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A new approach to cooperative path-planning is presented. The makespan of a solution to a path-planning instance is op-

timized by a SAT solver. A sub-optimal solution to the instance is obtained by some existing method first. Then it is submit-

ted to the optimization process which decomposes it into small subsequences. Each sub-sequence of the original solution is 

subsequently replaced by the optimal sub-solution found by the SAT solver. The process is repeated until a fixed point is 

reached. This is the first method capable of producing near optimal solutions for densely populated instances. 

 

1. Introduction and Motivation 

Cooperative path-planning recently attracted considerable inter-

est of the AI community. This interest is motivated by the broad 

range of areas where cooperative path-planning can be applied 

(robotics, computer entertainment, traffic optimization, etc.) as 

well as by challenging aspects which it offers. The task consists 

in finding spatial temporal paths for agents which want to reach 

certain destinations without colliding with each other. One of the 

most important break-through in solving the task is represented 

by the WHCA* algorithm (Silver, 2005) which decouples the 

search for cooperative plan into searches for plans for individual 

agents. Recently, an optimal decoupled method appeared (Stand-

ley & Korf, 2011). The common drawback of decoupled ap-

proach is that it is applicable only on instances with small occu-

pancy of the environment by agents. 

 The opposite of the spectrum of solving algorithms is repre-

sented by complete sub-optimal methods (Surynek, 2009; Luna 

& Berkis, 2011). These algorithms are able to provide solution 

irrespectively of the portion of space occupied by agents. Espe-

cially good performance is reported for highly occupied instances. 

On the other side, long solutions are usually generated for sparse-

ly populated environments. 

 Here we are trying to contribute to a not yet addressed case 

with high occupancy and the requirement on solution to have 

short makespan. We use the SAT solving technology in a novel 

and unique way to address this case. First a sub-optimal solution 

is generated by some of the existent fast algorithms. The sub-

optimal solution is then decomposed into small sub-sequences 

that are replaced by optimal sub-solutions generated by a SAT 

solver. The process is iterated until the makespan converges. 

This decomposition of the original problem allowed us to exploit 

the strongest aspect of SAT solvers – their ability to satisfy rela-

tively small yet complex enough SAT instance very quickly. 

 The rest of the paper describes cooperative path planning for-

mally first. Then our special domain dependent SAT encoding 

and the optimization method are introduced. An experimental 

comparison with several existent techniques is presented finally. 

2. Cooperative Path-Planning Formally 

An undirected graph is used to model the environment. Let 

        be such a graph.  The placement of agents in the 

environment is modeled by assigning them vertices of the graph. 

Let                be a finite set of agents. An arrangement 

of agents in vertices of graph   is fully described by a location 

function      ; the interpretation is that an agent     is 

located in a vertex     . At most one agent can be located in 

each vertex; that is   is uniquely invertible. A generalized in-

verse of   denoted as             will provide us an 

agent located in a given vertex or   if the vertex is empty. 
 

Definition 1 (COOPERATIVE PATH PLANNING). An instance of 

cooperative path-planning (CPP) problem is a quadruple 

                    where location functions    and    

define the initial and the goal arrangement of a set of agents   in 

  respectively. □ 
 

 An arrangement    at the  -th time step can be transformed by 

a transition action which instantaneously moves agents in the 

non-colliding way to form a new arrangement     . The result-

ing arrangement      must satisfy the following validity condi-

tions: 

(i)       either               or                 

  holds (agents move along edges or not move at all), 

(ii)                          
        (agents move 

to vacant vertices only), and 

(iii)                               (no two agents 

enter the same target). 

 The task in cooperative path planning is to transform    using 

above valid transitions to   .  
 

Definition 2 (SOLUTION, MAKESPAN). A solution of a 

makespan   to a cooperative path planning instance   

            is a sequence of arrangements               

      where       and      is a result of valid transfor-

mation of    for every             . □ 
  

If it is a question whether there is a solution of   of the 

makespan at most a given bound we are speaking about the 

bounded variant. Notice that due to no-ops introduced in valid 

transitions it is equivalent to finding a solution of the makespan 

equal to the given bound. 
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3. SAT Encoding of Bounded CPP 

Our goal was to devise a SAT encoding of bounded CPP suitable 

for relatively densely populated environments. At the same time 

we needed to keep the encoding compact. We followed the clas-

sical Graphplan inspired encodings as for we also encode each 

time step. Our design is similar to that of SATPLAN (Kautz & 

Selman, 1999) and SASE (Huang et al., 2010) encodings. But 

unlike these generic encodings we were working with the specif-

ic domain so we could facilitate the domain knowledge in the 

design of the instance encoding. 

 We a priori know what the candidates for multi-valued state 

variables are in our domain – basically, these are represented by 

location function and its inverse. Using techniques proposed by 

Rintanen (2006) each state variable can be encoded by a loga-

rithmic number of propositional variables with respect to the 

number its values. Another considerable aspect is how to encode 

transition actions together with validity conditions. 

 Representing arrangement of agents by inverse locations (that 

is, there is a state variable for each vertex) allowed us to encode 

transitions efficiently. There are two primitive actions for each 

edge adjacent to the given vertex plus one no-op action. Half of 

the primitive actions corresponding to a vertex are for incoming 

agents while the other half is for outgoing agents. If the outgoing 

primitive action is selected it is necessary to propagate the selec-

tion as corresponding selection of incoming primitive action in 

the target vertex. Representing the selection of the primitive 

action as a multi-values state variable automatically ensures that 

conditions (i) and (iii) are encoded. Notice that the degree of 

vertices in   is typically low for real-life environments, thus 

action selection in the vertex can be captured by few proposition-

al variables. 

 Let                     be an instance of CPP and 

    be a makespan bound. Our encoding has layers numbered 

       . Suppose that neighboring vertices of a given vertex are 

ordered in the fixed order. That is,      we have function 

                               and its inverse   
  . 

 

Definition 3 (LAYER ENCODING). The  -th regular layer con-

sists of the following integer interval state variables: 

   
              for all     such that 

   
    iff          

   
                     for all     such that 

  
       iff no-op was selected in  ; 

  
         iff an outgoing primitive action with  

      the target     was selected in  ; 

  
                iff an incoming primitive action 

with     as the source was selected in  . 

and constraints: 

   
          

    
  for all     (no-op case); 

     
               

          
    

    

   
               where     

     
   

for all     (outgoing agent case); 

           
              

   
        where     

     
          

for all     (incoming agent case).       □ 
 

 State variables   
  for     represent inverse location func-

tion at the time step  . Analogically, state variables   
  for     

represent transition actions selected in vertices at time step  . 

Constraints merely encode the validity conditions. 

 The last encoding layer is irregular as it has location state 

variables only. To finish the encoding we need to encode the 

initial and the goal arrangement straightforwardly as follows: 

     
      iff   

        , 

     
      iff   

       , 

     
      iff   

        , 

     
      iff   

       . 

 Transformation of the encoding from the above integer repre-

sentation to the propositional one is also straightforward. To 

reduce size of clauses we should use standard Tseitin’s hierar-

chical encoding with auxiliary variables. 

Table 1. Comparison of encoding sizes. The smallest number of 
layers for which SATPLAN was unable to detect unreachability of 
the goal using mutex reasoning is indicated as goal level – it is 
used as the makespan bound. 
|Agents| in 
4-connected 

grid 8x8 

Goal 
level 

SATPLAN 
encoding 

Our domain specific 
encoding 

|Variables| |Clauses| |Variables| |Clauses| 

4 8 5864 55330 9432 55008 

8 8 10022 165660 11968 70400 

12 8 14471 356410 11968 68352 

16 10 30157 1169198 18490 112580 

24 10 43451 2473813 18490 107360 

32 14 99398 8530312 32116 200768 

4. COBOPT: Optimization Process 

Our novel CPP technique called COBOPT exploits SAT solving 

technology (Eén & Sörensson, 2004) not to produce a solution 

but to optimize it with respect to the makespan. To be able to use 

SAT solvers in this way we need to obtain some (sub-optimal) 

solution to the CPP instance first. Let this initial solution be 

called base solution. As we mentioned, many solving techniques 

for CPP are available at the present time (Silver, 2005 – WHCA*; 

Ryan, 2008; Surynek, 2009 – BIBOX; Luna & Berkis, 2011 – 

PUSH-SWAP ; Standley & Korf, 2011 - OD+ID). Any of them 

can be used to produce base solution within our framework. Our 

approach is completely generic in this sense. Notice however, 

that particular solving technique is always designed for a specific 

class of the problem while outside this class it may provide 

worse performance. The typical weakness is for example that 

decoupled techniques (WHCA* - Silver, 2005) admit that not all 

the agents need to reach their destination. 

 In our initial experiments, we found that it is becoming dra-

matically more difficult for SAT solvers to solve bounded CPP 

instance as the bound is growing. To be more concrete, a SAT 

solver usually struggles with the instance consisting of the graph 

containing     vertices,    agents, and the bound of    for 

several minutes if the presented SAT encoding is used. In case of 

the SATPLAN encoding the situation is even worse – the solver 

even struggles with generating the formula for minutes. This 

finding renders possibility of using SAT solvers to solve a coop-

erative instance of considerable size in the SATPLAN style 

(Kautz & Selman, 1999; Huang et al., 2010) as infeasible at the 

current state-of-the-art since it may require hundreds of time 

steps. But using a SAT solver in the SATPLAN style has one 

undisputable advantage if we manage to get a solution from it – it 

is makespan optimal. 

   

initial:    

goal:    
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 After producing the base solution, this is submitted to a SAT 

based optimization process. Sub-sequences in the base solution 

are replaced with computed optimal sub-solutions. Suppose that 

we are currently optimizing at time step   and    is a maximum 

bound for encoding cooperative instances (specified by the user). 

It is computed what is the largest      such that the time step 

   can be reached from the time step   with no more than    

steps. Then sub-solution of the base solution from the time step   

to     is replaced by the optimal one obtained from the SAT 

solver. The process then continues with optimization at the time 

step    until the whole base solution is processed. The optimiza-

tion process can be iterated by taking new solution as the base 

one until a fixed point is reached. 

 The binary search is exploited to find    and the optimal sub-

solution in order to reduce the number of SAT solver invocations 

– see Algorithm 1 which summarizes basic COBOPT optimiza-

tion method formally. 

 
Algorithm 1. COBOPT: SAT-based CPP solution optimization – 
basic scheme based on binary search.  
 

function COBOPT-Optimize-Cooperative-Plan          : solution 

1:        
2: do 
3:          
4:  let                     
5:      ;        
6:  while     do 
7:       Find-Last-Reachable-Arrangement           

   
8:           Compute-Optimal-Solution           
9:        
10: while             

11: return     
 

function Find-Last-Reachable-Arrangement           
  : integer 

1:  let                    
2:             
3:  while       do 
4:             
5:                  
6:   if Check-Reachability            then 
7:      Encode            
8:    if Solve-SAT     then     
9:    else     
10:  else 
11:       
12: return   
 

function Check-Reachability            : boolean 

1:  let               
2:  for each     do 
3:   if                      then return       
4:  return      

 
 Notice that separation points in the base solution are selected 

on the greedy basis – optimization always continues on the first 

not yet processed time step. We also considered generating the 

optimal placement of separation point by dynamic programming 

techniques. Though this approach generates slightly better base 

solution decomposition this it is at the great expense in overall 

runtime as many more invocations of the SAT solver. 

5. Experimental Evaluation 

We implemented the proposed COBOPT optimization method in 

C++ to conduct an experimental evaluation. A competitive com-

parison against 3 existent methods was made – WHCA*, 

SATPLAN, and BIBOX. WHCA* was chosen as a reference meth-

od as it is considered to be standard decoupled method for CPP 

and its properties and performance are well known. 
 

Table 2. Optimal solutions obtained by SATPLAN. No more 
agents can be solved by SATPLAN within the time limit of 7200s. 

|Agents| 

4-connected grid 8x8 4-connected grid 16x16 

Optimal 
makespan 

Runtime (s) 
Optimal 

makespan 
Runtime (s) 

1 5 0.0 4 0.68 

4 6 0.15 21 195.5 

8 8 19.85 15 1396.07 
 
As no implementation of WHCA* was available we re-

implemented it in C++ by ourselves.  SATPLAN is the most 

similar method to our approach and very importantly it produces 

optimal solutions – we used implementation provided by the 

authors. Finally, BIBOX was selected as major method for pro-

ducing base solutions in hard setups. Our choice was not dis-

couraged by the wrong statement of Standley and Korf (2011) 

who consider it to have memory and time requirements that limit 

its applicability. 
 

 

 
Figure 1. Makespan optimization in the 4-connected grid 8×8. A 
comparison with the optimal SATPLAN and near optimal 
WHCA* is shown. 

 The BIBOX algorithm has polynomial time complexity (solu-

tions to all the benchmarks presented here were generated within 

less than 0.1 seconds) and generates good quality sub-optimal 

solutions irrespectively how many agents are contained in the 

instance – together with the algorithm PUSH-SWAP by Luna & 

Berkis (2011) it is the only algorithm able to generate base solu-

tion for hard setups. Authors provide working implementation of 

BIBOX which we exploited within our experiments. COBOPT 

using BIBOX as a base solver will be referred to as 

COBOPT(BIBOX). As a SAT solver within our method, MINISAT 

2.2 (Eén & Sörensson, 2004) was used. 

 Standard benchmark setups for CPP which consists of a 

4-connected grid graph and randomly arranged initial and goal 

locations for agents were used. Various parameters of the 

COBOPT(BIBOX) and other methods were observed in the de-

pendence on the increasing number of agents in the instance. 
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 A setup with the grid of size 8×8 ant the number of agents 

ranging from 1 to 54 was used. The timeout of 240s per SAT 

solver invocation and the makespan bounds of 8 were used. 

Additionally there was an overall timeout of 7200s (2 hours) 

after which the optimization process was terminated. The number 

of iterations until the fixed point was reached ranged from 1 to 

20 with median of 7. Due to space limitations we present only a 

fraction of results here. 

 Using WHCA* we observed that setups with up to approxi-

mately 20% of occupied vertices are in fact easy as only very 

limited cooperation among agents is necessary. Notice, that the 

method OD+ID which also tries to generate good makespans is 

reported to be efficient only in the setups with less than 10% of 

occupied vertices. Here we are interested primarily in setups with 

occupancy in the range 20% - 50% which is increasingly harder 

as cooperation between agents gradually increases. 

 To learn what the optimal makespan for tested instances is we 

tried SATPLAN (Table 2). Unfortunately SATPLAN was able to 

generate solution only to instances with small number of agents. 

The reason is primarily inefficiency of domain-independent SAT 

encoding (Table 1). 

 Regarding the decoupled WHCA* method, we found that in 

sparse instances it is able to generate near optimal solutions 

(Figure 1) since near optimal path is tried to be found for each 

agent separately. However, this method is principally unable to 

solve instances where non-trivial cooperation among agents is 

necessary. WHCA* was used to classify instances on easy and 

hard – the easy ones are those solvable by WHCA*. Even on 

easy instances WHCA* was significantly outperformed by 

COBOPT(BIBOOX) according to our experiments. 

 
Figure 2. Distribution of parallelism before and after COBOPT 
optimization. Agents are using all the available freedom in the 
optimized variant – almost all the vacant vertices are used for 
movements while in un-optimized one there is lot of wait actions. 
   

 The COBOPT method is very friendly to multithreaded imple-

mentation. Hence the scalability of our is extremely good (pro-

vided that computational resources are available). Moreover, if 

the method for producing base solutions is fast enough then 

COBOPT is anytime in fact – at any time step the solving process 

can be terminated and feasible (sub-optimal) solution is returned. 

 To get insight what happen when a solver is used for optimi-

zation we investigated distribution of the number of actions 

executed in parallel – Figure 2. Base solutions seem to suffer 

from locked agents which are forced to wait until their path is 

freed. In optimized solutions, as many as possible agents are 

actively moving towards goals – it is possible to observe that 

agents utilize almost all the available unoccupied space. 

6. Conclusion 

The new SAT based solving method for CPP called COBOPT 

has been presented. To be able to use a SAT solver for coopera-

tive path-planning we also developed a new SAT encoding for 

CPP instances. The encoding utilizes structural properties of CPP 

to reduce its size and increase efficiency. 

 The COBOPT method was shown that it is able to generate 

near optimal or good quality solutions in setups with high occu-

pancy of the environment by agents. It is the first method capable 

of doing so. In our experiments we solved 4-connected grid 

instances of size 8×8 with up to 84% space occupied by agents 

with high quality makespans. One of the positive aspects of the 

new approach is also the fact that it can be easily parallelized for 

multi-core architectures which supports better scalability. 

 The COBOPT method has also quite strong implications for 

classical planning. Provided that efficient makespan sub-optimal 

planner is available, COBOPT can be immediately used to opti-

mize its output (SASE and SATPLAN encodings are ready). An-

other possible future improvement is to reduce the size of the 

domain dependent encoding for sparsely populated instances. 
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