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Cooperative Path Finding

Pavel Surynek IJCAI 2015

• CPF

– a group of agents (robots, cars, units in RTS, ...)

– each agent has unique start and goal location

– collisions must be avoided

– environment - undirected graph
CPF Σ=(G, {a1,a2,a3}, α0, α+)
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Solving CPF by Reducing it to SAT

Pavel Surynek IJCAI 2015

• expand (copy) graph G over time
– the number of expansions n is specified

– represent arrangements of agents in time 

– encode relocation of agents through expanded 
graph as a propositional formula F(n)
• constraints to check validity of transitions between 

arrangements at time-steps

– ask SAT solver whether F(n) is solvable
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Standard Time Expansion 
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• each expansion corresponds to a time step

– placement of each agent at each time step is 
explicitly represented

• too many expansions in case of long makespan

– can be used for makespan optimal solving of CPF
CPF Σ=(G=(V,E), {a1,a2}, α0, α+)
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Reduced Time Expansion 
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• expansions correspond avoidance among 
agents

– movements of agents
are represented as
vertex disjoint paths

– few expansions for small
interaction among agents

• even if makespan is large

– can used for makespan
suboptimal CPF solving

CPF Σ=(G=(V,E), {a1,a2}, α0, α+)
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Goal Decomposition 
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• observation

– few expansions are needed if there is little 
difference between the initial and goal 
arrangement

• place agents one by one (UniROBOT)

– solve a separate CPF for single agent placement

• few expansions ⇒ small propositional formula
⇒ easy SAT

• merge solutions into an overall solution of the original 
CPF



Experimental Evaluation
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• setup

– 4-connected grid, with obstacles

– SAT-based solving with various propositional 
encodings is compared with A*-based algorithms
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optimal 5.3 8.4 11.0 11.7 12.4 12.3 - - -

WHCA* 5.6 9.3 - - - - - - -
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