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Abstract
 
 

 

An abstraction of a problem of rearranging group of 

mobile robots is addressed in this paper (the problem of 

multi-robot path planning). The robots are moving in an 

environment in which they must avoid obstacles and each 

other. An abstraction where the environment is modeled 

as an undirected graph is adopted throughout this work. 

A case when the graph modeling the environment is bi-

connected is particularly studied. This paper puts into a 

relation the well known problems of moving pebbles on 

graphs (sliding box puzzles) with problems of multi-robot 

path planning. Theoretical results gained for problems of 

pebble motion on graphs are utilized for the development 

of algorithms for multi-robot path planning. As the opti-

mization variant of both problems (a shortest solution is 

required) is known to be computationally hard (NP-hard), 

we concentrate on construction of sub-optimal solving 

procedures. However, the quality of solution is still an 

objective. Therefore a process of composition of a sub-

optimal solution of the problem (a plan) of the pre-

calculated optimal plans for the sub-problems (macros) is 

suggested. The plan composition using macros was inte-

grated into two existing sub-optimal solving algorithms. 

In both cases, substantial improvements of the quality of 

resulting plans were achieved in comparison to the origi-

nal algorithms. The no less important result is that one of 

the existing algorithms was generalized by integrating 

macros for larger class of problems of multi-robot path 

planning. 

 

1. Introduction and Motivation 
 

Consider a group of mobile robots moving in a certain 

environment where each robot needs to reach a given goal 

position. The robots must avoid obstacles and each other. 
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An abstraction where the environment with obstacles is 

modeled as an undirected graph is adopted throughout this 

work. This abstraction of the task is widely known as a 

problem of multi-robot path planning [5]. It ranks among 

the most challenging problems of artificial intelligence [4] 

and it motivates efforts of theorists as well as practicians 

[5]. The main difficulty of the problem arises from the 

requirement on the optimality of solutions (shortest se-

quences of moves are required) and from complex inte-

ractions among robots (spatial-temporal motion of one 

robot is influenced by motion of the other robots) [3]. 

The primary motivations for the problem of multi-

robot path planning are tasks of moving objects within a 

limited free space. These tasks include rearranging con-

tainers in storage yards, coordination of movements of a 

large group of automated agents, or optimization of dense 

traffic. However, this is not the only motivation. Many 

tasks from virtual spaces can be also viewed as problems 

of path planning for multiple robots. An example may be 

data transfer with limited buffers at communication 

nodes, a coordination of a group of agents in strategic 

computer games, or planning movements in mass scenes 

in computer-generated imagery. 

In contrast to a multi-agent approach where each robot 

behaves as an autonomous individual, the whole group of 

robots is treated as a single entity in our approach. This 

allows producing solutions of higher quality (shorter 

solutions) since the centralized control can capture more 

global view of the situation. Moreover, the adopted graph 

abstraction allows using graph theoretical results to tackle 

the problem. In particular, a similarity between the formal 

definitions of the problem of multi-robot path planning as 

it is discussed in [5] and the problem of pebble motion on 

a graph [2] has been observed. As there is lot of theoreti-

cal results for pebble motion on graphs we tried to utilize 

these results in our algorithms. 

Both studied problems are computationally difficult 

when the shortest possible solution is required (NP-hard) 

[3]. Therefore we concentrate on developing of sub-

optimal methods. However, the quality of solutions is still 



an objective. Our suggestion is to improve existing sub-

optimal methods by utilization of pre-calculated optimal 

solutions of sub-problems (macros) [7] from which the 

overall solution is composed. A successful attempt to 

apply pre-calculated optimal macros within two existing 

state-of-the-art sub-optimal algorithms [2], [6] has been 

made. The resulting modified algorithms proved to be 

better in terms of the length of generated solutions (short-

er solutions are preferred) as well as in terms of runtime. 

Moreover, the algorithm from [6] was generalized by 

integration of macros for a larger class of problems. 

The main contributions of this paper consist in the fol-

lowing aspects: (i) the problem of multi-robot path plan-

ning and the problem of pebble motion on a graph are put 

into relation, (ii) two existing algorithms are improved by 

integration of macro utilization – one of the described 

algorithms becomes state-of-the-art for certain class of 

problems, and (iii) this algorithm was also extended so it 

is now applicable to more general class of problems. 

 

2. Pebble Motion on Graphs and 

Multi-robot Path Planning 
 

Consider an environment in which a group of mobile 

robots is moving. Each robot starts at the given initial 

position and needs to reach a given goal position. The 

problem being addressed in this paper consists in finding 

spatial-temporal path for each robot to reach its goal. The 

robots must not collide with each other and they must 

avoid obstacles in the environment. 

A relatively strong abstraction is adopted in this paper. 

The environment with obstacles within that the robots are 

moving is modeled as an undirected graph. The vertices 

of the graph represent positions in the environment and 

the edges model an unblocked way from one position to 

another. The time is discrete in this abstraction; it is an 

infinite linearly ordered set isomorphic to the set of natu-

ral numbers where each element is called a time step. 

 

2.1. Formal Definitions of the Problems 
 

The following two definitions formalizes a problem of 
pebble motion on a graph (also called a pebble motion 
puzzle or sliding box puzzle) [2], [11] and the related 
problem of multi-robot path planning [5] (both problems 
and their solutions are illustrated in figure 1). 
 

Definition 1 (problem of pebble motion on a graph). Let 
us have an undirected graph ( , )G V E . Next, let us have 
a set of pebbles 1 2{ , , , }P p p p  where V  . The 
initial arrangement of the pebbles is defined by a simple 
function 0 :PS P V  (that is 

0 0( ) ( )P i P jS p S p  for ,i j 
1,2, ,  with i j ). The goal arrangement of the peb-
bles is defined by a simple function :PS P V   (that is  

( ) ( )P i P jS p S p   for , 1,2, ,i j   with i j ). The 
problem of pebble motion on a graph is a task to find a 
number   and a sequence of moves represented as a 
sequence of vertices 1 2[ , , , ]p p p

pM m m m  for every 

pebble p P  where p

im V  for 1,2, ,i  , 
0

1 ( )p

Pm S p , ( )r

l Pm S p ,  and either 
1{ , }p p

i im m E   or 

1

p p

i im m   for 1,2, ,i   1  . Furthermore, sequences 
of vertices 

1[ ,p

pM m 2 , , ]p pm m  and  
1 2[ , , ,q q

qM m m  
]qm  for every two pebbles p P  and q P  such that 

p q  must satisfy that 
1

p q

i im m   for 1,2, ,i   1   
(the target vertex must be unoccupied) and p q

i im m  for 
1,2, ,i   (no other pebble can simultaneously enter 

the same target vertex). □ 
 

 A problem of multi-robot path planning is a relaxation 
of the problem of pebble motion on a graph. The condi-
tion that the target vertex for a moving pebble/robot must 
be freed in the previous time step is relaxed. A motion of 
a robot entering the target vertex that is simultaneously 
left by another robot is allowed in multi-robot path plan-
ning. The problem is formalized in the following defini-
tion. 

 
 

Figure 1. An illustration of problems of pebble motion on a 
graph and multi-robot path planning. The task is to move 
pebbles/robots from their initial positions specified by 0

PS / 0

RS  to 
the goal positions specified by PS  / RS  . A solution of length 7 is 
shown for the problem of pebble motion on a graph and a solu-
tion of length 5 is shown for the problem of multi-robot path 
planning. Notice the differences in parallelism between both 
solutions – multi-robot path planning allows the higher number 
of moves to be performed in parallel (in a single time step) 
thanks to weaker requirements on solutions. 
 

Definition 2 (problem of multi-robot path planning). 
Again, let us have an undirected graph ( , )G V E  but 
now instead of pebbles, a set of robots 1 2{ , , , }R r r r  
where V   is given. The initial arrangement of the 
robots is defined by a simple function 0 :RS R V (that is 

0 0( ) ( )R i R jS r S r  for , 1,2, ,i j   with i j ). The goal 
arrangement of the robots is defined by a simple function 

:RS R V   (that is  ( ) ( )R i R jS r S r   for , 1,2, ,i j   
with i j ). The problem of multi-robot path planning is 
a task to find a number   and a sequence vertices 

1 2[ , , , ]r r r

rO o o o  for every robot r R  where r

io V  
for 1,2, ,i  , 0

1 ( )r

Ro S r , ( )r

k Ro S r , and either 

1{ , }r r

i io o E   or 
1

r r

i io o   for 1,2, , 1i   . Further-
more, sequences of vertices 1 2[ , , , ]r r r

rO o o o  and  

1 2[ , , , ]s s s

sO o o o  for every two robots r R  and s R  
such that r s  must satisfy that r s

i io o  for 1,2, ,i   
(no two robots are simultaneously entering the same tar-
get vertex). □ 

v1 

v2 

v3 

v5 

v4 

v8 

v7 

1 

2 

3 

S0
P= S0

R S+
P= S+

R 

 

M1=[v1, v4, v7, v8, v9, v9, v9] 
M2=[v2, v2, v1, v4, v7, v8, v8] 
M3=[v3, v3, v3, v2, v1, v4, v7] 

 

=7 

1    2   3    4    5    6    7 

 
Step: 

v6 v9 

v1 

v2 

v3 

v5 

v4 

v8 

v7 

2 

3 

v6 v9 

1 

O1=[v1, v4, v7, v8, v9] 
O2=[v2, v1, v4, v7, v8] 
O3=[v3, v2, v1, v4, v7] 

 

=5 

Step: 1    2    3    4    5   

 

Solution of Pebble Motion 
Problem with P={1,2,3} 

Solution of Multi-robot Path 
Planning Problem with R={1,2,3} 



2.2. Properties of the Defined Problems 
 

 Let us now summarize several basic properties of solu-
tions of problems of pebble motion on graphs and multi-
robot path planning. 
 Notice that a solution of the problem of pebble motion 
on a graph as well as a solution of the problem of multi-
robot path planning allows a pebble/robot to stay in a 
vertex for more than a single time step. It is also possible 
that a pebble/robot visits the same vertex several times 
within the solution. Notice further that both problems 
intrinsically allow parallel movements of pebbles/robots. 
That is, more than one pebble/robot can move in a single 
time step. However, multi-robot path planning allows 
higher motion parallelism due to its weaker requirements 
(the target vertex is not required to be unoccupied in the 
previous time step before it is entered by another robot – 
see figure 1). To obtain a parallelism in the problem of 
pebble motion in a graph more than one unoccupied ver-
tex is necessary. On the other hand, it is sufficient to have 
a single unoccupied vertex to obtain parallelism in the 
solution of multi-robot path planning (consider for exam-
ple robots moving around a cycle). 
 It is not difficult to observe that a solution to an in-
stance of the problem of pebble motion on a graph is also 
a solution to the corresponding multi-robot path planning 
problem. This fact is summarized in the following propo-
sition. 
 

Proposition 1 (pebble motion and multi-robot problem 
correspondence). Let us have a problem of pebble motion 
on a graph ( , )G V E , a set of pebbles 

1 2{ , , ,P p p
}p , initial and goal positions of pebbles given by func-

tions 0

PS , and 
PS   respectively. The solution of this pebble 

motion problem 
1 2

[ , , , ]p p pM M M M


  is also a solu-
tion of a problem of multi-robot path planning with the 
graph G , a set of robots R P , and initial and goal posi-
tions of robots given by functions 0 0

R PS S , and 
R PS S   

respectively. ■ 
 

 There is a variety of modifications of the defined prob-
lems. A natural additional requirement is to produce 
shortest possible solutions (that is, we require the num-
bers   or   respectively to be as small as possible). 
Unfortunately, this requirement makes the problem in-
tractable (namely NP-hard; [3]) while without the re-
quirement both problems are in the P class [2]. Neverthe-
less, we are usually concerned about the length of the 
solution in the real life situations. Taking into account the 
fact that existing fast sub-optimal methods [2], [7] gener-
ate too long solutions, we need some alternative sub-
optimal solving method that would care about the quality 
of the generated solutions. 

All the algorithms developed in the following sections 

are designed for the problem of pebble motion on a graph. 

Thanks to proposition 1, algorithms for pebble motion on 

a graph applies also for multi-robot path planning. The 

parallelism within the solution of the multi-robot path 

planning can be increased in a post-processing step using 

a method of critical path [4], [8]. 

3. A Special Case with Bi-connected Graph 
 

A special case of the problem is addressed in this paper. A 
case where the graph modeling the environment is bi-
connected and where there is only one unoccupied vertex 
is studied (that is, 1V   ). This class of problems is 
the most interesting since they are almost always solvable 
and allowing only one unoccupied vertex represents the 
most difficult setup. 

 

3.1. Graph Theoretical Preliminaries 
 

To preserve self-containment character of this paper, let 
us recall several graph theoretical notions [10] that 
represent foundations for algorithms presented further. 
 

Definition 3 (graph connectivity). An undirected graph 
( , )G V E  is connected, if 2V   and for every pair of 

distinct vertices ,u v V  there is a path connecting u  and 
v  consisting of edges from E . □ 

 

Definition 4 (graph bi-connectivity). An undirected 
graph ( , )G V E  is bi-connected, if 3V   and the graph 

( { }, {{ , }| , })G V v E u w u w V u v w v          is 
connected for every v V .  □ 

 

Bi-connected graphs have an important well known 
property which we exploit further. Each bi-connected 
graph can be constructed starting with a cycle by a se-
quence of operations of adding a loop (handle) to the 
graph [9], [10]. Adding a loop which is a sequence of 
vertices 1 2[ , , ,..., , ]lL u x x x v  to an undirected graph 

( , )G V E  where ,u v V  with u v  and ix V  for 
1,2, ,i l  ( ix  are the new vertices) means to create a 

new graph ' ( ', ')G V E ; where 1 2{ , , , }lV V x x x    
and either {{ , }}E E u v    in the case when  0l   or 
E E   1 1 2 1{{ , },{ , }, ,{ , },l lu x x x x x { , }}lx v  in the case 
when 1l  . As a preparation for the design of algorithms, 
the loop L  is assigned a cycle ( )C L  if the graph G  is 
connected. The cycle ( )C L  consists of vertices on a path 
between u  and v  in G  followed by the vertices 

1,x

2 , , lx x . Let us call the above construction sequence of a 
bi-connected graph a loop decomposition. 
 

Lemma 1 (loop decomposition) [9]. Any bi-connected 
graph ( , )G V E  can be obtained from a cycle by the 
operation of adding a loop. Moreover, the corresponding 
loop decomposition can be effectively found in the worst 
case time of  (| | | |)O V E  [9]. ■ 

 

3.2. Optimal Macros in Bi-connected Graphs 
 

We are about to exploit a certain kind of pattern data-
base [1] containing pre-calculated optimal solutions of 
sub-problems (macros). The structurally simplest almost 
always solvable sub-problem of the pebble motion prob-
lem consists of a so-called -like graph (see figure 2) 
where there is a single unoccupied vertex [7]. 
 

Definition 5 (-like graph). Let 1 2{ , , , }aA x x x , B   

1 2{ , , , }by y y , and 1 2{ , , , }cC z z z  be a finite sets (of 
vertices) where 1 2 1A B C     . A -like graph 

( , , ) ( , )G A B C V E    is an undirected graph where 



V A B C     and E  1 2 1 1 2{{ , }, ,{ , },{ , },a ax x x x y y
  

1,{ , },b by y
 

1 2 1{ , }, ,{ , },c cz z z z  1{ ,y

1},{ , }}b cz y z . □ 
 

 
Figure 2: An example of -like graph. The task is to transpose 
pebbles p1 and p3. 

 

The number of all the possible -like graphs grows po-
lynomially with respect to the number of vertices (namely 
they are 

3
( )O V ). However, the number of all the possi-

ble pebble motion problems on -like graphs grows expo-
nentially with respect to the number of vertices (they are 
proportional to the number of permutations of the set of 
vertices). Hence, a restriction on the number of problems 
whose solution will be stored in the pattern database must 
be made. We need sub-problems from that a solution to 
the general problem can be composed. The following 
cases of problems satisfy both requirements. In the fol-
lowing text, we suppose (without loss of generality) that 
the unoccupied vertex in the initial and the goal arrange-
ments of pebbles in -like graphs is the vertex 

1y . 
 

Definition 6 (transposition case). Let ( , , )G A B C  be a 
-like graph and let 

1 2{ , , , }P p p p  be a set of peb-
bles with 1V   . The pebble motion problem on a 
graph with the initial arrangement 0

PS  and the goal ar-
rangement 

PS   is called a transposition case, if there are 
pebbles ,p q P  such that p q  and 0 ( ) ( )P PS p S q , 

0 ( ) ( )P PS q S p , and 0( )( , ( ) ( ))P Pr P r p q S r S r      
(see figure 2). □ 
 

Definition 7 (3-cycle rotation case). Let ( , , )G A B C  be a 
-like graph and let 1 2{ , , , }P p p p  be a set of peb-
bles with 1V   . The pebble motion problem on a 
graph with the initial arrangement 0

PS  and the goal ar-
rangement 

PS   is called a 3-cycle rotation case, if there 
are pebbles , ,p q s P  such that p , q , s  are pair-wise 
distinct and 0 ( ) ( )P PS p S q , 0 ( ) ( )P PS q S s , 0 ( )PS s 

( )PS p , and ( )( , ,r P r p q s    0 ( ) ( ))P PS r S r . □ 
 

 Both, the number of transposition cases as well as the 
number of 3-cycle rotation cases, grows polynomially 
with respect to the number of vertices (they are 

5
( )O V  

and 
6

( )O V  respectively). Thus it is realistic to store all 
the optimal solutions (macros) of the described cases up 
to the certain size of -like graphs in the pattern database. 
 The following two lemmas summarize usefulness of 
the transposition case and 3-cycle rotation case for solv-
ing the general problem. 
 

Lemma 2 (solvability – transposition case) [11]. A trans-
position case of the pebble motion problem on a -like 
graph ( , , )G A B C  with 2 3A B    2C   is solv-
able, if and only if G  contains a cycle of the odd length. 
A solution to any problem of pebble motion on a -like 

graph ( , , ) ( , )G A B C V E    can be composed of at most 
2V   solutions to transposition cases in the same 

graph. Moreover, a sequence of transposition cases whose 
solutions are necessary for producing the overall solution 
can be determined in the worst case time of ( )O V . ■ 

 

The goal arrangement of robots 
PS   in a -like graph 

( , , ) ( , )G A B C V E    can be regarded as a permutation 
over 1V   elements with respect to the initial arrange-
ment 0

PS . 
PS   represents an even permutation with respect 

to 0

PS , if it is reachable using the even number of solu-
tions to transposition cases. Otherwise it represents an 
odd permutation. 
 

Lemma 3 (solvability – 3-cycle case) [2]. A 3-cycle rota-
tion case of the problem of pebble motion on a -like 
graph ( , , )G A B C  with 2A   3 2B C    is al-
ways solvable. A solution to any pebble motion problem 
whose goal arrangement of pebbles 

PS   represents an 
even permutation with respect to the initial arrangement 

0

PS  in a -like graph ( , , )G A B C  ( , )V E   can be com-
posed of at most 2V   solutions to 3-cycle rotation 
case in the same graph. Moreover, a sequence of 3-cycle 
rotation cases necessary for the task can be effectively 
determined in the worst case time of ( )O V . ■ 
 

 The exception of ( , , )G A B C  with 2 3A B   
2C  can be solved separately. Due to small size of this 

exception, solutions to all the problems over this graph 
can be pre-calculated into the pattern database (that is, 
solutions for all permutations of pebbles can be stored). 
 At this point, we know how to solve the general pebble 
motion problem on a -like graph by composing its solu-
tion of macros for transposition and 3-cycle case. Let us 
now further generalize the approach for all the bi-
connected graphs. 

A covering of the given bi-connected graph with -like 
sub-graphs is the first step. That is, a set of -like graphs 

1 2, , , t    such that 
1

t

i iG   is needed. Let us call 
this covering a -decomposition of the bi-connected 
graph. If such -decomposition is available, then the re-
maining question is how to move robots to their target -
like sub-graphs of the -decomposition. Goal positions of 
robots within -like sub-graphs can be then reached using 
macros from the database. The following lemmas justify 
the existence of -decomposition of the bi-connected 
graph. 
 

Lemma 4 (two disjoint paths) [10]. Let ( , )G V E  be a 
bi-connected graph and let ,u v V  be two distinct vertic-
es. There exist two vertex disjoint paths between u  and 
v . Moreover, these two path can be effectively deter-
mined in the worst case time of (| | | |)O V E . ■ 
 

Lemma 5 (-decomposition). Let ( , )G V E  be a bi-
connected graph not being a single cycle. Then there 
exists a -decomposition 1 2, , , t    ( i  is a -like 
graph for 1,2, ,i t ) such that 

1

t

i iG  .  Moreover, 
the -decomposition of the graph can be effectively found 
in (| | | |)O V E . ■ 
 

Proof. From lemma 1, we know that there exists a loop 
decomposition of the bi-connected graph G . Consider the 
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last loop 
1 2[ , , ,..., , ]lL u x x x v  of the loop decomposition. 

The graph G  without the loop L  is again a bi-connected 
graph, let us denote it G . Using lemma 4, there exist two 
vertex disjoint paths ,   connecting u  and v  in G . 
Now ( , , )G L    is a -like graph. From the induction 
supposition there exists a -decomposition of G . To-
gether with ( , , )G L    it is a -decomposition of  G . ■ 
 

4. Solving Algorithms for Bi-connected Case 
 

 Two algorithms for solving pebble motion problems on 
a bi-connected graph ( , )G V E  with a single unoccupied 
vertex ( 1V   ) are presented below. Both algorithms 
assume that a loop decomposition of the graph G  was 
constructed. That is, we have a cycle 

0C  and a sequence 
of loops 

1 2, , , tL L L  such that the graph G  can be con-
structed from 0C  by adding loops 

1 2, , , tL L L  incremen-
tally. If the graph G  contains a cycle of odd length, 

0C  is 
also supposed to be of odd length. Since the construction 
of the graph G  starts with a cycle 0C  (which is a con-
nected graph) ( )iC L  is defined for every 1,2, ,i t . 
Specially, we define 

0 0( )C C C . 
To reduce the complexity of the pseudo-code of algo-

rithms we assume the unoccupied vertex of the goal situa-
tion 

PS   to be in the cycle 
0C  (that is, (v V   

( ) ( ) )Pp P S p v   0v C  ). Overcoming this assump-
tion is discussed in the next section. 

Except the functions 0

PS  and 
PS   we further have a 

function :PS P V  expressing current positions of peb-
bles. Next, we have functions 0 : { }P V P    , 

: { }P V P    , and : { }P V P     which are 
generalized inverses of 0

PS , 
PS  , and 

PS  respectively; the 
symbol   stands for unoccupied vertex (that is, 
( ) ( ( ))P Pp P S p p    ; ( )P v   if ( ) ( )Pp P S p  
v ). Next, we assume that we have a sequence of poten-
tially infinite sequences representing the solution of the 
problem 

1 2
[ , , , ]p p pM M M


. 

 

4.1. An Algorithm Based on θ-decomposition 
 

 In this section, we describe an improvement of the 
solving algorithm from [2] (called MIT). The new algo-
rithm exploits -decomposition of the given bi-connected 
graph. The improvement consists in replacing the solving 
process of 3-cycle case that originally exploits 
3-transitivity of -like sub-graphs by the use of macros. 
The resulting algorithm is called MIT-  and it is forma-
lized below using the pseudo-code as algorithm 1. The 
solving algorithm itself is represented by the function 
MIT--Solve accompanied with several auxiliary func-
tions. The next important procedure -BOX-Solve 
represents the solving process within -like graphs using 
pre-calculated optimal macros from the pattern database. 

 The solving algorithm proceeds inductively according 
to the pre-calculated loop decomposition 1 2, , , tL L L  
(lines 2-4 of MIT--Solve). The pebbles are placed to 
their goal positions in loops starting with the last loop tL  
and continuing to the original cycle with the loop (

0C ,
1L  

-  original -like graph; lines 5-8 of MIT--Solve). Having 

a loop 
cL  of the loop decomposition, a corresponding 

-like sub-graph is considered (lemma 5; lines 1-5 of 
SolveRegular-). All the pebbles whose goal positions are 
within the loop are placed. Two cases are distinguished. If 
the pebble to be placed is already within the -like sub-
graph, then macro is used to place it to the right position 
(lines 14-19 of SolveRegular-). If the pebble is outside 
the -like sub-graph, then it must be first moved to into 
the -like sub-graph before the macro can be applied 
(lines 7-13 of SolveRegular-).  
 

 

Algorithm 1. The MIT- algorithm. The algorithm solves a 
given pebble motion problem on a bi-connected graph modeling 
the environment with a single unoccupied vertex. 
  

function MIT--Solve 0( , , )P PG S S : pair 

1: 0  ; 0

P PS S  
2: for , 1, ,2c t t   do 
3:  if | | 2cL   then 
4:   SolveRegular- ( )c  
5: let 

1 2 1[ , , , , , ]lu x x x v L  
6: let ,   be two disjoint paths between 
7:  u and v  in 

0C  
8: -BOX-Solve

1( ( , , ), , )P PG L S S     
9: return 

1 2
( ,[ , , , ])r r rM M M


  

 

procedure SolveRegular- ( )c  
1: let 1 2[ , , , , , ]l cu x x x v L  
2: lock ( )cL ; unlock ({ , })u v  
3: let ,   be two disjoint paths between u  
4:  and v  not containing locked vertices 
5: let ( , ) ( , , )cV E G L      
6: for 1,2, ,i l  do 
7:  if ( ( ))))P P iS x V

   then 
8:   lock ( )cL ; unlock ({ , })u v  
9:   MovePebble ( ( ), )P ix v  
10:  MoveUnoccupied ( )u  
11:  unlock ( )cL  
12:  

PS S

  ; ( ( )) ( ( ))P P PS v S v

       
13:  -BOX-Solve 1( ( , , ), , )PG L S S     
14: else 

15:  lock ( )cL ; unlock ({ , })u v  
16:  MoveUnoccupied ( )u  
17:  unlock ( )cL  
18:  

PS S

  ; ( ( )) ( ( ))P i P P iS x S x

       
19:  -BOX-Solve 1( ( , , ), , )PG L S S     
20: lock ( )cL ; unlock ({ , })u v  
 

procedure MoveUnoccupied ( )v  
1: let x V  such that ( )P x   and x  is not locked 
2: let 1 2[ , , , ]jx k k k u   be a shortest path between 
3:  x  and v in G  not containing locked vertices 
4: for 1,2, , 1i j   do 
5:  SwapPebblesUnoccupied 1( , )i ik k  
 

procedure MovePebble ( , )p v  
1: let 1 2[ ( ) , , , ]P jS p k k k v  be a shortest path between ( )PS p  and v  
2:   in G  not containing locked vertices 
3: for 1,2, , 1i j   do 
4:  lock ({ })ik  
5:  MoveUnoccupied 1( )ik   
6:  unlock ({ })ik  
7:  SwapPebbleUnoccupied 1( , )i ik k   
 

procedure SwapPebblesUnoccupied ( , )u v  
1: ( ( ))P PS u v  ; ( )Pp u

 
2: ( )P u  ; ( )P v p   
3: for 1,2, ,i   do 
4:  ( )ip

P im S p   
5: 1    

L1 
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procedure -BOX-Solve 0( ( , , ), , )G A B C S S  

  
1: let ( , ) ( , , )V E G A B C    
2: let 0

1 2 1
{ , , , } { | ( ) }

V
S V

      


   

3: if 2 3 2A B C      then 
4:  ApplyMacro 232 0( [ , ])table S S 

  
5: else 

6:  0S S   
7:  if G  contains an odd cycle then 

8:   for 1,2, , 2i V   do 
9:    if ( ) ( )i iS S    then 
10:    ApplyMacro ( [ ( ), ( )])

G

T i itable S S

    
11: else { G  does not contain any odd cycle} 
12:  if S

 gives an odd permutation w.r.t. S  then 

13:   fail {the problem is unsolvable} 
14:  else  { S

  gives an even permutation w.r.t. S } 
15:   for 1,2, , 2i V   do 
16:    if ( ) ( )i iS S    then 

17:      let 
1 2( ), ( ), ( ), , ( )i iv S S S S          

18:      ApplyMacro
3( [ ( ), ( ), ])
G

i itable S S v

    
procedure ApplyMacro ( )  
1: let 1 1 2 2[( , ),( , ) ,( , )]k ku v u v u v   
2: for 1,2, ,i k  do 
3:  SwapPebblesUnoccupied ( , )i iu v  
4:  ( ( ))PS u v    

 
The original cycle 

0C  with its loop 
1L  is solved solely 

using macros (lines 5-8 of MIT--Solve), since all the 
pebbles whose goal positions are within the original 
-like sub-graph are already there. 
 Without proof, let us summarize properties of the algo-
rithm. The MIT- algorithm is sound and complete. The 
worst case time complexity is of 

5
( )O V . 

 

4.2. An Algorithm Using Loop Decomposition 
 

 The second algorithm for solving pebble motion prob-
lems on bi-connected graphs is called BIBOX-. It is a 
modification of the algorithm from [6] (the original algo-
rithm is called BIBOX) where the last phase of the algo-
rithm placing the pebbles in the original cycle 0C  is re-
placed by solving process over the corresponding -like 
sub-graph based on macros. One of the main contribu-
tions of the new approach is that now only one unoccu-
pied vertex is needed while the original version of the 
algorithm requires at least two unoccupied vertices. 

For easier expressing of the algorithm we have auxiliary 
functions / ( , )next V C v , / ( , )prev V C v  that return the 
next or the previous vertex in the given cycle with respect 
to a fixed orientation of the cycle. The solving algorithm 
itself is presented here using pseudo-code as algorithm 2. 

The algorithm proceeds from the last loop to the first 
loop of the loop decomposition. This process is very simi-
lar to the corresponding process within the MIT- algo-
rithm. The main difference rests in a way how the pebbles 
are placed within a loop. Within a loop, pebbles are 
placed to their goal positions in the stack manner (that is, 
a new pebble comes at the beginning of the loop and the 
loop is rotated - stack pushes). The last rotation of the 
loop places the pebbles to their destinations. When plac-
ing a pebble within the loop it is necessary to distinguish 
between the situation when the pebble is outside the loop 
(lines 3-8 of SolveRegularCycle) and the situation when 

the pebble is already within the current loop (lines 10-29 
of SolveRegularCycle). 

Again without proof, let us summarize properties of the 
algorithm. The BIBOX- algorithm is sound and com-
plete. The worst case time complexity of the algorithm is 

4
( )O V . 

 
Algorithm 2. The BIBOX- algorithm. The algorithm solves a 
given pebble motion problem on a bi-connected graph modeling 
the environment with a single unoccupied vertex. 
  

function BIBOX--Solve 0( , , )P PG S S : pair 
1: 0  ; 0

P PS S  
2: for , 1, ,2c t t   do 
3:  if | | 2cL   then 
4:   SolveRegularCycle ( )c  
5: let 

1 2 1[ , , , , , ]lu x x x v L  
6: let ,   be two disjoint paths between 
7:  u and v  in 0C  
8: -BOX-Solve

1( ( , , ), , )P PG L S S     
9: return 

1 2
( ,[ , , , ])p p pM M M


  

 

procedure SolveRegularCycle ( )c  
1: let 1 2[ , , , , , ]l cu x x x v L  
2: for 1,2, ,i l  do 
3:  if ( ( ))P P i cS x L   then 
4:   lock ( )cL ; unlock ({ , })u v  
5:   MovePebble ( ( ), )P ix u  
6:   MoveUnoccupied ( )v  
7:   unlock ( )cL  
8:   RotateCycle+ ( ( ))cC L  
9:  else 
10:  lock ( )cL ; unlock ({ , })u v  
11:  MoveUnoccupied ( )u  
12:  unlock ( )cL  
13:  0   
14:  while ( ( )))P P iS x v   do 
15:   RotateCycle+ ( ( ))cC L  
16:   1    
17:  lock ( )cL ; unlock ({ , })u v  
18:  let ( ( ))

k

i ci c
o V L C L


    

19:  MovePebble ( ( ), )P ix o  
20:  lock ({ })o  
21:  MoveUnoccupied ( )u  
22:  unlock ( )cL  
23:  while 0   do 
24:   RotateCycle ( ( ))cC L  
25:   1    
26:  unlock ({ })o  
27:  MovePebble ( ( ), )P ix u  
28:  MoveUnoccupied ( )v  
29:  RotateCycle+ ( )cL  
30: lock ( )cL ; unlock ({ , })u v  
 

procedure RotateCycle+ ( )C  
1: let x C  such that ( )P x   and x  is not locked 
2: for 1,2, ,| |i C  do 
3:  SwapPebblesUnoccupied ( / ( , ), )prev V C x x  
4:  / ( , )x prev V C x  
 

4.3. Extensions and the Real Implementation 
 

 The presented pseudo-codes of the MIT- and the BI-
BOX- algorithms require a special assumption that the 
finally unoccupied vertex must be in the original cycle. 
To overcome this assumption we need to modify the re-
quired solution given by the function 

PS   so that unoccu-
pied vertex is moved to the original cycle along a path  . 
After solving the problem by the algorithm the unoccu-
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pied vertex is moved back along the path   which finish-
es the solution of the original unmodified problem. 
 When a pebble is moved from one vertex to another the 
shortest path between the original position and the target 
vertex is always used. Moreover, having more than one 
unoccupied vertex, the nearest unoccupied vertex to the 
place where it is needed is always used. Both heuristics 
reduces the number of moves in the solution. 
 If the required record is not in the pattern database, 
then the algorithm should switch to solving method based 
on 3-transitivity from [2]. 
 

4.4. Solving Multi-robot Path Planning Problems 
 

 Having a solving algorithm for the pebble motion prob-
lem on a graph, it is easy to solve the corresponding mul-
ti-robot path planning problem. We can just proclaim the 
solution of the pebble motion problem to be a solution of 
the corresponding multi-robot path planning problem. 
However, this may waste the potential parallelism. 
 The more sophisticated approach is to utilize the re-
laxed requirements on the solution in the multi-robot path 
planning problem to increase parallelism. The method of 
choice here is critical path [4]. An anti-symmetric rela-
tion of dependence between motions of pebbles can be 
defined. Two motions are dependent if one must precede 
the other in the solution (for example two motions of the 
same pebble are dependent). 
 More formally, a move 

1 2:q v v  with 
1 2v v  (a 

robot q
 
is moved from a vertex 

1v  to a vertex 
2v ) gener-

ated at time step 
qt  

is trivially dependent on a move 

1 2:r u u  with 
1 2u u  generated at time 

rt  where 

r qt t  if r q  or 1 2 1 2{ , } { , } 1u u v v   while 
1 2u v 

2 1u v (the second constraint is in fact a negation of 

1 2 2 1u v u v   ). The relation of dependence between 
motions is the transitive closure of the relation of trivial 
dependence. Since the (anti-symmetric) relation of trivial 
dependence induces a directed acyclic graph on the set of 
moves generated by the solving algorithm it is easy to 
calculate the corresponding transitive closure. The me-
thod of critical path can be used in this case to calculate 
earliest time step for each move when it can be executed. 
 

5. Experimental Evaluation 
 

 The presented algorithms - MIT- and BIBOX- for 
pebble motion on graph as well as its competitors - were 
implemented in C++ and an experimental evaluation was 
made. The experimental evaluation was made on a ma-
chine with Pentium 4 2.4 GHz with 512Mb of memory 
under Mandriva Linux 10.1. Source code and additional 
data for reproducing all the experiments are available at: 
http://ktiml.mff.cuni.cz/~surynek/research/ictai2009/. The 
comparison was concentrated on the length of solutions 
and on the solving runtime. The results are presented in 
figure 3 and 4. 
 The tests were made on random instances of problems 
of pebble motion on bi-connected graphs where the num-
ber of vertices ranged from 13 to 48. The number of loops 

of the loop decomposition ranged from 3 to 16. The 
length of loops of the decomposition had the random 
length with the uniform distribution in the interval of 
1 8 . All the problems had a single unoccupied vertex 
placed randomly (generally not in the original cycle). 
 

 

 
 

 

Figure 3. Solution length comparison. Six variants of solving 

algorithms are compared – BIBOX where the solving process for 

original cycle with loop is based on 3-transitivity (BIBOX 

MIT), the original MIT algorithm, MIT- where transposition 

cases are preferably used (MIT THETA 2), MIT- where 3-

cycle rotations are preferably used (MIT THETA 3), BIBOX- 

where transposition cases are preferably used (BIBOX THETA 

2), and BIBOX- where 3-cycle rotations are preferably used 

(BIBOX THETA 3). 
 

 

 
 

Figure 4. Solving runtime comparison. Six variants of solving 

algorithms are compared – see figure 3. Each problem was 

solved 1000 times to accumulate measurable time. 
 

 In all the tests, necessary optimal macros were found in 
the database (that is, the alternative method based on 3-
transitivity was not used). The results show that replace-
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ment of the method based on 3-transitivity with optimal 
macros brings significant improvement in solution length 
and solving time of both algorithms. Moreover, the expe-
riments show that all the variants of the BIBOX algorithm 
outperform the MIT algorithm significantly. It is also 
evident that the preference of 3-cycle rotation cases is 
slightly better than the preference of transposition case 
with respect to the solution length. However, notice that 
storing transposition cases in the pattern database is less 
space consuming. 
 Additional experiments were devoted to evaluation of 
parallelism reached by the method of critical path as de-
scribed above. Generally, the comparison of lengths of 
solutions is relatively the same as in figures 3 and 4  (that 
is, the algorithm BIBOX- is the best again). However, 
the absolute lengths of solutions are shorter approximate-
ly by the factor corresponding to the diameter of the 
tested graphs (which was 4 10  in the above experi-
ments; so the absolute values of lengths of solutions are 
about 4 10  lower). Space limitations do not allow us to 
present these experiments in the form of graphs. 
 

6. Related Works and Conclusions 
 

 This work is significantly influenced by [5]. The author 
presents a solving method for the multi-robot path plan-
ning based on a decomposition of the environment into 
simpler sub-graphs that are easier to tackle. This approach 
has much in common with the approach presented above. 
However, deep theoretical results gained for pebble mo-
tion on graphs (sliding box puzzles) [2], [3], and [11] are 
ignored in [5], though they are so closely related to multi-
robot path planning. 

The major aim of this paper is to fill in the gap between 
theory and practical solving of problems of pebble motion 
on graph and multi-robot path planning. We have to em-
phasize that this paper intensively builds on existing 
works while we improve aspect regarding the optimality 
of solutions. 

Let us further comment the related works. Graphical 
properties crucial for tackling the problem were identified 
in [11]. The solving methods for transposition and 3-cycle 
rotation cases were developed in [7]. The less general 
version of the BIBOX algorithm is presented in [6]. The 
variant of the algorithm in [6] requires at least two unoc-
cupied vertices in a bi-connected graph. A comparison 
with domain-independent planners and scaling evaluation 
is also given in [6]. LPG-td and SGPlan were tested 
against the BIBOX algorithm; only extremely small peb-
ble motion/multi-robot problems are solvable by domain-
independent planners. These results render the domain-
independent approach to be uncompetitive. 

Our work can be summarized as follows. A successful 
application of optimal pre-calculated macros for solving 
problems of pebble motion and multi-robot path planning 
with bi-connected environments is presented in this paper. 
One existing algorithm (MIT) was improved by the inte-
gration of macros. Another algorithm (BIBOX) was im-
proved and generalized – the new variant is called BI-

BOX- - so that is becomes the state-of-the-art algo-
rithm (it is better than existing domain-dependent algo-
rithms as well as domain independent planners) for solv-
ing the studied class of problem in terms of runtime and 
the quality of solutions. 

For future work we plan to evaluate post-processing 
techniques from [8] which are designed for improving 
solutions in term length and parallelism. 
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