

An Application of Pebble Motion on Graphs to

Abstract Multi-robot Path Planning

Pavel Surynek

Charles University in Prague, Faculty of Mathematics and Physics

Department of Theoretical Computer Science and Mathematical Logic

Malostranské náměstí 2/25, 118 00 Praha 1, The Czech Republic

pavel.surynek@mff.cuni.cz

Abstract

An abstraction of a problem of rearranging group of

mobile robots is addressed in this paper (the problem of

multi-robot path planning). The robots are moving in an

environment in which they must avoid obstacles and each

other. An abstraction where the environment is modeled

as an undirected graph is adopted throughout this work.

A case when the graph modeling the environment is bi-

connected is particularly studied. This paper puts into a

relation the well known problems of moving pebbles on

graphs (sliding box puzzles) with problems of multi-robot

path planning. Theoretical results gained for problems of

pebble motion on graphs are utilized for the development

of algorithms for multi-robot path planning. As the opti-

mization variant of both problems (a shortest solution is

required) is known to be computationally hard (NP-hard),

we concentrate on construction of sub-optimal solving

procedures. However, the quality of solution is still an

objective. Therefore a process of composition of a sub-

optimal solution of the problem (a plan) of the pre-

calculated optimal plans for the sub-problems (macros) is

suggested. The plan composition using macros was inte-

grated into two existing sub-optimal solving algorithms.

In both cases, substantial improvements of the quality of

resulting plans were achieved in comparison to the origi-

nal algorithms. The no less important result is that one of

the existing algorithms was generalized by integrating

macros for larger class of problems of multi-robot path

planning.

1. Introduction and Motivation

Consider a group of mobile robots moving in a certain

environment where each robot needs to reach a given goal

position. The robots must avoid obstacles and each other.

This work is supported by the Czech Science Foundation under

the contracts number 201/07/0205, 201/09/P318 and by the

Ministry of Education, Youth and Sports, Czech Republic under

the contract number MSM 0021620838.

An abstraction where the environment with obstacles is

modeled as an undirected graph is adopted throughout this

work. This abstraction of the task is widely known as a

problem of multi-robot path planning [5]. It ranks among

the most challenging problems of artificial intelligence [4]

and it motivates efforts of theorists as well as practicians

[5]. The main difficulty of the problem arises from the

requirement on the optimality of solutions (shortest se-

quences of moves are required) and from complex inte-

ractions among robots (spatial-temporal motion of one

robot is influenced by motion of the other robots) [3].

The primary motivations for the problem of multi-

robot path planning are tasks of moving objects within a

limited free space. These tasks include rearranging con-

tainers in storage yards, coordination of movements of a

large group of automated agents, or optimization of dense

traffic. However, this is not the only motivation. Many

tasks from virtual spaces can be also viewed as problems

of path planning for multiple robots. An example may be

data transfer with limited buffers at communication

nodes, a coordination of a group of agents in strategic

computer games, or planning movements in mass scenes

in computer-generated imagery.

In contrast to a multi-agent approach where each robot

behaves as an autonomous individual, the whole group of

robots is treated as a single entity in our approach. This

allows producing solutions of higher quality (shorter

solutions) since the centralized control can capture more

global view of the situation. Moreover, the adopted graph

abstraction allows using graph theoretical results to tackle

the problem. In particular, a similarity between the formal

definitions of the problem of multi-robot path planning as

it is discussed in [5] and the problem of pebble motion on

a graph [2] has been observed. As there is lot of theoreti-

cal results for pebble motion on graphs we tried to utilize

these results in our algorithms.

Both studied problems are computationally difficult

when the shortest possible solution is required (NP-hard)

[3]. Therefore we concentrate on developing of sub-

optimal methods. However, the quality of solutions is still

an objective. Our suggestion is to improve existing sub-

optimal methods by utilization of pre-calculated optimal

solutions of sub-problems (macros) [7] from which the

overall solution is composed. A successful attempt to

apply pre-calculated optimal macros within two existing

state-of-the-art sub-optimal algorithms [2], [6] has been

made. The resulting modified algorithms proved to be

better in terms of the length of generated solutions (short-

er solutions are preferred) as well as in terms of runtime.

Moreover, the algorithm from [6] was generalized by

integration of macros for a larger class of problems.

The main contributions of this paper consist in the fol-

lowing aspects: (i) the problem of multi-robot path plan-

ning and the problem of pebble motion on a graph are put

into relation, (ii) two existing algorithms are improved by

integration of macro utilization – one of the described

algorithms becomes state-of-the-art for certain class of

problems, and (iii) this algorithm was also extended so it

is now applicable to more general class of problems.

2. Pebble Motion on Graphs and

Multi-robot Path Planning

Consider an environment in which a group of mobile

robots is moving. Each robot starts at the given initial

position and needs to reach a given goal position. The

problem being addressed in this paper consists in finding

spatial-temporal path for each robot to reach its goal. The

robots must not collide with each other and they must

avoid obstacles in the environment.

A relatively strong abstraction is adopted in this paper.

The environment with obstacles within that the robots are

moving is modeled as an undirected graph. The vertices

of the graph represent positions in the environment and

the edges model an unblocked way from one position to

another. The time is discrete in this abstraction; it is an

infinite linearly ordered set isomorphic to the set of natu-

ral numbers where each element is called a time step.

2.1. Formal Definitions of the Problems

The following two definitions formalizes a problem of
pebble motion on a graph (also called a pebble motion
puzzle or sliding box puzzle) [2], [11] and the related
problem of multi-robot path planning [5] (both problems
and their solutions are illustrated in figure 1).

Definition 1 (problem of pebble motion on a graph). Let
us have an undirected graph (,)G V E . Next, let us have
a set of pebbles 1 2{ , , , }P p p p where V  . The
initial arrangement of the pebbles is defined by a simple
function 0 :PS P V (that is

0 0() ()P i P jS p S p for ,i j 
1,2, , with i j). The goal arrangement of the peb-
bles is defined by a simple function :PS P V  (that is

() ()P i P jS p S p  for , 1,2, ,i j  with i j). The
problem of pebble motion on a graph is a task to find a
number  and a sequence of moves represented as a
sequence of vertices 1 2[, , ,]p p p

pM m m m for every

pebble p P where p

im V for 1,2, ,i  ,
0

1 ()p

Pm S p , ()r

l Pm S p , and either
1{ , }p p

i im m E  or

1

p p

i im m  for 1,2, ,i  1  . Furthermore, sequences
of vertices

1[,p

pM m 2 , ,]p pm m and
1 2[, , ,q q

qM m m
]qm for every two pebbles p P and q P such that

p q must satisfy that
1

p q

i im m  for 1,2, ,i  1 
(the target vertex must be unoccupied) and p q

i im m for
1,2, ,i  (no other pebble can simultaneously enter

the same target vertex). □

 A problem of multi-robot path planning is a relaxation
of the problem of pebble motion on a graph. The condi-
tion that the target vertex for a moving pebble/robot must
be freed in the previous time step is relaxed. A motion of
a robot entering the target vertex that is simultaneously
left by another robot is allowed in multi-robot path plan-
ning. The problem is formalized in the following defini-
tion.

Figure 1. An illustration of problems of pebble motion on a
graph and multi-robot path planning. The task is to move
pebbles/robots from their initial positions specified by 0

PS / 0

RS to
the goal positions specified by PS  / RS  . A solution of length 7 is
shown for the problem of pebble motion on a graph and a solu-
tion of length 5 is shown for the problem of multi-robot path
planning. Notice the differences in parallelism between both
solutions – multi-robot path planning allows the higher number
of moves to be performed in parallel (in a single time step)
thanks to weaker requirements on solutions.

Definition 2 (problem of multi-robot path planning).
Again, let us have an undirected graph (,)G V E but
now instead of pebbles, a set of robots 1 2{ , , , }R r r r
where V  is given. The initial arrangement of the
robots is defined by a simple function 0 :RS R V (that is

0 0() ()R i R jS r S r for , 1,2, ,i j  with i j). The goal
arrangement of the robots is defined by a simple function

:RS R V  (that is () ()R i R jS r S r  for , 1,2, ,i j 
with i j). The problem of multi-robot path planning is
a task to find a number  and a sequence vertices

1 2[, , ,]r r r

rO o o o for every robot r R where r

io V
for 1,2, ,i  , 0

1 ()r

Ro S r , ()r

k Ro S r , and either

1{ , }r r

i io o E  or
1

r r

i io o  for 1,2, , 1i   . Further-
more, sequences of vertices 1 2[, , ,]r r r

rO o o o and

1 2[, , ,]s s s

sO o o o for every two robots r R and s R
such that r s must satisfy that r s

i io o for 1,2, ,i 
(no two robots are simultaneously entering the same tar-
get vertex). □

v1

v2

v3

v5

v4

v8

v7

1

2

3

S0
P= S0

R S+
P= S+

R

M1=[v1, v4, v7, v8, v9, v9, v9]
M2=[v2, v2, v1, v4, v7, v8, v8]
M3=[v3, v3, v3, v2, v1, v4, v7]

=7

1 2 3 4 5 6 7

Step:

v6 v9

v1

v2

v3

v5

v4

v8

v7

2

3

v6 v9

1

O1=[v1, v4, v7, v8, v9]
O2=[v2, v1, v4, v7, v8]
O3=[v3, v2, v1, v4, v7]

=5

Step: 1 2 3 4 5

Solution of Pebble Motion
Problem with P={1,2,3}

Solution of Multi-robot Path
Planning Problem with R={1,2,3}

2.2. Properties of the Defined Problems

 Let us now summarize several basic properties of solu-
tions of problems of pebble motion on graphs and multi-
robot path planning.
 Notice that a solution of the problem of pebble motion
on a graph as well as a solution of the problem of multi-
robot path planning allows a pebble/robot to stay in a
vertex for more than a single time step. It is also possible
that a pebble/robot visits the same vertex several times
within the solution. Notice further that both problems
intrinsically allow parallel movements of pebbles/robots.
That is, more than one pebble/robot can move in a single
time step. However, multi-robot path planning allows
higher motion parallelism due to its weaker requirements
(the target vertex is not required to be unoccupied in the
previous time step before it is entered by another robot –
see figure 1). To obtain a parallelism in the problem of
pebble motion in a graph more than one unoccupied ver-
tex is necessary. On the other hand, it is sufficient to have
a single unoccupied vertex to obtain parallelism in the
solution of multi-robot path planning (consider for exam-
ple robots moving around a cycle).
 It is not difficult to observe that a solution to an in-
stance of the problem of pebble motion on a graph is also
a solution to the corresponding multi-robot path planning
problem. This fact is summarized in the following propo-
sition.

Proposition 1 (pebble motion and multi-robot problem
correspondence). Let us have a problem of pebble motion
on a graph (,)G V E , a set of pebbles

1 2{ , , ,P p p
}p , initial and goal positions of pebbles given by func-

tions 0

PS , and
PS  respectively. The solution of this pebble

motion problem
1 2

[, , ,]p p pM M M M


 is also a solu-
tion of a problem of multi-robot path planning with the
graph G , a set of robots R P , and initial and goal posi-
tions of robots given by functions 0 0

R PS S , and
R PS S 

respectively. ■

 There is a variety of modifications of the defined prob-
lems. A natural additional requirement is to produce
shortest possible solutions (that is, we require the num-
bers  or  respectively to be as small as possible).
Unfortunately, this requirement makes the problem in-
tractable (namely NP-hard; [3]) while without the re-
quirement both problems are in the P class [2]. Neverthe-
less, we are usually concerned about the length of the
solution in the real life situations. Taking into account the
fact that existing fast sub-optimal methods [2], [7] gener-
ate too long solutions, we need some alternative sub-
optimal solving method that would care about the quality
of the generated solutions.

All the algorithms developed in the following sections

are designed for the problem of pebble motion on a graph.

Thanks to proposition 1, algorithms for pebble motion on

a graph applies also for multi-robot path planning. The

parallelism within the solution of the multi-robot path

planning can be increased in a post-processing step using

a method of critical path [4], [8].

3. A Special Case with Bi-connected Graph

A special case of the problem is addressed in this paper. A
case where the graph modeling the environment is bi-
connected and where there is only one unoccupied vertex
is studied (that is, 1V  ). This class of problems is
the most interesting since they are almost always solvable
and allowing only one unoccupied vertex represents the
most difficult setup.

3.1. Graph Theoretical Preliminaries

To preserve self-containment character of this paper, let
us recall several graph theoretical notions [10] that
represent foundations for algorithms presented further.

Definition 3 (graph connectivity). An undirected graph
(,)G V E is connected, if 2V  and for every pair of

distinct vertices ,u v V there is a path connecting u and
v consisting of edges from E . □

Definition 4 (graph bi-connectivity). An undirected
graph (,)G V E is bi-connected, if 3V  and the graph

({ }, {{ , }| , })G V v E u w u w V u v w v         is
connected for every v V . □

Bi-connected graphs have an important well known
property which we exploit further. Each bi-connected
graph can be constructed starting with a cycle by a se-
quence of operations of adding a loop (handle) to the
graph [9], [10]. Adding a loop which is a sequence of
vertices 1 2[, , ,..., ,]lL u x x x v to an undirected graph

(,)G V E where ,u v V with u v and ix V for
1,2, ,i l (ix are the new vertices) means to create a

new graph ' (', ')G V E ; where 1 2{ , , , }lV V x x x  
and either {{ , }}E E u v   in the case when 0l  or
E E   1 1 2 1{{ , },{ , }, ,{ , },l lu x x x x x { , }}lx v in the case
when 1l  . As a preparation for the design of algorithms,
the loop L is assigned a cycle ()C L if the graph G is
connected. The cycle ()C L consists of vertices on a path
between u and v in G followed by the vertices

1,x

2 , , lx x . Let us call the above construction sequence of a
bi-connected graph a loop decomposition.

Lemma 1 (loop decomposition) [9]. Any bi-connected
graph (,)G V E can be obtained from a cycle by the
operation of adding a loop. Moreover, the corresponding
loop decomposition can be effectively found in the worst
case time of (| | | |)O V E [9]. ■

3.2. Optimal Macros in Bi-connected Graphs

We are about to exploit a certain kind of pattern data-
base [1] containing pre-calculated optimal solutions of
sub-problems (macros). The structurally simplest almost
always solvable sub-problem of the pebble motion prob-
lem consists of a so-called -like graph (see figure 2)
where there is a single unoccupied vertex [7].

Definition 5 (-like graph). Let 1 2{ , , , }aA x x x , B 

1 2{ , , , }by y y , and 1 2{ , , , }cC z z z be a finite sets (of
vertices) where 1 2 1A B C     . A -like graph

(, ,) (,)G A B C V E   is an undirected graph where

V A B C    and E  1 2 1 1 2{{ , }, ,{ , },{ , },a ax x x x y y

1,{ , },b by y

1 2 1{ , }, ,{ , },c cz z z z 1{ ,y

1},{ , }}b cz y z . □

Figure 2: An example of -like graph. The task is to transpose
pebbles p1 and p3.

The number of all the possible -like graphs grows po-
lynomially with respect to the number of vertices (namely
they are

3
()O V). However, the number of all the possi-

ble pebble motion problems on -like graphs grows expo-
nentially with respect to the number of vertices (they are
proportional to the number of permutations of the set of
vertices). Hence, a restriction on the number of problems
whose solution will be stored in the pattern database must
be made. We need sub-problems from that a solution to
the general problem can be composed. The following
cases of problems satisfy both requirements. In the fol-
lowing text, we suppose (without loss of generality) that
the unoccupied vertex in the initial and the goal arrange-
ments of pebbles in -like graphs is the vertex

1y .

Definition 6 (transposition case). Let (, ,)G A B C be a
-like graph and let

1 2{ , , , }P p p p be a set of peb-
bles with 1V   . The pebble motion problem on a
graph with the initial arrangement 0

PS and the goal ar-
rangement

PS  is called a transposition case, if there are
pebbles ,p q P such that p q and 0 () ()P PS p S q ,

0 () ()P PS q S p , and 0()(, () ())P Pr P r p q S r S r    
(see figure 2). □

Definition 7 (3-cycle rotation case). Let (, ,)G A B C be a
-like graph and let 1 2{ , , , }P p p p be a set of peb-
bles with 1V   . The pebble motion problem on a
graph with the initial arrangement 0

PS and the goal ar-
rangement

PS  is called a 3-cycle rotation case, if there
are pebbles , ,p q s P such that p , q , s are pair-wise
distinct and 0 () ()P PS p S q , 0 () ()P PS q S s , 0 ()PS s 

()PS p , and ()(, ,r P r p q s    0 () ())P PS r S r . □

 Both, the number of transposition cases as well as the
number of 3-cycle rotation cases, grows polynomially
with respect to the number of vertices (they are

5
()O V

and
6

()O V respectively). Thus it is realistic to store all
the optimal solutions (macros) of the described cases up
to the certain size of -like graphs in the pattern database.
 The following two lemmas summarize usefulness of
the transposition case and 3-cycle rotation case for solv-
ing the general problem.

Lemma 2 (solvability – transposition case) [11]. A trans-
position case of the pebble motion problem on a -like
graph (, ,)G A B C with 2 3A B    2C  is solv-
able, if and only if G contains a cycle of the odd length.
A solution to any problem of pebble motion on a -like

graph (, ,) (,)G A B C V E   can be composed of at most
2V  solutions to transposition cases in the same

graph. Moreover, a sequence of transposition cases whose
solutions are necessary for producing the overall solution
can be determined in the worst case time of ()O V . ■

The goal arrangement of robots
PS  in a -like graph

(, ,) (,)G A B C V E   can be regarded as a permutation
over 1V  elements with respect to the initial arrange-
ment 0

PS .
PS  represents an even permutation with respect

to 0

PS , if it is reachable using the even number of solu-
tions to transposition cases. Otherwise it represents an
odd permutation.

Lemma 3 (solvability – 3-cycle case) [2]. A 3-cycle rota-
tion case of the problem of pebble motion on a -like
graph (, ,)G A B C with 2A   3 2B C   is al-
ways solvable. A solution to any pebble motion problem
whose goal arrangement of pebbles

PS  represents an
even permutation with respect to the initial arrangement

0

PS in a -like graph (, ,)G A B C  (,)V E  can be com-
posed of at most 2V  solutions to 3-cycle rotation
case in the same graph. Moreover, a sequence of 3-cycle
rotation cases necessary for the task can be effectively
determined in the worst case time of ()O V . ■

 The exception of (, ,)G A B C with 2 3A B   
2C  can be solved separately. Due to small size of this

exception, solutions to all the problems over this graph
can be pre-calculated into the pattern database (that is,
solutions for all permutations of pebbles can be stored).
 At this point, we know how to solve the general pebble
motion problem on a -like graph by composing its solu-
tion of macros for transposition and 3-cycle case. Let us
now further generalize the approach for all the bi-
connected graphs.

A covering of the given bi-connected graph with -like
sub-graphs is the first step. That is, a set of -like graphs

1 2, , , t   such that
1

t

i iG  is needed. Let us call
this covering a -decomposition of the bi-connected
graph. If such -decomposition is available, then the re-
maining question is how to move robots to their target -
like sub-graphs of the -decomposition. Goal positions of
robots within -like sub-graphs can be then reached using
macros from the database. The following lemmas justify
the existence of -decomposition of the bi-connected
graph.

Lemma 4 (two disjoint paths) [10]. Let (,)G V E be a
bi-connected graph and let ,u v V be two distinct vertic-
es. There exist two vertex disjoint paths between u and
v . Moreover, these two path can be effectively deter-
mined in the worst case time of (| | | |)O V E . ■

Lemma 5 (-decomposition). Let (,)G V E be a bi-
connected graph not being a single cycle. Then there
exists a -decomposition 1 2, , , t   (i is a -like
graph for 1,2, ,i t) such that

1

t

i iG  . Moreover,
the -decomposition of the graph can be effectively found
in (| | | |)O V E . ■

Proof. From lemma 1, we know that there exists a loop
decomposition of the bi-connected graph G . Consider the

1 1{ , },{ , },a bx y x y

x1

x2

x3

z1

z2

y1

y2

2

y3

2

S
0
P

 S
+

P

p1

p2

p3
p5

p4

p6

p7

x1

x2

x3

z1

z2

y1

y2

2

y3

2

p2

p3

p1
p5

p4

p6

p7

G({x1,x2,x3},{y1,y2,y3},{z1,z2})

last loop
1 2[, , ,..., ,]lL u x x x v of the loop decomposition.

The graph G without the loop L is again a bi-connected
graph, let us denote it G . Using lemma 4, there exist two
vertex disjoint paths ,  connecting u and v in G .
Now (, ,)G L   is a -like graph. From the induction
supposition there exists a -decomposition of G . To-
gether with (, ,)G L   it is a -decomposition of G . ■

4. Solving Algorithms for Bi-connected Case

 Two algorithms for solving pebble motion problems on
a bi-connected graph (,)G V E with a single unoccupied
vertex (1V  ) are presented below. Both algorithms
assume that a loop decomposition of the graph G was
constructed. That is, we have a cycle

0C and a sequence
of loops

1 2, , , tL L L such that the graph G can be con-
structed from 0C by adding loops

1 2, , , tL L L incremen-
tally. If the graph G contains a cycle of odd length,

0C is
also supposed to be of odd length. Since the construction
of the graph G starts with a cycle 0C (which is a con-
nected graph) ()iC L is defined for every 1,2, ,i t .
Specially, we define

0 0()C C C .
To reduce the complexity of the pseudo-code of algo-

rithms we assume the unoccupied vertex of the goal situa-
tion

PS  to be in the cycle
0C (that is, (v V 

() ())Pp P S p v   0v C ). Overcoming this assump-
tion is discussed in the next section.

Except the functions 0

PS and
PS  we further have a

function :PS P V expressing current positions of peb-
bles. Next, we have functions 0 : { }P V P    ,

: { }P V P    , and : { }P V P    which are
generalized inverses of 0

PS ,
PS  , and

PS respectively; the
symbol  stands for unoccupied vertex (that is,
() (())P Pp P S p p    ; ()P v  if () ()Pp P S p  
v). Next, we assume that we have a sequence of poten-
tially infinite sequences representing the solution of the
problem

1 2
[, , ,]p p pM M M


.

4.1. An Algorithm Based on θ-decomposition

 In this section, we describe an improvement of the
solving algorithm from [2] (called MIT). The new algo-
rithm exploits -decomposition of the given bi-connected
graph. The improvement consists in replacing the solving
process of 3-cycle case that originally exploits
3-transitivity of -like sub-graphs by the use of macros.
The resulting algorithm is called MIT- and it is forma-
lized below using the pseudo-code as algorithm 1. The
solving algorithm itself is represented by the function
MIT--Solve accompanied with several auxiliary func-
tions. The next important procedure -BOX-Solve
represents the solving process within -like graphs using
pre-calculated optimal macros from the pattern database.

 The solving algorithm proceeds inductively according
to the pre-calculated loop decomposition 1 2, , , tL L L
(lines 2-4 of MIT--Solve). The pebbles are placed to
their goal positions in loops starting with the last loop tL
and continuing to the original cycle with the loop (

0C ,
1L

- original -like graph; lines 5-8 of MIT--Solve). Having

a loop
cL of the loop decomposition, a corresponding

-like sub-graph is considered (lemma 5; lines 1-5 of
SolveRegular-). All the pebbles whose goal positions are
within the loop are placed. Two cases are distinguished. If
the pebble to be placed is already within the -like sub-
graph, then macro is used to place it to the right position
(lines 14-19 of SolveRegular-). If the pebble is outside
the -like sub-graph, then it must be first moved to into
the -like sub-graph before the macro can be applied
(lines 7-13 of SolveRegular-).

Algorithm 1. The MIT- algorithm. The algorithm solves a
given pebble motion problem on a bi-connected graph modeling
the environment with a single unoccupied vertex.

function MIT--Solve 0(, ,)P PG S S : pair

1: 0  ; 0

P PS S
2: for , 1, ,2c t t  do
3: if | | 2cL  then
4: SolveRegular- ()c
5: let

1 2 1[, , , , ,]lu x x x v L
6: let ,  be two disjoint paths between
7: u and v in

0C
8: -BOX-Solve

1((, ,), ,)P PG L S S   
9: return

1 2
(,[, , ,])r r rM M M




procedure SolveRegular- ()c
1: let 1 2[, , , , ,]l cu x x x v L
2: lock ()cL ; unlock ({ , })u v
3: let ,  be two disjoint paths between u
4: and v not containing locked vertices
5: let (,) (, ,)cV E G L    
6: for 1,2, ,i l do
7: if (())))P P iS x V

  then
8: lock ()cL ; unlock ({ , })u v
9: MovePebble ((),)P ix v
10: MoveUnoccupied ()u
11: unlock ()cL
12:

PS S

  ; (()) (())P P PS v S v

     
13: -BOX-Solve 1((, ,), ,)PG L S S   
14: else

15: lock ()cL ; unlock ({ , })u v
16: MoveUnoccupied ()u
17: unlock ()cL
18:

PS S

  ; (()) (())P i P P iS x S x

     
19: -BOX-Solve 1((, ,), ,)PG L S S   
20: lock ()cL ; unlock ({ , })u v

procedure MoveUnoccupied ()v
1: let x V such that ()P x  and x is not locked
2: let 1 2[, , ,]jx k k k u  be a shortest path between
3: x and v in G not containing locked vertices
4: for 1,2, , 1i j  do
5: SwapPebblesUnoccupied 1(,)i ik k

procedure MovePebble (,)p v
1: let 1 2[() , , ,]P jS p k k k v  be a shortest path between ()PS p and v
2: in G not containing locked vertices
3: for 1,2, , 1i j  do
4: lock ({ })ik
5: MoveUnoccupied 1()ik 
6: unlock ({ })ik
7: SwapPebbleUnoccupied 1(,)i ik k 

procedure SwapPebblesUnoccupied (,)u v
1: (())P PS u v  ; ()Pp u

2: ()P u  ; ()P v p 
3: for 1,2, ,i  do
4: ()ip

P im S p 
5: 1  

L1

Loop decomposition of a graph G

C0

C(L1)

C(L2)

L2

G=(V,E)

L1

C0

C(L1)

C(L2)

L2

v

Pebble p is moved
to v by rotating cycle C(L2), C0,
and C(L1)

L1

C0

C(L1)

C(L2)

Lc=L2

u

 v

π

ψ

Gθ(π,Lc,ψ)

L1

C0

C(L1)

C(L2)

Lc=L2

u

 v

π

ψ

Gθ(π,Lc,ψ)

p

Pebble p=P
+
(xi)

outside Gθ; move p to v

p

procedure -BOX-Solve 0((, ,), ,)G A B C S S  


1: let (,) (, ,)V E G A B C  
2: let 0

1 2 1
{ , , , } { | () }

V
S V

      


 

3: if 2 3 2A B C     then
4: ApplyMacro 232 0([,])table S S 


5: else

6: 0S S 
7: if G contains an odd cycle then

8: for 1,2, , 2i V  do
9: if () ()i iS S   then
10: ApplyMacro ([(), ()])

G

T i itable S S

  
11: else { G does not contain any odd cycle}
12: if S

 gives an odd permutation w.r.t. S then

13: fail {the problem is unsolvable}
14: else { S

 gives an even permutation w.r.t. S }
15: for 1,2, , 2i V  do
16: if () ()i iS S   then

17: let
1 2(), (), (), , ()i iv S S S S        

18: ApplyMacro
3([(), (),])
G

i itable S S v

  
procedure ApplyMacro ()
1: let 1 1 2 2[(,),(,) ,(,)]k ku v u v u v 
2: for 1,2, ,i k do
3: SwapPebblesUnoccupied (,)i iu v
4: (())PS u v  

The original cycle

0C with its loop
1L is solved solely

using macros (lines 5-8 of MIT--Solve), since all the
pebbles whose goal positions are within the original
-like sub-graph are already there.
 Without proof, let us summarize properties of the algo-
rithm. The MIT- algorithm is sound and complete. The
worst case time complexity is of

5
()O V .

4.2. An Algorithm Using Loop Decomposition

 The second algorithm for solving pebble motion prob-
lems on bi-connected graphs is called BIBOX-. It is a
modification of the algorithm from [6] (the original algo-
rithm is called BIBOX) where the last phase of the algo-
rithm placing the pebbles in the original cycle 0C is re-
placed by solving process over the corresponding -like
sub-graph based on macros. One of the main contribu-
tions of the new approach is that now only one unoccu-
pied vertex is needed while the original version of the
algorithm requires at least two unoccupied vertices.

For easier expressing of the algorithm we have auxiliary
functions / (,)next V C v , / (,)prev V C v that return the
next or the previous vertex in the given cycle with respect
to a fixed orientation of the cycle. The solving algorithm
itself is presented here using pseudo-code as algorithm 2.

The algorithm proceeds from the last loop to the first
loop of the loop decomposition. This process is very simi-
lar to the corresponding process within the MIT- algo-
rithm. The main difference rests in a way how the pebbles
are placed within a loop. Within a loop, pebbles are
placed to their goal positions in the stack manner (that is,
a new pebble comes at the beginning of the loop and the
loop is rotated - stack pushes). The last rotation of the
loop places the pebbles to their destinations. When plac-
ing a pebble within the loop it is necessary to distinguish
between the situation when the pebble is outside the loop
(lines 3-8 of SolveRegularCycle) and the situation when

the pebble is already within the current loop (lines 10-29
of SolveRegularCycle).

Again without proof, let us summarize properties of the
algorithm. The BIBOX- algorithm is sound and com-
plete. The worst case time complexity of the algorithm is

4
()O V .

Algorithm 2. The BIBOX- algorithm. The algorithm solves a
given pebble motion problem on a bi-connected graph modeling
the environment with a single unoccupied vertex.

function BIBOX--Solve 0(, ,)P PG S S : pair
1: 0  ; 0

P PS S
2: for , 1, ,2c t t  do
3: if | | 2cL  then
4: SolveRegularCycle ()c
5: let

1 2 1[, , , , ,]lu x x x v L
6: let ,  be two disjoint paths between
7: u and v in 0C
8: -BOX-Solve

1((, ,), ,)P PG L S S   
9: return

1 2
(,[, , ,])p p pM M M




procedure SolveRegularCycle ()c
1: let 1 2[, , , , ,]l cu x x x v L
2: for 1,2, ,i l do
3: if (())P P i cS x L  then
4: lock ()cL ; unlock ({ , })u v
5: MovePebble ((),)P ix u
6: MoveUnoccupied ()v
7: unlock ()cL
8: RotateCycle+ (())cC L
9: else
10: lock ()cL ; unlock ({ , })u v
11: MoveUnoccupied ()u
12: unlock ()cL
13: 0 
14: while (()))P P iS x v  do
15: RotateCycle+ (())cC L
16: 1  
17: lock ()cL ; unlock ({ , })u v
18: let (())

k

i ci c
o V L C L


  

19: MovePebble ((),)P ix o
20: lock ({ })o
21: MoveUnoccupied ()u
22: unlock ()cL
23: while 0  do
24: RotateCycle (())cC L
25: 1  
26: unlock ({ })o
27: MovePebble ((),)P ix u
28: MoveUnoccupied ()v
29: RotateCycle+ ()cL
30: lock ()cL ; unlock ({ , })u v

procedure RotateCycle+ ()C
1: let x C such that ()P x  and x is not locked
2: for 1,2, ,| |i C do
3: SwapPebblesUnoccupied (/ (,),)prev V C x x
4: / (,)x prev V C x

4.3. Extensions and the Real Implementation

 The presented pseudo-codes of the MIT- and the BI-
BOX- algorithms require a special assumption that the
finally unoccupied vertex must be in the original cycle.
To overcome this assumption we need to modify the re-
quired solution given by the function

PS  so that unoccu-
pied vertex is moved to the original cycle along a path  .
After solving the problem by the algorithm the unoccu-

Sθ
0
(i)

Sθ
+
(i)

v

G(A,B,C)
|A|=2
|B|=3
|C|=2

Sθ
0
(i)

Sθ
+
(i)

L1

C0

C(L1)

C(L2)

L2

Gθ(π,L1,ψ)

u

v

π
ψ

C0

C(L1)

C(L2)

L1

L2

bi-connected
remainder

Pebble p=P
+
(xi)

in u; rotate cycle C(L2) once

v

u

L1

C0

C(L1)

C(L2)

L2

bi-connected
remainder

p

 Pebble p=P
+
(xi)

inside L2; move p outside C(L2)

v

u

L1

C0

C(L1)

C(L2)

Lc=L2

bi-connected

remainder

Pebble p=P
+
(xi)

outside L2; move p to u

u

 v

p

p

o

pied vertex is moved back along the path  which finish-
es the solution of the original unmodified problem.
 When a pebble is moved from one vertex to another the
shortest path between the original position and the target
vertex is always used. Moreover, having more than one
unoccupied vertex, the nearest unoccupied vertex to the
place where it is needed is always used. Both heuristics
reduces the number of moves in the solution.
 If the required record is not in the pattern database,
then the algorithm should switch to solving method based
on 3-transitivity from [2].

4.4. Solving Multi-robot Path Planning Problems

 Having a solving algorithm for the pebble motion prob-
lem on a graph, it is easy to solve the corresponding mul-
ti-robot path planning problem. We can just proclaim the
solution of the pebble motion problem to be a solution of
the corresponding multi-robot path planning problem.
However, this may waste the potential parallelism.
 The more sophisticated approach is to utilize the re-
laxed requirements on the solution in the multi-robot path
planning problem to increase parallelism. The method of
choice here is critical path [4]. An anti-symmetric rela-
tion of dependence between motions of pebbles can be
defined. Two motions are dependent if one must precede
the other in the solution (for example two motions of the
same pebble are dependent).
 More formally, a move

1 2:q v v with
1 2v v (a

robot q

is moved from a vertex

1v to a vertex
2v) gener-

ated at time step
qt

is trivially dependent on a move

1 2:r u u with
1 2u u generated at time

rt where

r qt t if r q or 1 2 1 2{ , } { , } 1u u v v  while
1 2u v 

2 1u v (the second constraint is in fact a negation of

1 2 2 1u v u v  ). The relation of dependence between
motions is the transitive closure of the relation of trivial
dependence. Since the (anti-symmetric) relation of trivial
dependence induces a directed acyclic graph on the set of
moves generated by the solving algorithm it is easy to
calculate the corresponding transitive closure. The me-
thod of critical path can be used in this case to calculate
earliest time step for each move when it can be executed.

5. Experimental Evaluation

 The presented algorithms - MIT- and BIBOX- for
pebble motion on graph as well as its competitors - were
implemented in C++ and an experimental evaluation was
made. The experimental evaluation was made on a ma-
chine with Pentium 4 2.4 GHz with 512Mb of memory
under Mandriva Linux 10.1. Source code and additional
data for reproducing all the experiments are available at:
http://ktiml.mff.cuni.cz/~surynek/research/ictai2009/. The
comparison was concentrated on the length of solutions
and on the solving runtime. The results are presented in
figure 3 and 4.
 The tests were made on random instances of problems
of pebble motion on bi-connected graphs where the num-
ber of vertices ranged from 13 to 48. The number of loops

of the loop decomposition ranged from 3 to 16. The
length of loops of the decomposition had the random
length with the uniform distribution in the interval of
1 8 . All the problems had a single unoccupied vertex
placed randomly (generally not in the original cycle).

Figure 3. Solution length comparison. Six variants of solving

algorithms are compared – BIBOX where the solving process for

original cycle with loop is based on 3-transitivity (BIBOX

MIT), the original MIT algorithm, MIT- where transposition

cases are preferably used (MIT THETA 2), MIT- where 3-

cycle rotations are preferably used (MIT THETA 3), BIBOX-

where transposition cases are preferably used (BIBOX THETA

2), and BIBOX- where 3-cycle rotations are preferably used

(BIBOX THETA 3).

Figure 4. Solving runtime comparison. Six variants of solving

algorithms are compared – see figure 3. Each problem was

solved 1000 times to accumulate measurable time.

 In all the tests, necessary optimal macros were found in
the database (that is, the alternative method based on 3-
transitivity was not used). The results show that replace-

0

20000

40000

60000

80000

13 14 15 17 18 19 19 19 22 23 26 28 29 30 32 32 36 37 39 41 46

Solution Length - MIT
BIBOX MIT
MIT
MIT THETA 2
MIT THETA 3

0

2000

4000

6000

8000

13 14 15 17 18 19 19 19 22 23 26 28 29 30 32 32 36 37 39 41 46

Solution Length - BIBOX BIBOX MIT

BIBOX THETA 2

BIBOX THETA 3

0

50

100

150

13 14 15 16 17 18 19 19 22 23 26 27 29 30 32 32 37 37 39 41 46

Solving Runtime - MIT BIBOX MIT
MIT THETA 2
MIT THETA 3
MIT

0

10

20

30

13 14 15 16 17 18 19 19 22 23 26 27 29 30 32 32 37 37 39 41 46

Solving Runtime - BIBOX BIBOX MIT
BIBOX THETA 2
BIBOX THETA 3

|V|

N
u

m
b

e
r

o
f

s
te

p
s
 =

 ξ

N
u

m
b

e
r

o
f

s
te

p
s
 =

 ξ

|V|

T
im

e
 (

s
e

c
o

n
d

s
)

T
im

e
 (

s
e

c
o

n
d

s
)

|V|

|V|

http://ktiml.mff.cuni.cz/~surynek/

ment of the method based on 3-transitivity with optimal
macros brings significant improvement in solution length
and solving time of both algorithms. Moreover, the expe-
riments show that all the variants of the BIBOX algorithm
outperform the MIT algorithm significantly. It is also
evident that the preference of 3-cycle rotation cases is
slightly better than the preference of transposition case
with respect to the solution length. However, notice that
storing transposition cases in the pattern database is less
space consuming.
 Additional experiments were devoted to evaluation of
parallelism reached by the method of critical path as de-
scribed above. Generally, the comparison of lengths of
solutions is relatively the same as in figures 3 and 4 (that
is, the algorithm BIBOX- is the best again). However,
the absolute lengths of solutions are shorter approximate-
ly by the factor corresponding to the diameter of the
tested graphs (which was 4 10 in the above experi-
ments; so the absolute values of lengths of solutions are
about 4 10 lower). Space limitations do not allow us to
present these experiments in the form of graphs.

6. Related Works and Conclusions

 This work is significantly influenced by [5]. The author
presents a solving method for the multi-robot path plan-
ning based on a decomposition of the environment into
simpler sub-graphs that are easier to tackle. This approach
has much in common with the approach presented above.
However, deep theoretical results gained for pebble mo-
tion on graphs (sliding box puzzles) [2], [3], and [11] are
ignored in [5], though they are so closely related to multi-
robot path planning.

The major aim of this paper is to fill in the gap between
theory and practical solving of problems of pebble motion
on graph and multi-robot path planning. We have to em-
phasize that this paper intensively builds on existing
works while we improve aspect regarding the optimality
of solutions.

Let us further comment the related works. Graphical
properties crucial for tackling the problem were identified
in [11]. The solving methods for transposition and 3-cycle
rotation cases were developed in [7]. The less general
version of the BIBOX algorithm is presented in [6]. The
variant of the algorithm in [6] requires at least two unoc-
cupied vertices in a bi-connected graph. A comparison
with domain-independent planners and scaling evaluation
is also given in [6]. LPG-td and SGPlan were tested
against the BIBOX algorithm; only extremely small peb-
ble motion/multi-robot problems are solvable by domain-
independent planners. These results render the domain-
independent approach to be uncompetitive.

Our work can be summarized as follows. A successful
application of optimal pre-calculated macros for solving
problems of pebble motion and multi-robot path planning
with bi-connected environments is presented in this paper.
One existing algorithm (MIT) was improved by the inte-
gration of macros. Another algorithm (BIBOX) was im-
proved and generalized – the new variant is called BI-

BOX- - so that is becomes the state-of-the-art algo-
rithm (it is better than existing domain-dependent algo-
rithms as well as domain independent planners) for solv-
ing the studied class of problem in terms of runtime and
the quality of solutions.

For future work we plan to evaluate post-processing
techniques from [8] which are designed for improving
solutions in term length and parallelism.

7. References

[1] Felner, R. E. Korf, R. Meshulam, and R.C. Holte,
“Compressed Pattern Databases”, Journal of Artificial
Intelligence Research (JAIR), Volume 30, AAAI Press,
2007, pp. 213-247.

[2] D. Kornhauser, G. L. Miller, and P. G. Spirakis,
“Coordinating Pebble Motion on Graphs, the Diameter of
Permutation Groups, and Applications”, Proceedings of
the 25th Annual Symposium on Foundations of Computer
Science (FOCS 1984), IEEE Press, 1984, pp. 241-250.

[3] D. Ratner and M. K. Warmuth, “Finding a Shortest
Solution for the N×N Extension of the 15-PUZZLE Is
Intractable”, Proceedings of the 5th National Conference
on Artificial Intelligence (AAAI 1986), Morgan Kauf-
mann Publishers, 1986, pp. 168-172.

[4] S. Russell and P. Norvig, “Artificial Intelligence: A
Modern Approach (second edition)”, Prentice Hall, 2003.

[5] M. R. K. Ryan, “Graph Decomposition for Efficient
Multi-Robot Path Planning”, Proceedings of the 20th
International Joint Conference on Artificial Intelligence
(IJCAI 2007), IJCAI Conference, 2007, pp. 2003-2008.

[6] P. Surynek, “A Novel Approach to Path Planning for
Multiple Robots in Bi-connected Graphs”, Proceedings of
the 2009 IEEE International Conference on Robotics and
Automation (ICRA 2009), IEEE Press, 2009, pp. 3613-
3619.

[7] P. Surynek, “Towards Shorter Solutions for Problems
of Path Planning for Multiple Robots in -like Environ-
ments”, Proceedings of the 22nd International FLAIRS
Conference (FLAIRS 2009), AAAI Press, 2009.

[8] P. Surynek, “Making Solutions of Multi-robot Path
Planning Problems Shorter Using Weak Transpositions
and Critical Path Parallelism”, Proceedings of the 2009
International Symposium on Combinatorial Search (SoCS
2009), CA, USA, USC, http://www.search-
conference.org/index.php/Main/SOCS09, July 2009.

[9] R. E. Tarjan, “Depth-First Search and Linear Graph
Algorithms”, SIAM Journal on Computing, Volume 1 (2),
Society for Industrial and Applied Mathematics, 1972, pp.
146-160.

[10] D. B. West, “Introduction to Graph Theory, second
edition”, Prentice-Hall, 2000.

[11] R. M. Wilson, “Graph Puzzles, Homotopy, and the
Alternating Group”, Journal of Combinatorial Theory,
Ser. B 16, Elsevier, 1974, pp. 86-96.

http://www.search-conference.org/index.php/Main/SOCS09
http://www.search-conference.org/index.php/Main/SOCS09

