the primitive

action as a multi-values state variable automatically ensures that

conditions (i) and (iii) are encoded. Notice that the degree of

vertices in is typically low for real-life environments, thus

action selection in the vertex can be captured by few proposition-

al variables.

 Let be an instance of CPP and

 be a makespan bound. Our encoding has layers numbered

 . Suppose that neighboring vertices of a given vertex are

ordered in the fixed order. That is, we have function

 and its inverse
 .

Definition 3 (LAYER ENCODING). The -th regular layer con-

sists of the following integer interval state variables:


 for all such that

 iff


 for all such that

 iff no-op was selected in ;

 iff an outgoing primitive action with

 the target was selected in ;

 iff an incoming primitive action

with as the source was selected in .

and constraints:



 for all (no-op case);



 where

for all (outgoing agent case);



 where

for all (incoming agent case). □

 State variables
 for represent inverse location func-

tion at the time step . Analogically, state variables
 for

represent transition actions selected in vertices at time step .

Constraints merely encode the validity conditions.

 The last encoding layer is irregular as it has location state

variables only. To finish the encoding we need to encode the

initial and the goal arrangement straightforwardly as follows:

 iff

 ,

 iff

 ,

 iff

 ,

 iff

 .

 Transformation of the encoding from the above integer repre-

sentation to the propositional one is also straightforward. To

reduce size of clauses we should use standard Tseitin’s hierar-

chical encoding with auxiliary variables.

Table 1. Comparison of encoding sizes. The smallest number of
layers for which SATPLAN was unable to detect unreachability of
the goal using mutex reasoning is indicated as goal level – it is
used as the makespan bound.
|Agents| in
4-connected

grid 8x8

Goal
level

SATPLAN
encoding

Our domain specific
encoding

|Variables| |Clauses| |Variables| |Clauses|

4 8 5864 55330 9432 55008

8 8 10022 165660 11968 70400

12 8 14471 356410 11968 68352

16 10 30157 1169198 18490 112580

24 10 43451 2473813 18490 107360

32 14 99398 8530312 32116 200768

4. COBOPT: Optimization Process

Our novel CPP technique called COBOPT exploits SAT solving

technology (Eén & Sörensson, 2004) not to produce a solution

but to optimize it with respect to the makespan. To be able to use

SAT solvers in this way we need to obtain some (sub-optimal)

solution to the CPP instance first. Let this initial solution be

called base solution. As we mentioned, many solving techniques

for CPP are available at the present time (Silver, 2005 – WHCA*;

Ryan, 2008; Surynek, 2009 – BIBOX; Luna & Berkis, 2011 –

PUSH-SWAP ; Standley & Korf, 2011 - OD+ID). Any of them

can be used to produce base solution within our framework. Our

approach is completely generic in this sense. Notice however,

that particular solving technique is always designed for a specific

class of the problem while outside this class it may provide

worse performance. The typical weakness is for example that

decoupled techniques (WHCA* - Silver, 2005) admit that not all

the agents need to reach their destination.

 In our initial experiments, we found that it is becoming dra-

matically more difficult for SAT solvers to solve bounded CPP

instance as the bound is growing. To be more concrete, a SAT

solver usually struggles with the instance consisting of the graph

containing vertices, agents, and the bound of for

several minutes if the presented SAT encoding is used. In case of

the SATPLAN encoding the situation is even worse – the solver

even struggles with generating the formula for minutes. This

finding renders possibility of using SAT solvers to solve a coop-

erative instance of considerable size in the SATPLAN style

(Kautz & Selman, 1999; Huang et al., 2010) as infeasible at the

current state-of-the-art since it may require hundreds of time

steps. But using a SAT solver in the SATPLAN style has one

undisputable advantage if we manage to get a solution from it – it

is makespan optimal.

initial:

goal:

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 3 -

 After producing the base solution, this is submitted to a SAT

based optimization process. Sub-sequences in the base solution

are replaced with computed optimal sub-solutions. Suppose that

we are currently optimizing at time step and is a maximum

bound for encoding cooperative instances (specified by the user).

It is computed what is the largest such that the time step

 can be reached from the time step with no more than

steps. Then sub-solution of the base solution from the time step

to is replaced by the optimal one obtained from the SAT

solver. The process then continues with optimization at the time

step until the whole base solution is processed. The optimiza-

tion process can be iterated by taking new solution as the base

one until a fixed point is reached.

 The binary search is exploited to find and the optimal sub-

solution in order to reduce the number of SAT solver invocations

– see Algorithm 1 which summarizes basic COBOPT optimiza-

tion method formally.

Algorithm 1. COBOPT: SAT-based CPP solution optimization –
basic scheme based on binary search.

function COBOPT-Optimize-Cooperative-Plan : solution

1:
2: do
3:
4: let
5: ;
6: while do
7: Find-Last-Reachable-Arrangement

8: Compute-Optimal-Solution
9:
10: while

11: return

function Find-Last-Reachable-Arrangement
 : integer

1: let
2:
3: while do
4:
5:
6: if Check-Reachability then
7: Encode
8: if Solve-SAT then
9: else
10: else
11:
12: return

function Check-Reachability : boolean

1: let
2: for each do
3: if then return
4: return

 Notice that separation points in the base solution are selected

on the greedy basis – optimization always continues on the first

not yet processed time step. We also considered generating the

optimal placement of separation point by dynamic programming

techniques. Though this approach generates slightly better base

solution decomposition this it is at the great expense in overall

runtime as many more invocations of the SAT solver.

5. Experimental Evaluation

We implemented the proposed COBOPT optimization method in

C++ to conduct an experimental evaluation. A competitive com-

parison against 3 existent methods was made – WHCA*,

SATPLAN, and BIBOX. WHCA* was chosen as a reference meth-

od as it is considered to be standard decoupled method for CPP

and its properties and performance are well known.

Table 2. Optimal solutions obtained by SATPLAN. No more
agents can be solved by SATPLAN within the time limit of 7200s.

|Agents|

4-connected grid 8x8 4-connected grid 16x16

Optimal
makespan

Runtime (s)
Optimal

makespan
Runtime (s)

1 5 0.0 4 0.68

4 6 0.15 21 195.5

8 8 19.85 15 1396.07

As no implementation of WHCA* was available we re-

implemented it in C++ by ourselves. SATPLAN is the most

similar method to our approach and very importantly it produces

optimal solutions – we used implementation provided by the

authors. Finally, BIBOX was selected as major method for pro-

ducing base solutions in hard setups. Our choice was not dis-

couraged by the wrong statement of Standley and Korf (2011)

who consider it to have memory and time requirements that limit

its applicability.

Figure 1. Makespan optimization in the 4-connected grid 8×8. A
comparison with the optimal SATPLAN and near optimal
WHCA* is shown.

 The BIBOX algorithm has polynomial time complexity (solu-

tions to all the benchmarks presented here were generated within

less than 0.1 seconds) and generates good quality sub-optimal

solutions irrespectively how many agents are contained in the

instance – together with the algorithm PUSH-SWAP by Luna &

Berkis (2011) it is the only algorithm able to generate base solu-

tion for hard setups. Authors provide working implementation of

BIBOX which we exploited within our experiments. COBOPT

using BIBOX as a base solver will be referred to as

COBOPT(BIBOX). As a SAT solver within our method, MINISAT

2.2 (Eén & Sörensson, 2004) was used.

 Standard benchmark setups for CPP which consists of a

4-connected grid graph and randomly arranged initial and goal

locations for agents were used. Various parameters of the

COBOPT(BIBOX) and other methods were observed in the de-

pendence on the increasing number of agents in the instance.

0

8

16

24

32

40

0 2 4 6 8 10 12 14 16

M
ak

es
p

an

COBOPT(BIBOX) Makespan Optimization
Grid 8x8 (easy setup)

Original (BIBOX)

Optimized|1st iter.

Optimized|2nd iter.

Optimized|final iter.

WHCA*(16)

SATPLAN|optimal

0

160

320

480

640

18 22 26 30 34 38 42 46 50 54

M
ak

es
p

an

COBOPT (BIBOX) Makespan Optimization
Grid 8x8 (hard setup) Original (BIBOX)

Optimized|1st iter.

Optimized|2nd iter.

Optimized|final iter.

|Agents|

|Agents|

The 26th Annual Conference of the Japanese Society for Artificial Intelligence, 2012

- 4 -

 A setup with the grid of size 8×8 ant the number of agents

ranging from 1 to 54 was used. The timeout of 240s per SAT

solver invocation and the makespan bounds of 8 were used.

Additionally there was an overall timeout of 7200s (2 hours)

after which the optimization process was terminated. The number

of iterations until the fixed point was reached ranged from 1 to

20 with median of 7. Due to space limitations we present only a

fraction of results here.

 Using WHCA* we observed that setups with up to approxi-

mately 20% of occupied vertices are in fact easy as only very

limited cooperation among agents is necessary. Notice, that the

method OD+ID which also tries to generate good makespans is

reported to be efficient only in the setups with less than 10% of

occupied vertices. Here we are interested primarily in setups with

occupancy in the range 20% - 50% which is increasingly harder

as cooperation between agents gradually increases.

 To learn what the optimal makespan for tested instances is we

tried SATPLAN (Table 2). Unfortunately SATPLAN was able to

generate solution only to instances with small number of agents.

The reason is primarily inefficiency of domain-independent SAT

encoding (Table 1).

 Regarding the decoupled WHCA* method, we found that in

sparse instances it is able to generate near optimal solutions

(Figure 1) since near optimal path is tried to be found for each

agent separately. However, this method is principally unable to

solve instances where non-trivial cooperation among agents is

necessary. WHCA* was used to classify instances on easy and

hard – the easy ones are those solvable by WHCA*. Even on

easy instances WHCA* was significantly outperformed by

COBOPT(BIBOOX) according to our experiments.

Figure 2. Distribution of parallelism before and after COBOPT
optimization. Agents are using all the available freedom in the
optimized variant – almost all the vacant vertices are used for
movements while in un-optimized one there is lot of wait actions.

 The COBOPT method is very friendly to multithreaded imple-

mentation. Hence the scalability of our is extremely good (pro-

vided that computational resources are available). Moreover, if

the method for producing base solutions is fast enough then

COBOPT is anytime in fact – at any time step the solving process

can be terminated and feasible (sub-optimal) solution is returned.

 To get insight what happen when a solver is used for optimi-

zation we investigated distribution of the number of actions

executed in parallel – Figure 2. Base solutions seem to suffer

from locked agents which are forced to wait until their path is

freed. In optimized solutions, as many as possible agents are

actively moving towards goals – it is possible to observe that

agents utilize almost all the available unoccupied space.

6. Conclusion

The new SAT based solving method for CPP called COBOPT

has been presented. To be able to use a SAT solver for coopera-

tive path-planning we also developed a new SAT encoding for

CPP instances. The encoding utilizes structural properties of CPP

to reduce its size and increase efficiency.

 The COBOPT method was shown that it is able to generate

near optimal or good quality solutions in setups with high occu-

pancy of the environment by agents. It is the first method capable

of doing so. In our experiments we solved 4-connected grid

instances of size 8×8 with up to 84% space occupied by agents

with high quality makespans. One of the positive aspects of the

new approach is also the fact that it can be easily parallelized for

multi-core architectures which supports better scalability.

 The COBOPT method has also quite strong implications for

classical planning. Provided that efficient makespan sub-optimal

planner is available, COBOPT can be immediately used to opti-

mize its output (SASE and SATPLAN encodings are ready). An-

other possible future improvement is to reduce the size of the

domain dependent encoding for sparsely populated instances.

References

[Eén, N., Sörensson, N., 2004] An Extensible SAT-solver. Pro-

ceedings of Theory and Applications of Satisfiability Testing

(SAT 2003), pp. 502-518, LNCS 2919, Springer.

[Huang, R., Chen, Y., Zhang, W., 2010] A Novel Transition

Based Encoding Scheme for Planning as Satisfiability. Pro-

ceedings AAAI 2010, AAAI Press.

[Kautz, H., Selman, B., 1999] Unifying SAT-based and Graph-

based Planning. Proceedings of the 16th Interna-tional Joint

Conference on Artificial Intelligence (IJCAI 1999), pp. 318-

325, Morgan Kaufmann.

[Luna, R., Berkis, K., E., 2011] Push-and-Swap: Fast Co-

operative Path-Finding with Completeness Guarantees. Pro-

ceedings of the 22nd International Joint Conference on Arti-

ficial Intelligence (IJCAI 2011), pp. 294-300, IJCAI/AAAI

Press.

[Ratner, D., Warmuth, M. K.,1986] Finding a Shortest Solu-tion

for the N × N Extension of the 15-PUZZLE Is Intrac-table.

Proceedings of AAAI 1986, pp. 168-172, Morgan Kaufmann.

[Rintanen, J., 2006] Compact Representation of Sets of Binary

Constraints. Proceedings of the 17th European Conference

on Artificial Intelligence (ECAI 2006), pp. 143-147, IOS

Press 2006.

 [Silver, D., 2005] Cooperative Pathfinding. Proceedings of the

1st Artificial Intelligence and Interactive Digital Enter-

tainment Conference (AIIDE 2005), pp. 117-122, AAAI

Press.

[Standley, T. S., Korf, R. E., 2011] Complete Algorithms for

Cooperative Pathfinding Problems. Proceedings of IJCAI

2011, 668-673, IJCAI/AAAI Press.

[Surynek, P., 2009] A Novel Approach to Path Planning for

Multiple Robots in Bi-connected Graphs. Proceedings of the

International Conference on Robotics and Automation

(ICRA 2009), pp. 3613-3619, IEEE Press.

1

1
2

4
0

100

200

300

400

0
8

16
24

N
u

m
b

er
 o

f
m

o
ve

s

Parallelism

Original Paralellism
Grid 8x8

1

1

3

5

0

100

200

0
8

16
24

N
u

m
b

er
 o

f
m

o
ve

s

Parallelism

Optimized Paralellism
Grid 8x8

|Agents| |Agents|

