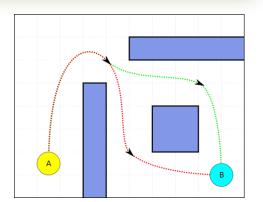


Optimal Cooperative Path-Finding with Generalized Goals in Difficult Cases

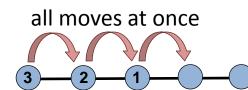
Pavel Surynek


Faculty of Mathematics and Physics Charles University in Prague Czech Republic

SARA 2013, Leavenworth, WA, USA

Cooperative Path-Finding (CPF)

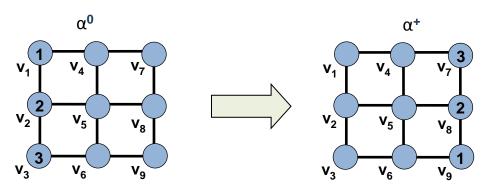
- Robots can move only
 - each robot needs to relocate itself
 - initial and goal location
- Physical limitations
 - robots must not collide with each other
 - must avoid obstacles
- Abstraction
 - environment undirected graph G=(V,E)
 - vertices V locations in the environment
 - edges E passable region between neighboring locations
 - robots entities placed in vertices
 - at most one robots per vertex
 - at least one vertex empty to allow movements



E

CPF Formally

- A **quadruple** (G, R, α^0 , α^+), where
 - G=(V,E) is an undirected graph
 - R = $\{r_1, r_2, ..., r_{\mu}\}$, where $\mu < |V|$ is a **set of robots**
 - α^0 : R \rightarrow V is an **initial arrangement of robots**
 - uniquely invertible function
 - α^+ : R \rightarrow V is a **goal arrangement of robots**
 - uniquely invertible function
- Time is discrete time steps
- Moves/dynamicity
 - depends on the model
 - Robot moves into unoccupied neighbor
 - no other robot is entering the same target
 - sometimes train-like movement is allowed
 - only the leader needs to enter unoccupied vertex



Solution to CPF

- **Solution** of (G, R, α^0 , α^+)
 - sequence of arrangements of robots
 - (i+1)-th arrangement obtained from i-th by legal moves
 - the first arrangement determined by α^0
 - the last arrangement determined by α^+
 - all the robots in their goal locations
- The length of solution sequence = makespan
 - optimal/sub-optimal makespan

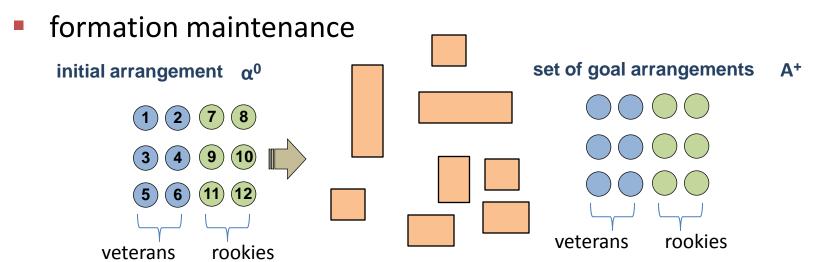
Solution of an instance of cooperative path-finding on a graph with R={1,2,3}

Motivation for CPF

Container rearrangement (robot = container)

Heavy traffic (robot = automobile (in jam))

Data transfer (robot = data packet)


Ship avoidance (robot = ship)

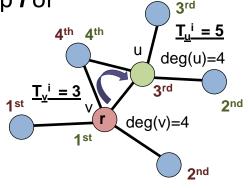
Generalization CPF

- Interchangeable robots
 - robots indifferent w.r.t. goals
- Motivation

- A⁺: R \rightarrow P(V) –{Ø} instead of α ⁺: R \rightarrow V
 - each robot can have multiple vertices as its goal
- relaxed goal
 - problem expected to get easier

h

CPF as **SAT**


- SAT = propositional satisfiability
 - a formula φ over 0/1 (false/true) variables
 - Is there a valuation under which φ evaluates to 1/true?
 - NP-complete problem
- SAT solving and CPF
 - powerful SAT solvers
 - MiniSAT, clasp, glucose, glue-MiniSAT, crypto-MiniSAT, ...
 - intelligent search, learning, restarts, heuristics, ...
 - CPF \Rightarrow SAT
 - all the advanced techniques employed for free
- Translation
 - given a CPF Σ =(G, R, α^0 , A⁺) and a **makespan** k
 - **construct** a formula φ
 - satisfiable iff Σ has a solution of makespan k

 $(x \lor \neg y) \land (\neg x \lor y)$ Satisfiable for x = 1, y = 1

Encoding CPF as IP

- How to encode a question if there is a solution of makespan k
 - Encode arrangements of robots at steps 1,2...,k
 - Step 1 ... α⁰
 - Step k ... α⁺ / A⁺
- Integer variables modeling step i
 - **A** $_{\mathbf{v}}^{i} \in \{0,1,2,...,\mu\}$
 - $\mathbf{A}_{\mathbf{v}}^{i} = \mathbf{j}$ if robot \mathbf{r}_{i} is located in vertex \mathbf{v} at time step \mathbf{i} or
 - $\mathbf{A}_{\mathbf{v}}^{i} = \mathbf{0}$ if \mathbf{v} is <u>empty</u> at time step \mathbf{i}
 - **T**_vⁱ \in {0,1,2,..., 2deg(v)}
 - $0 < T_v^i \le deg(v)$ if an robot leaves v into the (T_v^i) -th neighbor
 - deg(v)≤ T_vⁱ ≤ 2deg(v) if an robots enters v from the ((T_vⁱ)-deg(v))-th neighbor
 - $T_v^i = 0$ if <u>no action</u> taken in ν
- Don't forget constraints valid transitions between time-steps

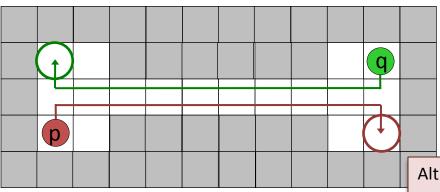
Encoding CPF as SAT

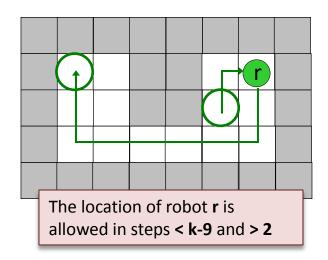
Integer variables

- replace with bit vectors
- for example $\mathbf{A_v}^i \in \{0, 1, 2, ..., \mu\}$
 - replaced with $\lceil \log_2(\mu+1) \rceil$ propositional variables
 - extra states are forbidden

■ ⇒ Compact representation

- smaller than in SAT-based domain-independent planners
- knowledge compilation distance heuristic


A 4-connected grid 8×8	Makespan	SATPLAN encoding		SASE encoding		INVERSE encoding	
		Variables	Clauses	Variables	Clauses	Variables	Clauses
4	8	5.864	55.330	11.386	53.143	5.400	38.800
8	8	10.022	165.660	19.097	105.724	5.920	48.224
12	8	14.471	356.410	26.857	168.875	5.920	46.176
16	10	30.157	1.169.198	51.662	372.140	8.122	76.192
24	10	43.451	2.473.813	73.101	588.886	8.122	71.072
32	14	99.398	8.530.312	157.083	1.385.010	12.396	137.120

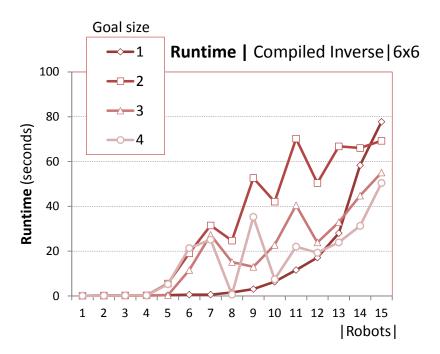

9 SARA 2013

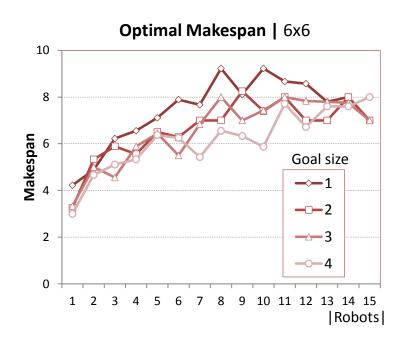
Knowledge Compilation

- Heuristics directly built-in into the encoding
 - distance heuristic
 - locations unreachable in a given time are forbidden
 - search space reduced
 - mutex heuristic
 - robots are treated pair-wise
 - computationally difficult

Although locations of robots **p** and **q** are allowed in steps < **k**-**11** by distance heuristics, they cannot occur in steps >= **k-20**

10 SARA 2013




11

Experimental Evaluation

Experimental setup

- 4-connected grid of size 6×6
- random initial and goal arrangement
- various sizes of goal sets

SARA 2013

Conclusion and Future Research

- CPF with generalized goals
 - set of vertices as a goal
 - makespan optimal solutions via SAT solving
- More complex actions
 - not only moving
- Adversarial version (AAAI 2013)
 - two or more teams competing
 - complexity
 - strategies to gain territory
- Formation preservation
 - motivated by computer games

