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• Constraint satisfaction problem over the universe of 
elements 𝔻 is a triple (X,C,D)
▫ X – finite set of variables

▫ C – finite set of constraints

▫ D – is a function D:X 𝒫(𝔻)

▫ each constraint cC is a construct
of the form <(x1

c, x2
c,…, xk(c)

c),Rc>
 k(c) is arity of the constraint

 xi
cX for I = 1,2,…,k(c) and RcD(x1

c)  D(x2
c)  …  D(xk(c)

c)

• The task is to find assignment of values to variables from 
their domains such that all the constraints are satisfied
▫ or decide that no such valuation exists

• Decision variant is an NP-complete problem

example:𝔻={1,2,3}

X={a,b,c}
C={<(a,b),”<“>;

<(b,c),”=“>}
D(a)=D(b)=D(c)=𝔻

example: a=1, b=2, c=2

Constraint Satisfaction Problem (CSP)
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• A Boolean formula is given - variables can take either the 
value TRUE or FALSE

• The task is to find valuation of variables such that the 
formula is satisfied
▫ or decide that no such valuation exists

• Conjunctive normal form (CNF) - standard form of the 
input formula for SAT solvers
▫ variables: x1,x2,x3,...
▫ literals: x1,x1,x2,x2, ... variable or its negation
▫ clauses: (x1  x2  x3) ... disjunction of literals
▫ formula: (x1  x2) (x1  x2  x3) ... conjunction of clauses

• Clauses represent constraints that must be all satisfied (can be 
regarded as CSP) – SAT and CSP are mutually reducible

example: x = TRUE
y = FALSE

example: (x  y)  (x  y)

example:
p cnf 3 2
1 -2 0
1 2 -3 0
...

Boolean Satisfiability (SAT)
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• CSP paradigm provides many types of local 
consistencies
▫ local inference is typically too weak for SAT
▫ arc-consistency, path-consistency, i,j-consistency
 insignificant gain in comparison with unit-propagation
 expensive propagation with respect to the inference 

strength

• Global consistencies (global constraints)
▫ provide strong global inference
 often leads to significant simplification of the problem

▫ application of global consistencies in SAT is quite rare

• Consistency based on structural properties
▫ interpret SAT as a graph and find graph structures

Motivation for Global Consistencies
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• SAT as CSP: Literal encoding model (X,C,D)
▫ X ... variables ↔ clauses, C ... constraints ↔ values standing for 

complementary literals are forbidden, D ... variable domains ↔ 
literals

• Interpret path-consistency in the CSP model of SAT as a 
directed graph
▫ vertices ↔ values in domains, edges ↔ allowed pairs of values

example:
X=V(x1  x2),V(x1  x2), ...

example:
D(V(x1  x2))={x1, x2}

example:
V(x1  x2) = x1 and
V(x1  x2) = x1

is forbidden

Path-consistency in Literal Encoding (1)

Pavel Surynek, 2011
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• Let us have a sequence of variables (path)
▫ a pair of values is path-consistent w.r.t. to the sequence if there is an 

oriented path connecting them in the graph interpretation going 
through the sequence and values itself are connected

• Ignores constraints between non-neighboring variables in the 
sequence of variables

Path-consistency in Literal Encoding (2)
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• Sequence of variables (path) of the length k+2
▫ a pair of values is (2,k)-consistent w.r.t. to the sequence if there is a 

consistent supporting k-tuple of values in the domains of other 
variables

• Strong reasoning – can infer many inconsistent pairs of values
• Difficult search for a supporting k-tuple

(2,k)-consistency in Literal Encoding
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• Deduce more information from constraints
▫ decompose values into disjoint sets (called layers ... L1, L2,..., LM)

▫ deduce more information from constraints - calculate maximum size of the 
intersection of the constructed path with individual layers – denoted as χ

• Stronger restriction on paths ► stronger propagation

Modified Path-Consistency for SAT

Pavel Surynek, 2011
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• Enforcing modified path-consistency is difficult (NP-complete)
▫ The decision problem is whether there exists a path conforming to the 

maximum size of the intersection with individual layers.
• Lemma: The decision variant of the problem belongs to the NP class.

▫ The path is of polynomial size with respect to the graph interpretation.
▫ It can be checked in polynomial time whether the path conforms to the 

maximum size of intersection with individual layers.
• Lemma: The existence of a Hamiltonian path in a graph is reducible 

to the existence of a path conforming to the maximum size of 
intersection with layers.

(v1,v2)(v1,v1) (v1,vn)

(v2,v2)(v2,v1) (v2,vn)

(vn,v2)(vn,v1) (vn,vn)

...

...

...

...
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NP-completeness of the Modified Path 
Consistency

Pavel Surynek, 2011

• Main idea of the proof: G=(V,E), where 
V={v1,v2,...,vn}
(i) Construct an instance of modified 
path consistency in the form of a 
matrix

• (ii) Associate rows of the matrix with 
layers and set the maximum size of the 
intersection to 1
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• An intersection matrix is defined for each value in the graph 
interpretation of path-consistency – it is denoted as ψ(v)

▫ Let L1, L2, …, LM be a layer decomposition of the graph 
interpretation

▫ Let K be the number of variables involved in the path

▫ ► The intersection matrix is of type M  (K+1)

• Intersection matrix ψ(v) w.r.t. a pair of values v0 and vK

▫ ψ(v)i,j represents the number of paths starting in v0 and ending 
in v that partially conforms to maximum sizes of intersection 
with layers such that they intersect with Li j-times.

• It is not possible to enforce exact conformity to 
calculated maximum sizes of intersection with layers
▫ Therefore we need to talk about partial conformity.

Intersection Matrices
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• Intersection matrix can be updated easily
▫ ψ(v) is calculated from ψ(u1), ψ(u2),…, ψ(um) where u1, 

u2,…, um are a values from the domain of the previous
variable in the path

• If it is detected that no of the paths starting in v0 and 
ending in v conforms to the maximum size of the 
intersection with the layer Li such that vLi then ψ(v) is 
set to 0 (matrix)
▫ maximum intersection sizes with other layers cannot be 

violated since intersection size with them does no change

▫ relaxation: paths that do not conform to maximum sizes of 
intersections with layers are propagated further

Intersection Matrix Calculation
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Visualization of Layers
using GraphExplorer software (Surynek, 2007-2010)

Pavel Surynek, 2011

• Layer decomposition was constructed with several most 
constrained clauses
▫ several benchmark problems from the SAT Library

hanoi4.cnf

jnh1.cnf

s3-3-3-8.cnf
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Experimental Evaluation (1)
• Modified path-consistency on pigeon-hole instances (decisions)

▫ standard path-consistency is unable to infer any new clause
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SAT instance

Instance

characteristics
Inferred binary clauses Minisat2 decisions

Variables Clauses PC mPC Original PC mPC

hole6 42 133 0 42 1777 1777 1
hole7 56 204 0 56 10123 10123 1
hole8 72 297 0 72 40554 40554 1
hole9 90 415 0 90 202160 202160 1
chnl10_11 220 1122 0 220 N/A N/A 1
chnl10_12 240 1344 0 240 N/A N/A 1
chnl10_13 260 1586 0 260 N/A N/A 1
chnl11_12 264 1476 0 264 N/A N/A 1
chnl11_13 286 1742 0 286 N/A N/A 1
chnl11_20 440 4220 0 440 N/A N/A 1

fpga10_12_uns_rcr 240 1344 0 240 N/A N/A 1

fpga10_13_uns_rcr 260 1586 0 260 N/A N/A 1

fpga10_15_uns_rcr 300 2130 0 300 N/A N/A 1

fpga10_20_uns_rcr 400 3840 0 400 N/A N/A 1

fpga11_11_uns_rcr 264 1476 0 264 N/A N/A 1

fpga11_12_uns_rcr 286 1742 0 286 N/A N/A 1
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Experimental Evaluation (2)
• Modified path-consistency on pigeon-hole instances (runtime)

▫ binary clauses inferred by modified path-consistency can help the 
SAT solver to decide the instance immediately
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SAT instance

Preprocessing

runtime (sec.)

Minisat2

solving runtime (sec.)

Total

solving runtime (sec.)

Runtime PC 
(sec.)

Runtime mPC 
(sec.)

Original PC mPC PC mPC

hole6 0.01 0.04 0.00 0.00 0.00 0.01 0.04

hole7 0.02 0.14 0.10 0.10 0.00 0.12 0.14

hole8 0.04 0.32 0.48 0.48 0.00 0.52 0.32

hole9 0.07 0.64 3.61 3.61 0.00 3.68 0.64

chnl10_11 0.23 2.38 > 10.0 > 10.0 0.00 > 10.0 2.38

chnl10_12 0.25 2.6 > 10.0 > 10.0 0.00 > 10.0 2.6

chnl10_13 0.27 2.82 > 10.0 > 10.0 0.00 > 10.0 2.82

chnl11_12 0.36 4.18 > 10.0 > 10.0 0.00 > 10.0 4.18

chnl11_13 0.39 4.54 > 10.0 > 10.0 0.00 > 10.0 4.54

chnl11_20 0.63 7.05 > 10.0 > 10.0 0.00 > 10.0 7.05

fpga10_12_uns_rcr 0.25 2.61 > 10.0 > 10.0 0.00 > 10.0 2.61

fpga10_13_uns_rcr 0.28 2.82 > 10.0 > 10.0 0.00 > 10.0 2.82

fpga10_15_uns_rcr 0.32 3.27 > 10.0 > 10.0 0.00 > 10.0 3.27

fpga10_20_uns_rcr 0.45 4.37 > 10.0 > 10.0 0.00 > 10.0 4.37

fpga11_11_uns_rcr 0.36 4.18 > 10.0 > 10.0 0.00 > 10.0 4.18

fpga11_12_uns_rcr 0.39 4.54 > 10.0 > 10.0 0.00 > 10.0 4.54
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Experimental Evaluation (3)
• (2,k)-consistency on integer factorization (decisions)

▫ can reduce the number of decisions significantly
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SAT instance

Instance

characteristics

Inferred binary 

clauses
Minisat2 decisions

Variables Clauses PC (2,k)-c Original PC (2,k)-c

difp_19_0_arr_rcr 1201 6563 0 675 142710 142710 61317

difp_19_0_wal_rcr 1755 10446 103 281 73018 339662 25340

difp_19_1_arr_rcr 1201 6563 6 307 250692 87894 81144

difp_19_1_wal_rcr 1755 10446 363 561 129235 133055 77039

difp_19_2_wal_rcr 1755 10446 38 212 288500 207775 98374

difp_19_3_arr_rcr 1201 6563 128 342 114648 122379 100824

difp_19_3_wal_rcr 1755 10446 36 202 609247 968223 109741

difp_20_0_arr_rcr 1201 6563 91 754 8174 39097 12598

difp_20_0_wal_rcr 1755 10446 378 553 65601 752497 123562

difp_20_1_wal_rcr 1755 10446 10 131 362145 540378 147005

difp_20_2_arr_rcr 1201 6563 57 611 62119 438572 49700

difp_20_2_wal_rcr 1755 10446 866 2375 184778 177142 15415

difp_20_3_arr_rcr 1201 6563 0 73 142823 142823 89801

difp_20_3_wal_rcr 1755 10446 357 5798 26905 159962 45492
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Experimental Evaluation (4)
• (2,k)-consistency on integer factorization (runtime)

▫ runtime is can be reduced by preprocessing as well
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SAT instance

Preprocessing

time (sec.)

Minisat2

solving time (sec.)

Total

solving time (sec.)

Runtime PC Runtime  (2,k)-c Original PC (2,k)-c PC (2,k)-c

difp_19_0_arr_rcr 3.15 3.19 27.78 27.78 9.63 30.93 12.82

difp_19_0_wal_rcr 3.74 3.58 10.97 68.94 2.68 72.68 6.26

difp_19_1_arr_rcr 3.00 3.06 54.17 15.99 14.21 18.99 17.27

difp_19_1_wal_rcr 3.56 3.48 24.19 24.86 14.21 28.42 17.69

difp_19_2_wal_rcr 3.58 3.43 65.13 41.53 18.85 45.11 22.28

difp_19_3_arr_rcr 3.00 3.57 20.59 22.80 16.86 25.80 20.43

difp_19_3_wal_rcr 3.79 3.48 164.05 286.71 19.59 290.50 23.07

difp_20_0_arr_rcr 3.04 3.43 0.73 5.69 1.11 8.73 12.16

difp_20_0_wal_rcr 3.64 3.62 10.48 208.25 23.45 211.89 27.07

difp_20_1_wal_rcr 3.99 3.69 83.49 134.27 28.22 137.96 31.91

difp_20_2_arr_rcr 3.01 3.36 9.57 108.28 7.40 111.29 10.76

difp_20_2_wal_rcr 23.3 25.6 38.49 37.47 1.62 60.77 27.22

difp_20_3_arr_rcr 17.33 19.6 27.73 27.73 16.78 45.06 36.38

difp_20_3_wal_rcr 21.94 23.8 3.54 31.27 7.33 53.21 31.13



• The modification of path-consistency towards
(2,k)-consistency has been studied

▫ exploits more global inference than the standard version

▫ non-neighboring variables in the path are taken into 
account

▫ maximum intersection sizes with layers (subsets of values) 
is used as pruning condition

• Experimental evaluation shown some potential of the 
suggestion for future work

▫ further increasing of inference strength towards
(2,k)-consistency

▫ keep low computational costs

Conclusion and Future Work
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