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Abstract 

We suggest to employ propositional satisfiability techniques 

in solving a problem of cooperative multi-robot path-finding 

optimally. Several propositional encodings of path-finding 

problems have been suggested recently. In this paper we 

evaluate how efficient these encodings are in solving certain 

cases of cooperative path-findings problems optimally. Par-

ticularly, a case where robots have multiple optional loca-

tions as their targets is considered in this paper. 

Introduction and Context   

Multi-robot path planning (MRPP, also referred as cooper-

ative path-finding – CPF) on graphs (Silver, 2005; Ryan, 

2006; Wang & Botea, 2011; Luna & Berkis, 2011) is an 

abstraction for centralized navigation of multiple mobile 

robots (distinguishable but all the same in other aspects). 

Each robot has to relocate itself from a given initial location 

to a given goal location while it must not collide with other 

robots and obstacles. Plans as sequences of movements for 

each robot are constructed in advance by a centralized plan-

ner which can fully observe the situation. 

The problem of navigating a group of mobile robots or 

other movable units has many practical applications. Except 

the classical case with mobile robots let us mention traffic 

optimization, relocation of containers (Ryan, 2006), or 

movement planning of units in RTS computer games. 

To be able to tackle the problem a graph-based abstrac-

tion is often adopted – the environment is represented as an 

undirected graph with at most one robot in a vertex. Edges 

are used to model passable regions. 

We describe a generalization of MRPP (gMRPP). In the 

classical MRPP each robot has a single vertex as its goal. 

This is however impractical in many situations – sometimes 

we need robots that are not distinguished with respect to 

their goals. To overcome this limitation we introduce multi-

ple optional goals for robots, that is the target for a robot is 

no longer a single vertex but an non-empty set of vertices (a 

robot should have at least one target vertex not to compro-

mise solvability directly at the beginning). 
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gMRPP: MRPP with Generalized Goals 

Let         be an undirected graph and let   
             be a set of robots where        . The ar-

rangement of robots in   will be described by a uniquely 

invertible function      . The interpretation is that a 

robot     is located in a vertex     . A generalized in-

verse of   denoted as             will provide us a 

robot located in a given vertex or   if the vertex is empty. 

An arrangement of robots at time step      will be 

denoted as   . If we formally express rules on movements 

in terms of location function then we have the following 

transition constraints: 

(i)       either               or 

                  holds 

(robots move along edges or do not move at all), 

(ii)                          
               

(robots move to empty vertices only), and 

(iii)                               
(no two robots enter the same target vertex). 

The initial arrangement is   . Each robot has at least 

one vertex as its target. 

A set of goal vertices to robots will be assigned by a 

function         such that               . An 

instance of gMRPP is then given as quadruple 

         
  . 

We say that    is satisfied by an arrangement of robots 

  if and only if                . The task in gMRPP 

is to transform    into an arrangement    so that transition 

constraints are preserved between all the consecutive time 

steps and    is satisfied by   . 

 

Definition 1 (solution, makespan). Let            
   

be an instance of gMRPP. A solution of   is a sequence of 

arrangements of robots            where    satisfies    

and transition constraints are satisfied between      and    

for every        . The number   is called a makespan 

of the solution.  

 

 An example of gMRPP instance on a graph represented 

by a 4-connected grid is shown in Figure 1. 
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 Having a solution of the shortest possible makespan we 

say the solution to be makespan optimal or shortly optimal. 

We are interested in generating optimal solutions to 

gMRPP in this paper. 

 It is known that finding an optimal solution is NP-hard 

(Ratner & Warmuth, 1986). The result has been shown for 

MRPP where robots have single targets. Thus there is little 

chance to find optimal solutions of gMRPP efficiently in 

the general case. 

 

 
Figure 1.  A typical random gMRPP instance on a grid of size 5×5 

with 20% of positions occupied by obstacles. Robots  ,  , and   has two 
optional goals. 

Since the goal condition for a single robot arranged by   

can be naturally expressed as formula in the disjunctive 

form (exactly a robot   is in its destination if and only if 

              ) we consider that it is suitable to model 

gMRPP as propositional satisfiability. 

An incomplete approach from domain independent 

planners like SASE (Huang et al., 2010) and SATPlan 

(Kautz & Selman, 1999) can be adopted to find makespan 

optimal solutions of gMRPP. A question whether there 

exists a solution of the given gMRPP of makespan   is 

modeled as propositional satisfiability. A solution of the 

optimal makespan can be found by trying larger and larger 

makespans in a case the MRPP instance is solvable. The 

unsolvability cannot be detected by this approach. 

Unlike domain independent planners SASE and 

SATPlan, we use propositional encodings specially de-

signed for gMRPP. Several special encodings for MRPP 

have been suggested in (Surynek, 2012a, 2012b). 

All the special encodings are significantly smaller in 

terms of the number of variables and clauses than domain-

independent SASE and SATPlan encodings on the same 

MRPP instances. Also special encodings are solved faster 

by a SAT solver (Surynek, 2012a, 2012b). 

Adapting Encodings for gMRPP 

The base encodings of our choice are called inverse and 

all-different in (Surynek, 2012a). We show how the inverse 

encoding should be adapted; adapting the all-different 

encoding is analogical and is omitted. 

 The arrangement of robots at all the considerable time 

steps is represented by the generalized inverse     in the 

inverse encoding. That is, we know which robot is located 

in each vertex (and whether the vertex is empty or not). In 

case of the all-different encoding, the arrangement is repre-

sented by   (we know which robot is located in a vertex). 

 To explain the encoding in a more natural way a finite 

domain integer abstraction is used first. The propositional 

encoding is subsequently obtained by replacing integer 

variables with vectors of propositional variables (bit-

vectors) and integer constraints with their propositional 

equivalents. Notice that additional propositional variables 

may be added to allow hierarchical translation (Tseitin, 

1968). Using bit-vectors to represent state variables is a 

key technique to make the encoding compact (Rintanen, 

2006). 

 There are visible variables   
              in the 

inverse encoding to represent inverse locations of robots. 

That is,   
    if and only if          (robot    is locat-

ed in   at time step  , 0 is reserved for an empty vertex). 

Additional variables are used to model actions and to estab-

lish valid transitions between consecutive time steps – for 

details see (Surynek, 2012a). 

 The only change we need to make in the inverse encod-

ing to capture gMRPP is that instead of the original goal 

constraints we should use the following one. Suppose that 

the encoding is build for   levels: 

  
       

   
          

 

Knowledge Compilation 

It is relatively easy to compile various types of abstract 

knowledge into the propositional encoding. A certain kind 

of mutex and reachability heuristic compilation into the 

encoding of MRPP is studied in (Surynek, 2013). Here we 

compile results of reachability heuristic into the encoding 

(mutex reasoning is not used here). Again suppose   levels 

of the encoding. The following constraints can be added 

for every vertex     and robot       at time step  : 
 

                                  

        

 

   
    

  

 In other words, robot    cannot stay in   at time step   if 

it cannot reach   in   steps or if it cannot reach any of its 

goals in the remaining number of time steps. 

 Such knowledge compilation can significantly reduce 

the search space. Notice that the presented reachability 

heuristic is relatively simple knowledge at the abstract 

level of gMRPP however it may be hard to discover at the 

propositional level. 

Experimental Evaluation 

We made an experimental evaluation of the performance of 

SAT-based solving of gMRPP instances. Here we present 
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part of results regarding the difficulty of solving depending 

on the number of alternative goal vertices of robots. Test-

ing gMRPP instances consist of a 4-connected grid of the 

size 66. Robots are initially placed randomly. Each robot 

has at least one target vertex. The total number of target 

vertices was selected randomly (uniformly) between 1 and 

the given upper bound while the upper bound was changed 

in the experiments – we tried 1, 2, 3, and 4. 
 All the source code and experimental data to allow re-
producibility of presented experiments are available on: 
http://ktiml.mff.cuni.cz/~surynek/research/sara2013. 

Runtime Comparison 

The runtime comparison
1
 is shown in Figure 2. and Figure 

3. We used MiniSat 2.2 (Eén & Sörensson, 2004) to 

solve the encoded k-level bounded instances of gMRPP. 

The number of robots varied from 1 to 15; 10 random 

instances were solved for each number of robots. Average 

values are presented.  

 

 

 
Figure 2.  Runtime comparison 4 encodings on instances with different 

number of optional goals. Each robot has random number of goals 

choosen uniformly between 1 and the upper bound which is 1, 2, 3, or 4. 

The graph is 4-connected grid of size 66 with 10% vertices occupied 
with obstacles.  

                                                 
1 All the tests were run on Intel Xeon 2.0 GHz with 12 Gb of RAM under 
Ubuntu Linux 10.04. 

 Two basic propositional encodings are tested – an in-
verse one where visible variables represent     and an 
all-different one where visible variables represent   (occu-
pancy of vertices by at most one robot is expressed as the 
all-different constraint). Further details on these encodings 
are omitted here – we refer the reader to (Surynek, 2012a, 
2012b). A plain variant and a variant with compiled reach-
ability heuristic was tried for both encodings. 

 
Figure 3.  Runtime development with the increasing number of goals. 

Instances with one goal seems to be easy with few robots but become 

quicly hard as the number of robots increases. The problem seems to relax 
by adding goals in other cases.  

 It can be observed that allowing more alternative goal 
vertices relaxes the problem – it is easier to solve. The 
most difficult cases appear when there are one or two goals 
for each robot.  Notice that if all the robots have uniformly 
one goal the instance is easy for few robots however it is 
getting increasingly difficult as the number of robots in-
creases. 
 The benefit of knowledge compilation can be also ob-
served. It appears to be more beneficial for the inverse 
encoding. 
 Both tested variants of the all-different encoding outper-
formed the inverse one. Let us note that the performance of 
the all-different encoding quickly degrades with increasing 
number of robots and it is eventually outperformed by the 
inverse encoding in cases with many robots (Surynek, 

2012b). 

Makespan Evaluation 

Average optimal makespans for tested gMRPP instances 

are shown in Figure 4. Again, with the increasing number 

of goal vertices the optimal makespan tends to be lower 

(robots can chose a goal vertex closer to their initial loca-

tion). The average optimal makespan is calculated from 10 

results for each number of robots in the graph. 
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Figure 4.  Optimal makespans for instances from Figure 2. Notice that 

more optional goal relaxes the problem – robots can chose goal vertex 

closer to their initial location. 

Conclusion and Future Work 

The multi-robot path-planning (gMRPP) with generalized 

goals has been introduced in this paper. The generalization 

consists in allowing robots to have more than a single ver-

tex as its targets. We suggested to solve the problem opti-

mally via modeling it as propositional satisfiability. Initial 

experimental results targeted evaluating how the number of 

alternative goals affects the difficulty of solving are pre-

sented. 

 More extensive evaluation with larger instances and 

more scenarios is planned. We also plan to compare opti-

mal SAT-based solving with other optimal solving meth-

ods for MRPP such as (Standley & Korf, 2011). 

 It seems that compiling knowledge discovered in the 

problem at the abstract level into propositional encodings 

represents a powerful technique. We would like to further 

investigate this aspect. For example solution improvements 

(Wang et al., 2011) seems to be easily adaptable for compi-

lation in this sense. An interesting knowledge that may be 

hard to discover by a SAT solver but easily accessible at 

the abstract level is represented by duality in permutation 

groups (Felner et al., 2005). 
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