

Abstract— Problems of coordinated motion of multiple enti-

ties are addressed in this paper. These problems are dealt on

the abstract level where they can be viewed as a task of con-

structing a spatial-temporal plan for a set of identical mobile

entities. The entities are moving in a certain environment and

they need to reach given goal positions starting from initial

ones. The most abstract formal representations of coordinated

motion problems are known as “pebble motion on a graph”

and “multi-robot path planning”. The existent state-of-the-art

algorithms for pebble motion and multi-robot problems were

suspected of generating solutions containing redundancies and

this hypothesis eventually confirmed. It this paper, we present

several techniques for identifying and eliminating redundancies

from solutions generated by these algorithms. An extensive

experimental evaluation was performed and it showed that the

quality of generated solutions can be improved up to the order

of magnitude. We also identify parameters characterizing in-

stances of problems where the improvement is expectable.

Keywords-multi-robot path planning; pebble motion on a

graph; redundancy elimination; parallel plans

I. INTRODUCTION, CONTEXT, AND MOTIVATION

ROBLEMS of coordinated motion of multiple identical
entities as they are introduced in [3], [6], [7], and [11]

represent a basic abstraction for many real-life and theoreti-
cal tasks. The classical task that can be abstracted as a prob-
lem of coordinated motion takes place in a certain physical
environment where identical mobile entities are moving
(typically represented by mobile robots). Each entity is given
its initial and goal position in the environment. The task is to
construct a spatial-temporal plan for all the entities such that
they can reach their goal positions following this plan while
the plan satisfies certain natural constraints. These con-
straints are constituted by a requirement that the entities
must avoid obstacles in the environment and must not col-
lide with each other.

The standard abstraction that is adopted throughout this
work uses an undirected graph to model the environment.
The vertices of this graph represent positions in the envi-

This work is supported by The Czech Science Foundation (Grantová

agentura České republiky - GAČR) under the contract number 201/09/P318
and by The Ministry of Education, Youth and Sports, Czech Republic
(Ministerstvo školství, mládeže a tělovýchovy ČR – MŠMT ČR) under the
contract number MSM 0021620838.

ronment and the edges represent an unblocked way between
two positions. An arrangement of entities in the environment
is abstracted as a uniquely invertible assignment of entities
to vertices. At least one vertex remains unoccupied in order
to make the movement of entities possible. The time is dis-
crete; it is an ordered set of time steps isomorphic to the
structure of natural numbers. A way how an arrangement of
entities can be transformed into another can slightly differ in
variants of the problem. The best known abstract formaliza-
tions of coordinated motion problems are represented by
pebble motion on a graph as defined in [3] and [11], and
multi-robot path planning as defined in [6], [7], and [8]
while the latter allows higher parallelism.

Abstract problems of coordinated motion of multiple enti-
ties on a graph are motivated by many real-life problems.
The most typical motivating example is motion planning of a
group of mobile robots that are moving in 2-dimensional

space. Generally, if there is enough free space in the envi-
ronment, algorithms based on search for shortest paths in a
graph with an eventual collision resolution can be used [1].
However, if non-trivial amount of space is occupied differ-
ent approaches must be adopted.

Many well known puzzles can be formulated as coordi-
nated motion on a graph. The best known is so called
Lloyd’s 15-puzzle and its generalizations as described in [5]
and [11]. In practice, the entities may be represented by
various mobile or movable objects – for example rearranging
containers in storage area can be interpreted as a problem of
coordinated motion where entities are represented by con-
tainers. Indeed, this approach has been used for planning
motions of automated straddle carriers in a storage area in
Patrick port facility at Port Brisbane in Queensland [6].
Although the approach suggested in [6] seems not to scale
for larger number of entities it clearly demonstrate the use-
fulness of discussed abstractions. Entities do not necessarily
need to be physical objects. Virtual spaces of computer si-
mulations and games convey many situations where motions
of certain entities must be planned. An example is a coordi-
nation of groups of units in strategic computer games [10].

It is necessary to stress that contrary to multi-agent motion
planning [2], the centralized approach is adopted in this
work. That is, the environment is fully observable for the

Redundancy Elimination in Highly Parallel Solutions

of Motion Coordination Problems

Pavel Surynek
Charles University in Prague, Faculty of Mathematics and Physics

Department of Theoretical Computer Science and Mathematical Logic
Malostranské náměstí 25, Praha, 118 00, Czech Republic

e-mail: pavel.surynek@mff.cuni.cz

P

central planning mechanism and the individual entities mere-
ly execute the submitted centrally created plan.

There exist several relatively efficient methods for solving
problems of coordinated motion on a graph. This work is
particularly targeted on solving methods described in [7],
[8]. These methods represent state-of-the-art algorithms for
the class of problems where the graph modeling the envi-
ronment is bi-connected and there are many entities placed
in the graph. More precisely, the number of entities � is
comparable to the size of the set of vertices (that is, � =
Θ(|�|)). Despite the good performance of these methods the
generated solutions are suspected of containing certain re-

dundancies. This is a hypothesis whose examination is the
main contribution of this paper. If it is the case that generat-
ed solutions contain redundancies, then a question how they
can be removed to improve the solution arises.

The task was to analyze solutions of non-trivial size which
turned out to be infeasible to be done manually. Moreover, it
is necessary to emphasize that searched redundancies were
of a priori unknown nature. Therefore a software tool
GraphRec [4] allowing visual analysis of solutions of prob-
lems of motion on a graph has been exploited for this analy-
sis. Several types of redundancies were observed using the
GraphRec software in generated solutions. The most promi-
nent three of them that we manage to formally capture are
described in this paper. Methods for automated discovering
and elimination of these three defined types of redundancies
are suggested and analyzed theoretically as well as experi-
mentally.

The top level organization of the paper has two parts.
The first part explains a specific variant of the coordinated
motion problem (section II) and the basic solving algorithm
(section III); this part merely recalls existing concepts. The
second part contains the main contribution of this work;
redundancy elimination methods are described (section IV),
and the benefit of suggested methods is justified in the expe-
rimental section (section V).

II. PEBBLE MOTION ON A GRAPH

In the rest of the paper, we restrict ourselves on the va-
riant of the entity motion coordination problem known as
pebble motion on a graph defined in [5] and [11]. The work
can be extended on multi-robot path planning using minor
modifications only.

 The task in pebble motion on a graph is given by an undi-
rected graph with an initial and a goal arrangement of peb-
bles in the vertices of this graph. Each vertex of the graph
contains at most one pebble (which represents a movable
entity) and at least one vertex remains unoccupied. The task
is to find a sequence of moves for each pebble such that all
the pebbles reach their goal vertices. A pebble can move into
a neighboring unoccupied vertex while no other pebble is
entering the target vertex at the same time. The following
definition formalizes the problem. An illustration of the
problem is shown in Fig. 1.

Definition 1 (pebble motion on a graph). Let � = (�,
)
be an undirected graph and let � = {�, , … , �} be a set of
pebbles where � < |�|. The initial arrangement of pebbles
is defined by a simple function ��

�: � ⟶ � (that is ��
�(�) ≠

��
�(�) for �, � = 1,2, … , � with � ≠ �); the goal arrangement

of pebbles is defined by another simple function ���: � ⟶ �.
A problem of pebble motion on a graph is the task to find a
number and a sequence �� = [��

�, ���, … , ��
"] where

��$: � ⟶ � is a simple function for every % = 1,2, … , . The
following constraints must hold for ��:
(i) 			�'

(= �'�, that is, pebbles finally reach their destinations.
(ii) Either ��

$() = ��
$��() or {��

$(), ��
$��()} ∈
 for

every ∈ � and % = 1,2, … , − 1.
(iii) ��

$() ≠ ��
$��() and ��

$(+) ≠ ��
$��(+) for ∀+ ∈ �

such that + ≠ must hold for every 	 ∈ � and % =
1,2, … , − 1, that is no two pebbles can enter a vertex at
the same time.

The problem described above is formally a quadruple
Π = (� = (�,
), �, ��

�, ���). □

In practice, the quality of solution matters. The typical
measures of the quality of solution are its length (the total
number of moves) and the makespan (which corresponds to
the number). These numbers are required to be small.
Unfortunately, requiring either the length of solution or its
makespan to be as small as possible makes the problem
intractable [5] (the decision variant of the problem is
NP-complete). On the other hand, if there is no requirement
on the quality, the question whether there exists a solution is
in the P class as it shown in [3] and [11].

However, methods giving evidence that the problem be-
longs to the P class described in [3] and [11] generates ex-
cessively long solutions that are unsuitable for practice when
each movement of an entity represented by a pebble costs
something. Therefore it was necessary to find a compromise
between the quality of solution and computational effort of
its construction. Methods following this compromise are
described in [7] and [8]. Solutions produced by these me-
thods were submitted for analysis into the visualization tool
in order to find if and how they can be further improved.

Fig 1. An illustration of a problem of pebble motion on a graph. The task
is to move pebbles from their initial positions specified by ��� to the goal
positions specified by ���. A solution of length 6 is shown.

S
+
P

S
0
P v1

v2

v3

v5

v4

v8

v7
1

2

3
v6 v9

v1

v2

v3

v5

v4

v8

v7

2

3

v6 v9
1

ξξξξ=6

Solution of the problem of pebble motion
on a graph with P={1,2,3}

S
0
P

v1
v2
v3

S
6
P=S

+
P

v9
v8
v7

S
1
P

v4
v2
v3

S
2
P

v7
v1
v3

S
3
P

v8
v4
v2

S
4
P

v9
v7
v1

S
5
P

v9
v8
v4

P

1
2
3

III. SOLVING COORDINATED MOTION PROBLEMS

This section is devoted to a brief recall of algorithms de-
scribed in [7] and [8]. Understanding how these algorithm
works will provide us an insight into the structure of solu-
tions produced by them. This theoretical insight founded the
hypothesis that solutions can be further improved.

The most important class of pebble motion problems is
formed by those whose graph is bi-connected which intui-
tively means that each pair of vertices is connected by two
disjoint paths.

Definition 2 (connectivity, bi-connectivity). An undi-
rected graph � = (�,
) is connected if |�| ≥ 2 and for
every pair of distinct vertices /, 0 ∈ � there exists a path
connecting / and 0 in �. An undirected graph � = (�,
) is
bi-connected if |�| ≥ 3 and for every vertex / ∈ � the
graph �2 = (� − {/},
 ∩ {{0, 4}|0, 4 ∈ � ∧ 0 ≠ / ∧ 4 ≠
/}) is connected. □

The importance of this class of problems is assessed by
the fact that they are almost always solvable. Moreover,
spatial environments in real tasks are often abstracted as two
dimensional grids which are bi-connected in most cases.

If the bi-connected graph contains at least two unoccu-

pied vertices and it is not a cycle, then every goal arrange-
ment of pebbles is reachable from every initial arrangement
[7]. If the graph contains just one unoccupied vertex which
can be without loss of generality fixed, then any arrangement
of pebbles can be regarded as a permutation with respect to
the initial arrangement.

A permutation is even if it can be composed of the even
number of transpositions; otherwise it is odd. If the goal
arrangement represents an even permutation, then the prob-
lem is always solvable. In case of an odd permutation, the
problem is solvable if and only if the graph contains a cycle
of the odd length [11].

An inductive construction of bi-connected graphs by add-
ing handles [9] is a pivotal concept in developing solving
algorithms. Let � = (�,
) be a graph, a handle with respect
to � is a sequence of vertices	6 = [/, 7�, 78, … , 79 , 0], where
/, 0 ∈ � and 7� ∉ � for � = 1,2, … , ; (it allowed that ; = 0).
The result of addition of the handle 6 to the graph � is a new
graph �2 = (�2,
2), where �2 = � ∪ {7�, 78, … , 79} and
either
2 =
 ∪ {{/, 0}} if ; = 0 or
2 =
 ∪ {{/, 7�},	
{7�, 78}, … , {79>�, 79}, {79 , 0}} if ; ≥ 1. Every bi-connected
graph � = (�,
) can be constructed from a cycle by a se-
quence of handle additions.

A. The BIBOX-θ Solving Algorithm

The BIBOX-θ algorithm [8] solves a case of the problem
of pebble motion on a graph when the graph is bi-connected
and there is single unoccupied vertex. It represents state-of-
the-art for the described class of problems in terms of speed
and quality of generated solutions. This is the main reason
why solutions produced by this algorithm are studied here.

In the first phase, a handle decomposition is found; that is,
a cycle - called initial cycle - and a sequence of handles is
determined. Without loss of generality it is required that the
unoccupied vertex within the goal arrangement of pebbles is
in the initial cycle. The algorithm then proceeds inductively
according to the handle decomposition from the last handle
to the initial cycle with the first handle.

Two properties of bi-connected graphs with at least one
unoccupied vertex are exploited while pebbles are placed
within handles: (a) every vertex can be made unoccupied
(this is even true for a connected graph), (b) every pebble
can be moved to an arbitrary vertex [8]. A handle is
processed in the following way. An orientation of the handle
is chosen first – this orientation determines ordering of ver-
tices within the handle. The first and the last vertex of the
handle are the connection points to the remainder graph.

Then pebbles starting with the pebble whose goal position
is in the second vertex of the handle are placed into the han-
dle in the stack manner. The current pebble is moved to the
last vertex of the handle.

Two cases are distinguished here. If the pebble is already
somewhere in the handle it must be moved outside first. If
the current pebble is outside the handle, then it can be moved
into the last vertex of the handle using property (b).

After placing the pebble into the last vertex of the handle,
the handle is rotated once in the direction to the first vertex.
When all the pebbles within the handle are processed the
task is to solve the problem of the same type on a smaller
graph.

Nevertheless, the stack manner of placing pebbles cannot
be applied for the initial cycle and the first handle of the
decomposition. Here the algorithm uses a database contain-
ing pre-calculated optimal solutions for transpositions and
rotation of pebbles along 3-cycles in graphs consisting of a
cycle and a handle. A solution to any solvable instance on
the initial cycle with the first handle is then composed of
solutions from such a database [8].

B. A Case with More Unoccupied Vertices

If there are exactly two unoccupied vertices in the graph
an alternative more efficient placing of pebbles in the initial
cycle and the first handle can be used [7]. If there are more

than two unoccupied vertices in the graph the approach
proposed in [8] is to fill all the remaining unoccupied vertic-
es except two with dummy pebbles. The instance is then
solved by the BIBOX-θ algorithm and the solution is post-
processed by removing movements of dummy robots out of
the solution.

This approach is however suspected of generating unne-
cessary movements for original pebbles. Notice that original
pebbles have to make quite complicated movements when a
dummy pebble is being placed into a handle. All these
movements of the original pebbles are redundant in fact
since movements of the dummy pebble will be eventually
filtered out.

IV. ELIMINATION OF REDUNDANCIES

Several types of redundancies were discovered using the
GraphRec software. A formal description of these redundan-
cies and algorithms for their elimination are provided in the
following sections. When reasoning about redundancies, it is
convenient to assume solutions to be sequential; that is, a
solution has just one movement between consecutive time
steps. Fortunately, the BIBOX-θ algorithm can produce solu-
tions in this form. A solution of this form can be viewed as a
sequence of moves.

The notation %�: /� → 0� will denote a move of a pebble
%� from a vertex /� to a vertex 0� commenced at time step �.
The move is called non-trivial if /� ≠ 0� . From the formal
point of view, the sequential solution is a sequence of
non-trivial moves Φ = [%�: /� → 0�|� = 1,2, … , − 1# (con-
sistency with Definition 1 is also assumed).

Definition 3 (inverse moves). Two consecutive moves
%�: /� → 0� and %���: /��� → 0��� with � ∈ {1,2, … , − 2}
are called inverse if %� = %���, /� = 0���, and 0� = /���. □

Observe that a pair of inverse moves can be left out of
the solution without affecting its validity - it still solves the
problem. However, elimination of an inverse pair may cause
that another pair of inverse moves arises. Hence, it is neces-
sary to remove inverse moves from the solution repeatedly
until there are any.

Algorithm 1. Elimination of inverse moves.

function Erase-Inverse-Moves (Φ): sequence
1: do
2: A ← ∅
3: let D%�: /� → 0�, %8: /8 → 08 , … , %">�: /">� → 0">�E = Φ
4: for � = 1,2, … , − 1 do
5: if %�: /� → 0� and %���: /��� → 0��� are inverse then
6: A ← A ∪ {%� : /� → 0� , %���: /��� → 0���}
7: Φ ← Φ− A
8: while A ≠ ∅
9: return Φ

The process of elimination inverse moves is expressed as
Algorithm 1. The worst case time complexity of the algo-
rithm is F(|Φ|8), space complexity is F(|Φ|).

Definition 4 (redundant moves). A sequence of moves
[%�G: /�G → 0�G|� = 1,2,… , ;], where H = [�� ∈ {1,2, … , −
2|�=1,2,…,;] is a an increasing sequence of indices, is called
redundant if |{%�G

|� = 1,2, … , ;�| = 1, /�I
= 0�J

, and for
each move %K: /K → 0K with �� < L < �9 ∧ L ∉ H it holds that
%K ≠ %�I

⇒ /�I
∉ {/K , 0K�. □

Redundant moves represents generalization of inverse
moves (a pair of inverse moves form a redundant sequence).
It is a sequence of moves which relocates a pebble into some
vertex for the second time while other pebbles do not enter
this vertex at any time step between the beginning and the

end of the sequence. Eliminating a redundant sequence of
moves preserves validity of the solution.

Again, it is necessary to remove redundant sequences re-
peatedly since its removal may cause that another redundant
sequence arises.

Algorithm 2 formalizes the process of removing redun-
dant moves in the pseudo-code. The worst case time com-
plexity is F(|Φ|N), the space complexity is F(|Φ|).

Definition 5 (long sequence). Let ��
O be a set of vertices

occupied by pebbles at time step P. A sequence of moves
[%�G: /�G → 0�G|� = 1,2,… , ;], where H = [�� ∈ {1,2, … , −
2}|� = 1,2, … , ;] is an increasing sequence of indices, is
called long if |{%�G

|� = 1,2, … , ;�| = 1 and there exists a path
Q = [R� = /�I

, R8, … , RS = 0�J
in � such that T < ;,

Q ∩ ��
�I = ∅, and for all the moves %K: /K → 0K with �� <

L < �9 ∧ L ∉ H it holds that %K ≠ %�I
⇒ {/K , 0K� ∩ Q = ∅. □

Algorithm 2. Elimination of redundant moves.

function Erase-Redundant-Moves (Φ): sequence
1: do
2: A ←Find-Redundant-Moves(Φ)
3: Φ ← Φ− A
4: while A ≠ ∅
5: return Φ

function Find-Redundant-Moves (Φ): sequence
6: let D%�: /� → 0�, … , %">�: /">� → 0">�E = Φ
7: for � = 1,2, … , − 2 do {beginning of redundant sequence}
8: for � = − 1, − 2,… , � + 1 do

{end of redundant sequence}
9: if %� = %� ∧ /� = 0� then
10: A ← ∅ {redundant sequence}
11: for V = �, � + 1,… , � do
12: if %� = %W then A ← A ∪ {%W: /W → 0W}
13: if Check-Redundant-Moves(Φ, �, �) then return A
14: return ∅

function Check-Redundant-Moves (Φ, �, �): boolean
15: let D%�: /� → 0�, … , %">�: /">� → 0">�E = Φ
16: for L = � + 1, � + 2,… , � − 1 do
17: if %K ≠ %� ∧ /� ∈ {/K, 0K} then return XY;Z[
18: return \]/[

The concept of long sequence is a generalization of re-
dundant sequence (the path Q is empty in the case of redun-
dant sequence). Intuitively, the long sequence can be re-
placed by a sequence of moves along a shorter path (cutoff
path) into which other pebbles do not enter between the
beginning and the end of the sequence. Replacing a long
sequence of moves by a sequence of moves along the path Q
again preserves validity of the solution. The replacement of
long sequences must be performed repeatedly since new
long sequences may arise.

The process of replacement is formally expressed below
as Algorithm 3. The worst case time complexity is F(|Φ|N +
Φ3�2; the space complexity is FΦ+�+
.

Algorithm 3. Replacement of long sequences.

function Replace-Long-Moves (Φ, ��: sequence
1: do
2: �A, ^� ←FindLongMoves�Φ, ��
3: Φ ← Φ* A; Φ ← Φ∪ ^
4: while �A, ^� � �∅, !#�
5: return Φ

function Find-Long-Moves �Φ, ��: pair
6: let D%�: /� → 0�, … , %">�: /">� → 0">�E � Φ
7: for � � 1,2, … , * 2 do
8: for � � * 1, * 2,… , � U 1 do
9: if %� � %� then
10: A ← ∅
11: for V � �, � U 1,… , � do
12: if %� � %W then A ← A ∪ �%W: /W → 0W�
13: Q ←Check-Long-Moves�Φ, �, �, |A|, ��
14: if Q � !# then

15: let !R�, R8, … , RS# � Q
16: ^ ← !%�: R� → R8 , … , %�: RS>� → RS#
17: return �A, ^�
18: return �∅, !#�

function Check-Long-Moves �Φ, �, �, ;, � � ��,
��: sequence
19: let D%�: /� → 0�, … , %">�: /">� → 0">�E � Φ
20: ��2,
′� ← �; �2 ← �2 * ��� ;
2 ←
2 ∩ ��/, 0�|/, 0 ∈ �′�
21: for L � � U 1, � U 2,… , � * 1 do
22: if %K � %� then
23: �2 ← �2 * �/K, 0K�;
2 ←
2 ∩ ��/, 0�|/, 0 ∈ �′�
24: let Q be a shortest path between /� and 0� in �2 � ��2,
′�
25: if Q is defined and |Q| � ; then return Q

26: return !#

Redundancies described above were discovered using the
GraphRec software. Notice that the gradual generalization
was adopted in the description. Although long sequences
subsume both less general redundancies, it is not advisable
to apply their replacement directly. It is better to apply eli-
mination of redundancies stepwise from the less general one
to more general ones. The reason for this practice is the
increasing time complexity of redundancy elimination algo-
rithms. A sequence of moves submitted to the more complex
algorithm is potentially shortened by eliminating less general
redundancies using this practice.

V. EXPERIMENTAL EVALUATION

An experimental evaluation was made with above three
suggested methods for redundancy elimination. Algorithms
1, 2, and 3 were implemented in C++ and were tested on a
set of benchmark instances of the problem of pebble motion.
Solutions found by the BIBOX-θ [8] algorithm on these
benchmark instances were submitted to redundancy elimina-
tion methods. This algorithm represents the state-of-the-art
for the tested class of the problem.

Several characteristics of redundancy elimination were
evaluated: the reduction of the total number of moves with-
in solutions, parallel makespan, average parallelism, and
runtime were measured. The implementation of redundancy

elimination algorithms almost exactly follows the pseudo-
code given in section IV.

Fig. 2. Sequential length distribution on random bi-connected graphs. A
collection of 10 graphs consisting of 90 vertices with length of handles
ranging uniformly between 2 and 8 were generated for each number of
unoccupied vertices. Minimum, maximum, average, first quartile, and
third quartile out of sequential solution lengths of random instances over
graphs from the collection are shown. The above characteristics of the
solution length distribution are shown for original solutions as well as for
solutions after removal of redundancies by the selected technique. The
average improvement of solution is shown too in the same chart. It is possi-
ble to observe that solution lengths are distributed in a relatively narrow
zone around the average length (approximately b10% of the average
length). The zone tends to narrow yet more for more sophisticated redun-
dancy elimination.

0

100

200

300

400

4 12 20 28 36 44 52 60 68 76 84

N
u

m
b

e
r

o
f

m
o

v
e

s

Sequential Length |Original| random bi-connected

Min Q1

Average Q3

Max

1

2

3

4

5

0

100

200

300

400

4 12 20 28 36 44 52 60 68 76 84

N
u

m
b

e
r

o
f

m
o

v
e

s

Sequential Length |Inverse| random bi-connected

Min Q1

Average Q3

Max Imp. avg.

1

2

3

4

5

0

100

200

300

400

4 12 20 28 36 44 52 60 68 76 84

N
u

m
b

e
r

o
f

m
o

v
e

s

Sequential Length |Independent| random bi-connected

Min Q1

Average Q3

1

2

3

4

5

0

100

200

300

400

4 12 20 28 36 44 52 60 68 76 84

N
u

m
b

e
r

o
f

m
o

v
e

s

Sequential Length |Long| random bi-connected

Min Q1

Average Q3

Max Imp. avg.

Number of unoccupied

vertices

Number of unoccupied
vertices

Number of unoccupied

vertices

Number of unoccupied vertices

Fig. 3. Solution length improvement on random bi-connected graph and

8×8 grid. The total number of moves of the original solution and improve-
ment ratio after applying redundancy elimination techniques are shown. As
the number of unoccupied vertices grows the better improvements can be
achieved. Up to 5 times smaller solutions can be obtained.

It was always the case that solution was processed by the
less general redundancy elimination before it was submitted
to more general and more sophisticated one. This measure
ensures that the more time consuming algorithms obtains
already processed solution for which there is a chance to be
significantly shorter. The complete source code to allow
reproducibility of all the experiments presented in this paper
and raw experimental data are provided at the website:
http://ktiml.mff.cuni.cz/~surynek/research/ictai2011.

Two structurally different sets of instances of the problem
of pebble motion on a graph were tested. The first set of
problems consists of randomly generated bi-connected
graphs with approximately 90 vertices. The initial and the
goal arrangement of pebbles were generated as a random
permutation. The construction of the random bi-connected
graph exploits the well known property of bi-connected
graphs that they can be constructed by starting with a cycle
followed by a gradual addition of handles to the currently
constructed graph [9]. Specifically, graphs were constructed
by adding handles of random length (uniform distribution
from interval 2. .8) to the initial cycle of length 7. Tests were

done with a collection of 10 different random bi-connected
graphs of the above setup.

The second set of testing instances consists of a grid of
the size 8 f 8 where the initial and the goal arrangement of
pebbles were again random permutations. In both cases, a
random permutation was generated by applying quadratic
number of random transpositions of pair individual pebbles
starting with the identical permutation (that is, |�|8 transpo-
sitions were applied).

Fig. 4. Parallel makespan improvement. Redundancy elimination has even
better effect on the makespan than on the size of the solution. Removal of
redundancies allows more efficient increasing of the parallelism. Up to 10
times shorter solutions can be obtained on bi-connected graphs.

The series of results presented in Fig. 2 are devoted to an
evaluation of the distribution of the total number of moves
within the solution on random bi-connected graphs. All the
three redundancy elimination methods were evaluated in this
test. The solution length is shown in the dependence on the
number of unoccupied vertices which ranged from 4 to 89.
The following characteristics calculated out of solution
lengths for instances over the mentioned collection of 10
graphs are shown for each number of unoccupied vertices:
maximum, minimum, first quartile, third quartile, and
average length. Notice that the computational cost of pro-
ducing results for the benchmarks is so high that our capaci-
ty did not allow us to produce them for larger collection than
that of size 10.

0

1000

2000

3000

4000

5000

6000

7000

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

2 6 10 14 18 22 26 30 34 38 42

N
u

m
b

e
r

o
f

m
o

v
e

s

Sequential Length | random bi-connected

Inverse

Redundant

Long

Original

0

500

1000

1500

2000

2500

1

10

45 49 53 57 61 65 69 73 77 81 85 89

N
u

m
b

e
r

o
f

m
o

v
e

s

Sequential Length | random bi-connected

Inverse

Redundant

Long

Original

0

500

1000

1500

2000

1

10

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

N
u

m
b

e
r

o
f

m
o

v
e

s

Sequential Length | grid 8x8

Inverse

Redundant

Long

Original

0

100

200

300

400

500

600

1

1,2

1,4

1,6

1,8

2

2 6 10 14 18 22 26 30 34 38 42
M

a
k

e
sp

a
n

Parallel Makespan | random bi-connected

Inverse Redundant

Long Original

0

50

100

150

200

250

300

1

10

44 52 60 68 76 84

M
a

k
e

sp
a

n

Parallel Makespan | random bi-connected

Inverse
Redundant
Long
Original

0

50

100

150

200

250

300

350

1

10

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

M
a

k
e

sp
a

n

Parallel Makespan | grid 8x8

Inverse

Redundant

Long

Original

Number of unoccupied vertices

Number of unoccupied
vertices

Number of unoccupied vertices

Number of unoccupied

vertices

Number of unoccupied
vertices

Number of unoccupied

vertices

It can be observed from results in Fig. 2 that the sequen-
tial solution lengths tend to be close to the average solution
length; more precisely they are in the zone of approximately
b10% around the average length from which it can be con-
cluded that the original BIBOX-θ and redundancy elimina-
tion techniques have a stable behavior.

To keep the results readable the remaining results are pre-
sented for a single bi-connected graph only – one of those 10
randomly generated bi-connected graphs was chosen.

The reduction of the total number of moves within the
solution depending on the increasing number of unoccupied
vertices is shown in Fig. 3. It can be observed from Fig. 3
together with Fig. 2 that up to 5 times smaller solution can
be obtained by applying redundancy elimination. The most
expensive elimination of long sequences is beneficial when
there is approximately 70% and more unoccupied vertices.

Results regarding the effect of redundancy elimination on
parallel makespan are shown in Fig. 4. These results corre-
late well with the total number of moves while the improve-
ment is slightly better for the makespan.

Fig. 5. Average parallelism (average number of mover per time step). The

redundancy elimination leads to increasing of the parallelism most signifi-
cantly when there is 50% to 90% of unoccupied vertices in the graph.

This observation is further quantified in Fig. 5. where the
dependence of the average parallelism (which is defined as
the total number of moves divided by the makespan) on the
number of unoccupied vertices is shown. It can be observed
that redundancy elimination typically leads to a slight in-
crease in the average parallelism.

Results regarding runtime on a testing machine are sum-
marized in Fig. 6. Expectably, the runtime consumed to
eliminate long sequences is highest while it is still reasona-
ble for an offline post-processing. Eliminating inverse moves
and redundant sequences is relatively cheap so they can be
used as an on-line post-processing tool.

Fig. 6. Runtime necessary for eliminating redundancies. Eliminating long
sequences is computationally the most costly (test were run on an Pentium
4, 2.4GHz, 512MB RAM, under Mandriva Linux 10.1, 32-bit edition).

The last part of the results presented in Fig. 7 is devoted to
an investigation of step parallelism – that is, the number of
moves performed simultaneously at the individual time
steps. A single random bi-connected graph used in previous
tests is presented here as well. There were 60 vertices out of
90 unoccupied. Although it is difficult to make any analysis
of such results, one aspect is quite apparent from presented
results – it can be observed that the qualitatively most signif-
icant change occurs when the elimination of redundant
moves is used (this observation has been done also on other
graphs and setups which are not presented here). On the
other hand, the change obtained by applying elimination of
inverse moves on the original solution as well as the change
obtained by eliminating long sequences of moves from the
solution which is already free of redundant moves is rela-
tively little.

It is possible to conclude that the solution can be im-
proved by up to the order of magnitude in the measured
characteristics for both types of tested graphs.

Removal of redundant sequences represents the best

trade-off between detection cost and solution improvement
according to performed experiments. Whereas eliminating
inverse moves or long sequences feature utmost situations;
the former brings almost no improvement; the latter seems to
be computationally too costly for an on-line post-processing.

0

2

4

6

8

10

12

14

2 10 18 26 34 42 50 58 66 74 82

M
o

v
e

s
p

e
r

ti
m

e
 s

te
p

Average Parallelelism | random bi-connected

Original

Inverse

Redundant

Long

0

2

4

6

8

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

M
o

v
e

s
p

e
r

ti
m

e
 s

te
p

Average Parallelelism | grid 8x8

Original

Inverse

Redundant

Long

0,01

0,1

1

10

100

1000

R
u

n
ti

m
e

 (
se

co
n

d
s)

Runtime| random bi-connected

Original Inverse

Redundant Long

0,01

0,1

1

10

100

R
u

n
ti

m
e

 (
se

co
n

d
s)

Runtime| random bi-connected

Original

Inverse

Redundant

Long

0,01

0,1

1

10

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

R
u

n
ti

m
e

 (
se

co
n

d
s)

Runtime| grid 8x8

Original Inverse

Redundant Long

Number of unoccupied
vertices

Number of unoccupied vertices

Number of unoccupied vertices

Number of unoccupied
vertices

Number of unoccupied
vertices

An expectable result is that the better improvement of so-
lutions is gained when there are more unoccupied vertices in
the input graph. Notice that definitions of redundancies are
based on the mutual non-interfering of motions of pebbles.
The more unoccupied space is available in the graph the less
interference between moves of pebbles is possible.

Fig. 7. Step parallelism on random bi-connected graph. The graph consists
of 90 vertices and 60 of them are unoccupied. The length of handles was
uniformly generated from the range 2. .10 - the same setup as in other
experiments. Number of moves in the individual time steps is shown.

VI. SUMMARY, CONCLUSIONS, AND FUTURE WORK

This work addressed the quality (makespan) of solutions
of problems of coordinated motion problems. Particularly,
solutions generated by the existing state-of-the-art algorithm
BIBOX-θ for the given class of the problem were analyzed
with respect to the presence of certain type of redundancies.
Our hypothesis was that there exist certain types redundan-

cies in generated solutions while we were not aware how do
they look like at the beginning.

A special visualization tool GraphRec was used for ana-
lyzing solutions produced by the BIBOX-θ algorithm. This
tool allowed automating two tasks that cannot be made ma-
nually – proper drawing of a graph which a given instance
consists of and visualizing moves of entities over this graph.
The tool eventually confirmed that redundancies really exist
and it was possible to propose their formal description.

Several types of redundancies were defined and me-

thods for their elimination were proposed. To justify quali-
ty of our proposal an extensive experimental evaluation of
proposed methods was performed on the number of different
problem setups. It eventually confirmed that solutions can be
improved by up to the order of magnitude using the sug-
gested methods. The secondary finding is that the better
improvement can be gained for problems with higher num-
ber of unoccupied vertices.

For future work it would interesting to revise algorithms
for generating solutions of pebble motion and related prob-
lems to not to generate redundancies that we discovered in
this work. A minor topic for future work is to develop more
efficient elimination algorithms for proposed redundancies.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, “Introduction to
Algorithms (Second edition),” MIT Press and McGraw-Hill, 2001,
ISBN 0-262-03293-7.

[2] A. Kishimoto, N. R. Sturtevant, “Optimized algorithms for multi-
agent routing,” Proceedings of the 7th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2008), Vo-
lume 3, IFAAMAS 2008, pp. 1585-1588.

[3] D. Kornhauser, G. L. Miller, P. G. Spirakis, “Coordinating Pebble
Motion on Graphs, the Diameter of Permutation Groups, and Applica-
tions,” Proceedings of the 25th Annual Symposium on Foundations of
Computer Science (FOCS 1984), IEEE Press, 1984, pp. 241-250.

[4] P. Koupý, “GraphRec - a visualization tool for entity movement on
graph,” Student project web page, http://www.koupy.net/
graphrec.php, 2011, (January 2011).

[5] D. Ratner and M. K. Warmuth, “Finding a Shortest Solution for the
N×N Extension of the 15-PUZZLE Is Intractable,” Proceedings of the
5th National Conference on Artificial Intelligence (AAAI 1986),
Morgan Kaufmann Publishers, 1986, pp. 168-172.

[6] M. R. K. Ryan, “Exploiting subgraph structure in multi-robot path
planning,” Journal of Artificial Intelligence Research (JAIR), Volume
31, (January 2008), AAAI Press, 2008, pp. 497-542.

[7] P. Surynek, “A Novel Approach to Path Planning for Multiple Robots
in Bi-connected Graphs,” Proceedings of the 2009 IEEE International
Conference on Robotics and Automation (ICRA 2009), IEEE Press,
2009, pp. 3613-3619.

[8] P. Surynek, “An Application of Pebble Motion on Graphs to Abstract
Multi-robot Path Planning,” Proceedings of the 21st International
Conference on Tools with Artificial Intelligence (ICTAI 2009), IEEE
Press, 2009, pp. 151-158.

[9] R. E. Tarjan, “Depth-First Search and Linear Graph Algorithms,”
SIAM Journal on Computing, Volume 1 (2), pp. 146-160, Society for
Industrial and Applied Mathematics, 1972.

[10] K. C. Wang and A. Botea, “Tractable Multi-Agent Path Planning on
Grid Maps,” Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI 2009), IJCAI Conference, 2009, pp.
1870-1875.

[11] R. M. Wilson, “Graph Puzzles, Homotopy, and the Alternating
Group,” Journal of Combinatorial Theory, Ser. B 16, Elsevier, 1974,
pp. 86-96.

0

4

8

12

16

20

0 16 32 48 64 80 96 112 128 144

M
o

v
e

s
p

e
r

ti
m

e
 s

te
p

Step parallelism | Original | random bi-connected

0

4

8

12

16

20

0 16 32 48 64 80 96 112 128 144

M
o

v
e

s
p

e
r

ti
m

e
 s

te
p

Step parallelism | Inverse | random bi-connected

0

4

8

12

16

20

0 16 32 48 64 80 96 112 128 144

M
o

v
e

s
p

e
r

ti
m

e
 s

te
p

Step parallelism | Redundant | random bi-connected

0

4

8

12

16

20

0 16 32 48 64 80 96 112 128 144

M
o

v
e

s
p

e
r

ti
m

e
 s

te
p

Step parallelism | Long | random bi-connected

Time step

Average parallelism = 7.096

Time step

Average parallelism = 7.569

Time step

Time step

Average parallelism = 7.306

Average parallelism = 7.235

