
 
 

 

  

Abstract— Problems of coordinated motion of multiple enti-

ties are addressed in this paper. These problems are dealt on 

the abstract level where they can be viewed as a task of con-

structing a spatial-temporal plan for a set of identical mobile 

entities. The entities are moving in a certain environment and 

they need to reach given goal positions starting from initial 

ones. The most abstract formal representations of coordinated 

motion problems are known as “pebble motion on a graph” 

and “multi-robot path planning”. The existent state-of-the-art 

algorithms for pebble motion and multi-robot problems were 

suspected of generating solutions containing redundancies and 

this hypothesis eventually confirmed. It this paper, we present 

several techniques for identifying and eliminating redundancies 

from solutions generated by these algorithms. An extensive 

experimental evaluation was performed and it showed that the 

quality of generated solutions can be improved up to the order 

of magnitude. We also identify parameters characterizing in-

stances of problems where the improvement is expectable. 

Keywords-multi-robot path planning; pebble motion on a 

graph; redundancy elimination; parallel plans 

I. INTRODUCTION, CONTEXT, AND MOTIVATION 

ROBLEMS of coordinated motion of multiple identical 
entities as they are introduced in [3], [6], [7], and [11] 

represent a basic abstraction for many real-life and theoreti-
cal tasks. The classical task that can be abstracted as a prob-
lem of coordinated motion takes place in a certain physical 
environment where identical mobile entities are moving 
(typically represented by mobile robots). Each entity is given 
its initial and goal position in the environment. The task is to 
construct a spatial-temporal plan for all the entities such that 
they can reach their goal positions following this plan while 
the plan satisfies certain natural constraints. These con-
straints are constituted by a requirement that the entities 
must avoid obstacles in the environment and must not col-
lide with each other. 

The standard abstraction that is adopted throughout this 
work uses an undirected graph to model the environment. 
The vertices of this graph represent positions in the envi-
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ronment and the edges represent an unblocked way between 
two positions. An arrangement of entities in the environment 
is abstracted as a uniquely invertible assignment of entities 
to vertices. At least one vertex remains unoccupied in order 
to make the movement of entities possible. The time is dis-
crete; it is an ordered set of time steps isomorphic to the 
structure of natural numbers. A way how an arrangement of 
entities can be transformed into another can slightly differ in 
variants of the problem. The best known abstract formaliza-
tions of coordinated motion problems are represented by 
pebble motion on a graph as defined in [3] and [11], and 
multi-robot path planning as defined in [6], [7], and [8] 
while the latter allows higher parallelism. 

Abstract problems of coordinated motion of multiple enti-
ties on a graph are motivated by many real-life problems. 
The most typical motivating example is motion planning of a 
group of mobile robots that are moving in 2-dimensional 

space. Generally, if there is enough free space in the envi-
ronment, algorithms based on search for shortest paths in a 
graph with an eventual collision resolution can be used [1]. 
However, if non-trivial amount of space is occupied differ-
ent approaches must be adopted. 

Many well known puzzles can be formulated as coordi-
nated motion on a graph. The best known is so called 
Lloyd’s 15-puzzle and its generalizations as described in [5] 
and [11]. In practice, the entities may be represented by 
various mobile or movable objects – for example rearranging 
containers in storage area can be interpreted as a problem of 
coordinated motion where entities are represented by con-
tainers. Indeed, this approach has been used for planning 
motions of automated straddle carriers in a storage area in 
Patrick port facility at Port Brisbane in Queensland [6]. 
Although the approach suggested in [6] seems not to scale 
for larger number of entities it clearly demonstrate the use-
fulness of discussed abstractions. Entities do not necessarily 
need to be physical objects. Virtual spaces of computer si-
mulations and games convey many situations where motions 
of certain entities must be planned. An example is a coordi-
nation of groups of units in strategic computer games [10]. 

It is necessary to stress that contrary to multi-agent motion 
planning [2], the centralized approach is adopted in this 
work. That is, the environment is fully observable for the 
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central planning mechanism and the individual entities mere-
ly execute the submitted centrally created plan. 

There exist several relatively efficient methods for solving 
problems of coordinated motion on a graph. This work is 
particularly targeted on solving methods described in [7], 
[8]. These methods represent state-of-the-art algorithms for 
the class of problems where the graph modeling the envi-
ronment is bi-connected and there are many entities placed 
in the graph. More precisely, the number of entities � is 
comparable to the size of the set of vertices (that is, � =
Θ(|�|)). Despite the good performance of these methods the 
generated solutions are suspected of containing certain re-

dundancies. This is a hypothesis whose examination is the 
main contribution of this paper. If it is the case that generat-
ed solutions contain redundancies, then a question how they 
can be removed to improve the solution arises. 

The task was to analyze solutions of non-trivial size which 
turned out to be infeasible to be done manually. Moreover, it 
is necessary to emphasize that searched redundancies were 
of a priori unknown nature. Therefore a software tool 
GraphRec [4] allowing visual analysis of solutions of prob-
lems of motion on a graph has been exploited for this analy-
sis. Several types of redundancies were observed using the 
GraphRec software in generated solutions. The most promi-
nent three of them that we manage to formally capture are 
described in this paper. Methods for automated discovering 
and elimination of these three defined types of redundancies 
are suggested and analyzed theoretically as well as experi-
mentally. 

The top level organization of the paper has two parts. 
The first part explains a specific variant of the coordinated 
motion problem (section II) and the basic solving algorithm 
(section III); this part merely recalls existing concepts. The 
second part contains the main contribution of this work; 
redundancy elimination methods are described (section IV), 
and the benefit of suggested methods is justified in the expe-
rimental section (section V). 

II. PEBBLE MOTION ON A GRAPH 

In the rest of the paper, we restrict ourselves on the va-
riant of the entity motion coordination problem known as 
pebble motion on a graph defined in [5] and [11]. The work 
can be extended on multi-robot path planning using minor 
modifications only. 

 The task in pebble motion on a graph is given by an undi-
rected graph with an initial and a goal arrangement of peb-
bles in the vertices of this graph. Each vertex of the graph 
contains at most one pebble (which represents a movable 
entity) and at least one vertex remains unoccupied. The task 
is to find a sequence of moves for each pebble such that all 
the pebbles reach their goal vertices. A pebble can move into 
a neighboring unoccupied vertex while no other pebble is 
entering the target vertex at the same time. The following 
definition formalizes the problem. An illustration of the 
problem is shown in Fig. 1. 

Definition 1 (pebble motion on a graph). Let � = (�, 
) 
be an undirected graph and let � = {�, , … , �} be a set of 
pebbles where � < |�|. The initial arrangement of pebbles 
is defined by a simple function ��

�: � ⟶ � (that is ��
�(�) ≠

��
�(�) for �, � = 1,2, … , � with � ≠ �); the goal arrangement 

of pebbles is defined by another simple function ���: � ⟶ �. 
A problem of pebble motion on a graph is the task to find a 
number   and a sequence �� = [��

�, ���, … , ��
"] where 

��$: � ⟶ � is a simple function for every % = 1,2, … ,  . The 
following constraints must hold for ��: 
(i) 			�'

( = �'�, that is, pebbles finally reach their destinations. 
(ii) Either ��

$() = ��
$��() or {��

$(), ��
$��()} ∈ 
 for 

every  ∈ � and % = 1,2, … ,  − 1. 
(iii) ��

$() ≠ ��
$��() and  ��

$(+) ≠ ��
$��(+) for ∀+ ∈ � 

such that + ≠  must hold for every 	 ∈ � and % =
1,2, … ,  − 1, that is no two pebbles can enter a vertex at 
the same time. 

The problem described above is formally a quadruple 
Π = (� = (�, 
), �, ��

�, ���). □ 

In practice, the quality of solution matters. The typical 
measures of the quality of solution are its length (the total 
number of moves) and the makespan (which corresponds to 
the number  ). These numbers are required to be small. 
Unfortunately, requiring either the length of solution or its 
makespan to be as small as possible makes the problem 
intractable [5] (the decision variant of the problem is 
NP-complete). On the other hand, if there is no requirement 
on the quality, the question whether there exists a solution is 
in the P class as it shown in [3] and [11]. 

However, methods giving evidence that the problem be-
longs to the P class described in [3] and [11] generates ex-
cessively long solutions that are unsuitable for practice when 
each movement of an entity represented by a pebble costs 
something. Therefore it was necessary to find a compromise 
between the quality of solution and computational effort of 
its construction. Methods following this compromise are 
described in [7] and [8]. Solutions produced by these me-
thods were submitted for analysis into the visualization tool 
in order to find if and how they can be further improved. 

 

Fig 1.  An illustration of a problem of pebble motion on a graph. The task 
is to move pebbles from their initial positions specified by ��� to the goal 
positions specified by ���. A solution of length 6 is shown. 
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III. SOLVING COORDINATED MOTION PROBLEMS 

This section is devoted to a brief recall of algorithms de-
scribed in [7] and [8]. Understanding how these algorithm 
works will provide us an insight into the structure of solu-
tions produced by them. This theoretical insight founded the 
hypothesis that solutions can be further improved. 

The most important class of pebble motion problems is 
formed by those whose graph is bi-connected which intui-
tively means that each pair of vertices is connected by two 
disjoint paths. 

Definition 2 (connectivity, bi-connectivity). An undi-
rected graph � = (�, 
) is connected if |�| ≥ 2 and for 
every pair of distinct vertices /, 0 ∈ � there exists a path 
connecting / and 0 in �. An undirected graph � = (�, 
) is 
bi-connected if |�| ≥ 3 and for every vertex / ∈ � the 
graph �2 = (� − {/}, 
 ∩ {{0, 4}|0, 4 ∈ � ∧ 0 ≠ / ∧ 4 ≠ 
/}) is connected. □ 

The importance of this class of problems is assessed by 
the fact that they are almost always solvable. Moreover, 
spatial environments in real tasks are often abstracted as two 
dimensional grids which are bi-connected in most cases. 

If the bi-connected graph contains at least two unoccu-

pied vertices and it is not a cycle, then every goal arrange-
ment of pebbles is reachable from every initial arrangement 
[7]. If the graph contains just one unoccupied vertex which 
can be without loss of generality fixed, then any arrangement 
of pebbles can be regarded as a permutation with respect to 
the initial arrangement. 

A permutation is even if it can be composed of the even 
number of transpositions; otherwise it is odd. If the goal 
arrangement represents an even permutation, then the prob-
lem is always solvable. In case of an odd permutation, the 
problem is solvable if and only if the graph contains a cycle 
of the odd length [11]. 

An inductive construction of bi-connected graphs by add-
ing handles [9] is a pivotal concept in developing solving 
algorithms. Let � = (�, 
) be a graph, a handle with respect 
to � is a sequence of vertices	6 = [/, 7�, 78, … , 79 , 0], where 
/, 0 ∈ � and 7� ∉ � for � = 1,2, … , ; (it allowed that ; = 0). 
The result of addition of the handle 6 to the graph � is a new 
graph �2 = (�2, 
2), where �2 = � ∪ {7�, 78, … , 79} and 
either 
2 = 
 ∪ {{/, 0}} if ; = 0 or 
2 = 
 ∪ {{/, 7�},	 
{7�, 78}, … , {79>�, 79}, {79 , 0}} if ; ≥ 1. Every bi-connected 
graph � = (�, 
) can be constructed from a cycle by a se-
quence of handle additions. 

A. The BIBOX-θ Solving Algorithm 

The BIBOX-θ algorithm [8] solves a case of the problem 
of pebble motion on a graph when the graph is bi-connected 
and there is single unoccupied vertex. It represents state-of-
the-art for the described class of problems in terms of speed 
and quality of generated solutions. This is the main reason 
why solutions produced by this algorithm are studied here. 

In the first phase, a handle decomposition is found; that is, 
a cycle - called initial cycle - and a sequence of handles is 
determined. Without loss of generality it is required that the 
unoccupied vertex within the goal arrangement of pebbles is 
in the initial cycle. The algorithm then proceeds inductively 
according to the handle decomposition from the last handle 
to the initial cycle with the first handle. 

Two properties of bi-connected graphs with at least one 
unoccupied vertex are exploited while pebbles are placed 
within handles: (a) every vertex can be made unoccupied 
(this is even true for a connected graph), (b) every pebble 
can be moved to an arbitrary vertex [8]. A handle is 
processed in the following way. An orientation of the handle 
is chosen first – this orientation determines ordering of ver-
tices within the handle. The first and the last vertex of the 
handle are the connection points to the remainder graph. 

Then pebbles starting with the pebble whose goal position 
is in the second vertex of the handle are placed into the han-
dle in the stack manner. The current pebble is moved to the 
last vertex of the handle. 

Two cases are distinguished here. If the pebble is already 
somewhere in the handle it must be moved outside first. If 
the current pebble is outside the handle, then it can be moved 
into the last vertex of the handle using property (b). 

After placing the pebble into the last vertex of the handle, 
the handle is rotated once in the direction to the first vertex. 
When all the pebbles within the handle are processed the 
task is to solve the problem of the same type on a smaller 
graph. 

Nevertheless, the stack manner of placing pebbles cannot 
be applied for the initial cycle and the first handle of the 
decomposition. Here the algorithm uses a database contain-
ing pre-calculated optimal solutions for transpositions and 
rotation of pebbles along 3-cycles in graphs consisting of a 
cycle and a handle. A solution to any solvable instance on 
the initial cycle with the first handle is then composed of 
solutions from such a database [8].  

B. A Case with More Unoccupied Vertices 

If there are exactly two unoccupied vertices in the graph 
an alternative more efficient placing of pebbles in the initial 
cycle and the first handle can be used [7]. If there are more 

than two unoccupied vertices in the graph the approach 
proposed in [8] is to fill all the remaining unoccupied vertic-
es except two with dummy pebbles. The instance is then 
solved by the BIBOX-θ algorithm and the solution is post-
processed by removing movements of dummy robots out of 
the solution. 

This approach is however suspected of generating unne-
cessary movements for original pebbles. Notice that original 
pebbles have to make quite complicated movements when a 
dummy pebble is being placed into a handle. All these 
movements of the original pebbles are redundant in fact 
since movements of the dummy pebble will be eventually 
filtered out. 



 
 

 

IV. ELIMINATION OF REDUNDANCIES 

Several types of redundancies were discovered using the 
GraphRec software. A formal description of these redundan-
cies and algorithms for their elimination are provided in the 
following sections. When reasoning about redundancies, it is 
convenient to assume solutions to be sequential; that is, a 
solution has just one movement between consecutive time 
steps. Fortunately, the BIBOX-θ algorithm can produce solu-
tions in this form. A solution of this form can be viewed as a 
sequence of moves. 

The notation %�: /� → 0�  will denote a move of a pebble 
%�  from a vertex /�  to a vertex 0�  commenced at time step �. 
The move is called non-trivial if /� ≠ 0� . From the formal 
point of view, the sequential solution is a sequence of 
non-trivial moves Φ = [%�: /� → 0�|� = 1,2, … ,  − 1# (con-
sistency with Definition 1 is also assumed). 

Definition 3 (inverse moves). Two consecutive moves 
%�: /� → 0� and %���: /��� → 0��� with � ∈ {1,2, … ,  − 2} 
are called inverse if %� = %���, /� = 0���, and 0� = /���. □ 

Observe that a pair of inverse moves can be left out of 
the solution without affecting its validity - it still solves the 
problem. However, elimination of an inverse pair may cause 
that another pair of inverse moves arises. Hence, it is neces-
sary to remove inverse moves from the solution repeatedly 
until there are any. 

Algorithm 1. Elimination of inverse moves. 

function Erase-Inverse-Moves (Φ): sequence 
1: do 
2:  A ← ∅ 
3:  let D%�: /� → 0�, %8: /8 → 08 , … , %">�: /">� → 0">�E = Φ 
4:  for � = 1,2, … ,  − 1 do 
5:   if %�: /� → 0� and %���: /��� → 0��� are inverse then 
6:    A ← A ∪ {%� : /� → 0� , %���: /��� → 0���} 
7:  Φ ← Φ− A 
8: while A ≠ ∅ 
9: return Φ 

 

The process of elimination inverse moves is expressed as 
Algorithm 1. The worst case time complexity of the algo-
rithm is F(|Φ|8), space complexity is F(|Φ|). 

Definition 4 (redundant moves). A sequence of moves 
[%�G: /�G → 0�G|� = 1,2,… , ;], where H = [�� ∈ {1,2, … ,  −
2|�=1,2,…,;] is a an increasing sequence of indices, is called 
redundant if |{%�G

|� = 1,2, … , ;�| = 1, /�I
= 0�J

, and for 
each move %K: /K → 0K with �� < L < �9 ∧ L ∉ H it holds that 
%K ≠ %�I

⇒ /�I
∉ {/K , 0K�. □ 

Redundant moves represents generalization of inverse 
moves (a pair of inverse moves form a redundant sequence). 
It is a sequence of moves which relocates a pebble into some 
vertex for the second time while other pebbles do not enter 
this vertex at any time step between the beginning and the 

end of the sequence. Eliminating a redundant sequence of 
moves preserves validity of the solution. 

Again, it is necessary to remove redundant sequences re-
peatedly since its removal may cause that another redundant 
sequence arises. 

Algorithm 2 formalizes the process of removing redun-
dant moves in the pseudo-code. The worst case time com-
plexity is F(|Φ|N), the space complexity is F(|Φ|). 

Definition 5 (long sequence). Let ��
O  be a set of vertices 

occupied by pebbles at time step P. A sequence of moves 
[%�G: /�G → 0�G|� = 1,2,… , ;], where H = [�� ∈ {1,2, … ,  −
2}|� = 1,2, … , ;] is an increasing sequence of indices, is 
called long if |{%�G

|� = 1,2, … , ;�| = 1 and there exists a path 
Q = [R� = /�I

, R8, … , RS = 0�J
# in � such that T < ;, 

Q ∩ ��
�I = ∅, and for all the moves %K: /K → 0K with �� <

L < �9 ∧ L ∉ H it holds that %K ≠ %�I
⇒ {/K , 0K� ∩ Q = ∅. □ 

Algorithm 2. Elimination of redundant moves. 

function Erase-Redundant-Moves (Φ): sequence 
1: do 
2:  A ←Find-Redundant-Moves(Φ) 
3:  Φ ← Φ− A 
4: while A ≠ ∅ 
5: return Φ 
 
function Find-Redundant-Moves (Φ): sequence 
6: let D%�: /� → 0�, … , %">�: /">� → 0">�E = Φ 
7: for � = 1,2, … ,  − 2 do {beginning of redundant sequence} 
8:  for � =  − 1,  − 2,… , � + 1 do 

{end of redundant sequence} 
9:   if %� = %� ∧ /� = 0� then 
10:   A ← ∅ {redundant sequence} 
11:   for V = �, � + 1,… , � do 
12:    if  %� = %W then A ← A ∪ {%W: /W → 0W} 
13:   if Check-Redundant-Moves(Φ, �, �) then return A 
14: return ∅ 
 

function Check-Redundant-Moves (Φ, �, �): boolean 
15: let D%�: /� → 0�, … , %">�: /">� → 0">�E = Φ 
16: for L = � + 1, � + 2,… , � − 1 do 
17:  if %K ≠ %� ∧ /� ∈ {/K, 0K} then return XY;Z[  
18: return \]/[ 

 

The concept of long sequence is a generalization of re-
dundant sequence (the path Q is empty in the case of redun-
dant sequence). Intuitively, the long sequence can be re-
placed by a sequence of moves along a shorter path (cutoff 
path) into which other pebbles do not enter between the 
beginning and the end of the sequence. Replacing a long 
sequence of moves by a sequence of moves along the path Q 
again preserves validity of the solution. The replacement of 
long sequences must be performed repeatedly since new 
long sequences may arise. 

The process of replacement is formally expressed below 
as Algorithm 3. The worst case time complexity is F(|Φ|N +
Φ3�2; the space complexity is FΦ+�+
. 

 



 
 

 

Algorithm 3. Replacement of long sequences. 

function Replace-Long-Moves (Φ, ��: sequence 
1: do 
2:  �A, ^� ←FindLongMoves�Φ, �� 
3:  Φ ← Φ* A; Φ ← Φ∪ ^ 
4: while �A, ^� � �∅, !#� 
5: return Φ 
 
function Find-Long-Moves �Φ, ��: pair 
6: let D%�: /� → 0�, … , %">�: /">� → 0">�E � Φ 
7: for � � 1,2, … ,  * 2 do 
8:  for � �  * 1,  * 2,… , � U 1 do 
9:   if %� � %� then 
10:   A ← ∅ 
11:   for V � �, � U 1,… , � do 
12:    if  %� � %W then A ← A ∪ �%W: /W → 0W� 
13:   Q ←Check-Long-Moves�Φ, �, �, |A|, �� 
14:   if Q � !# then 

15:    let !R�, R8, … , RS# � Q 
16:    ^ ← !%�: R� → R8 , … , %�: RS>� → RS# 
17:     return �A, ^� 
18: return �∅, !#� 
 

function Check-Long-Moves �Φ, �, �, ;, � � ��, 
��: sequence 
19: let D%�: /� → 0�, … , %">�: /">� → 0">�E � Φ 
20: ��2, 
′� ← �; �2 ← �2 * ��� ; 
2 ← 
2 ∩ ��/, 0�|/, 0 ∈ �′� 
21: for L � � U 1, � U 2,… , � * 1 do 
22:  if %K � %� then 
23:   �2 ← �2 * �/K, 0K�; 
2 ← 
2 ∩ ��/, 0�|/, 0 ∈ �′� 
24: let Q be a shortest path between /� and 0�  in �2 � ��2, 
′� 
25: if Q is defined and |Q| � ; then return Q 

26: return !# 
 

Redundancies described above were discovered using the 
GraphRec software. Notice that the gradual generalization 
was adopted in the description. Although long sequences 
subsume both less general redundancies, it is not advisable 
to apply their replacement directly. It is better to apply eli-
mination of redundancies stepwise from the less general one 
to more general ones. The reason for this practice is the 
increasing time complexity of redundancy elimination algo-
rithms. A sequence of moves submitted to the more complex 
algorithm is potentially shortened by eliminating less general 
redundancies using this practice. 

V. EXPERIMENTAL EVALUATION 

An experimental evaluation was made with above three 
suggested methods for redundancy elimination. Algorithms 
1, 2, and 3 were implemented in C++ and were tested on a 
set of benchmark instances of the problem of pebble motion. 
Solutions found by the BIBOX-θ [8] algorithm on these 
benchmark instances were submitted to redundancy elimina-
tion methods. This algorithm represents the state-of-the-art 
for the tested class of the problem. 

Several characteristics of redundancy elimination were 
evaluated: the reduction of the total number of moves with-
in solutions, parallel makespan, average parallelism, and 
runtime were measured. The implementation of redundancy 

elimination algorithms almost exactly follows the pseudo-
code given in section IV. 

 

 

 

 

Fig. 2. Sequential length distribution on random bi-connected graphs. A 
collection of 10 graphs consisting of 90 vertices with length of handles 
ranging uniformly between 2 and 8 were generated for each number of 
unoccupied vertices. Minimum, maximum, average, first quartile, and 
third quartile out of sequential solution lengths of random instances over 
graphs from the collection are shown. The above characteristics of the 
solution length distribution are shown for original solutions as well as for 
solutions after removal of redundancies by the selected technique. The 
average improvement of solution is shown too in the same chart. It is possi-
ble to observe that solution lengths are distributed in a relatively narrow 
zone around the average length (approximately b10% of the average 
length). The zone tends to narrow yet more for more sophisticated redun-
dancy elimination.  
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Fig. 3. Solution length improvement on random bi-connected graph and 

8×8 grid. The total number of moves of the original solution and improve-
ment ratio after applying redundancy elimination techniques are shown. As 
the number of unoccupied vertices grows the better improvements can be 
achieved. Up to 5 times smaller solutions can be obtained. 

It was always the case that solution was processed by the 
less general redundancy elimination before it was submitted 
to more general and more sophisticated one. This measure 
ensures that the more time consuming algorithms obtains 
already processed solution for which there is a chance to be 
significantly shorter. The complete source code to allow 
reproducibility of all the experiments presented in this paper 
and raw experimental data are provided at the website: 
http://ktiml.mff.cuni.cz/~surynek/research/ictai2011. 

Two structurally different sets of instances of the problem 
of pebble motion on a graph were tested. The first set of 
problems consists of randomly generated bi-connected 
graphs with approximately 90 vertices. The initial and the 
goal arrangement of pebbles were generated as a random 
permutation. The construction of the random bi-connected 
graph exploits the well known property of bi-connected 
graphs that they can be constructed by starting with a cycle 
followed by a gradual addition of handles to the currently 
constructed graph [9]. Specifically, graphs were constructed 
by adding handles of random length (uniform distribution 
from interval 2. .8) to the initial cycle of length 7. Tests were 

done with a collection of 10 different random bi-connected 
graphs of the above setup. 

The second set of testing instances consists of a grid of 
the size 8 f 8 where the initial and the goal arrangement of 
pebbles were again random permutations. In both cases, a 
random permutation was generated by applying quadratic 
number of random transpositions of pair individual pebbles 
starting with the identical permutation (that is, |�|8 transpo-
sitions were applied). 

 

 

 
 

Fig. 4. Parallel makespan improvement. Redundancy elimination has even 
better effect on the makespan than on the size of the solution. Removal of 
redundancies allows more efficient increasing of the parallelism. Up to 10 
times shorter solutions can be obtained on bi-connected graphs. 

The series of results presented in Fig. 2 are devoted to an 
evaluation of the distribution of the total number of moves 
within the solution on random bi-connected graphs. All the 
three redundancy elimination methods were evaluated in this 
test. The solution length is shown in the dependence on the 
number of unoccupied vertices which ranged from 4 to 89. 
The following characteristics calculated out of solution 
lengths for instances over the mentioned collection of 10 
graphs are shown for each number of unoccupied vertices: 
maximum, minimum, first quartile, third quartile, and 
average length. Notice that the computational cost of pro-
ducing results for the benchmarks is so high that our capaci-
ty did not allow us to produce them for larger collection than 
that of size 10. 
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It can be observed from results in Fig. 2 that the sequen-
tial solution lengths tend to be close to the average solution 
length; more precisely they are in the zone of approximately 
b10% around the average length from which it can be con-
cluded that the original BIBOX-θ and redundancy elimina-
tion techniques have a stable behavior. 

To keep the results readable the remaining results are pre-
sented for a single bi-connected graph only – one of those 10 
randomly generated bi-connected graphs was chosen. 

The reduction of the total number of moves within the 
solution depending on the increasing number of unoccupied 
vertices is shown in Fig. 3. It can be observed from Fig. 3 
together with Fig. 2 that up to 5 times smaller solution can 
be obtained by applying redundancy elimination. The most 
expensive elimination of long sequences is beneficial when 
there is approximately 70% and more unoccupied vertices. 

Results regarding the effect of redundancy elimination on 
parallel makespan are shown in Fig. 4. These results corre-
late well with the total number of moves while the improve-
ment is slightly better for the makespan. 

 

 
 

Fig. 5. Average parallelism (average number of mover per time step). The 

redundancy elimination leads to increasing of the parallelism most signifi-
cantly when there is 50% to 90% of unoccupied vertices in the graph. 

This observation is further quantified in Fig. 5. where the 
dependence of the average parallelism (which is defined as 
the total number of moves divided by the makespan) on the 
number of unoccupied vertices is shown. It can be observed 
that redundancy elimination typically leads to a slight in-
crease in the average parallelism. 

Results regarding runtime on a testing machine are sum-
marized in Fig. 6. Expectably, the runtime consumed to 
eliminate long sequences is highest while it is still reasona-
ble for an offline post-processing. Eliminating inverse moves 
and redundant sequences is relatively cheap so they can be 
used as an on-line post-processing tool. 

 

 

 
 
Fig. 6. Runtime necessary for eliminating redundancies. Eliminating long 
sequences is computationally the most costly (test were run on an Pentium 
4, 2.4GHz, 512MB RAM, under Mandriva Linux 10.1, 32-bit edition). 

The last part of the results presented in Fig. 7 is devoted to 
an investigation of step parallelism – that is, the number of 
moves performed simultaneously at the individual time 
steps. A single random bi-connected graph used in previous 
tests is presented here as well. There were 60 vertices out of 
90 unoccupied. Although it is difficult to make any analysis 
of such results, one aspect is quite apparent from presented 
results – it can be observed that the qualitatively most signif-
icant change occurs when the elimination of redundant 
moves is used (this observation has been done also on other 
graphs and setups which are not presented here). On the 
other hand, the change obtained by applying elimination of 
inverse moves on the original solution as well as the change 
obtained by eliminating long sequences of moves from the 
solution which is already free of redundant moves is rela-
tively little. 

It is possible to conclude that the solution can be im-
proved by up to the order of magnitude in the measured 
characteristics for both types of tested graphs.  

Removal of redundant sequences represents the best 

trade-off between detection cost and solution improvement 
according to performed experiments. Whereas eliminating 
inverse moves or long sequences feature utmost situations; 
the former brings almost no improvement; the latter seems to 
be computationally too costly for an on-line post-processing. 
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An expectable result is that the better improvement of so-
lutions is gained when there are more unoccupied vertices in 
the input graph. Notice that definitions of redundancies are 
based on the mutual non-interfering of motions of pebbles. 
The more unoccupied space is available in the graph the less 
interference between moves of pebbles is possible. 

 

 

 

 

Fig. 7. Step parallelism on random bi-connected graph. The graph consists 
of 90 vertices and 60 of them are unoccupied. The length of handles was 
uniformly generated from the range 2. .10 - the same setup as in other 
experiments. Number of moves in the individual time steps is shown. 

VI. SUMMARY, CONCLUSIONS, AND FUTURE WORK 

This work addressed the quality (makespan) of solutions 
of problems of coordinated motion problems. Particularly, 
solutions generated by the existing state-of-the-art algorithm 
BIBOX-θ for the given class of the problem were analyzed 
with respect to the presence of certain type of redundancies. 
Our hypothesis was that there exist certain types redundan-

cies in generated solutions while we were not aware how do 
they look like at the beginning. 

A special visualization tool GraphRec was used for ana-
lyzing solutions produced by the BIBOX-θ algorithm. This 
tool allowed automating two tasks that cannot be made ma-
nually – proper drawing of a graph which a given instance 
consists of and visualizing moves of entities over this graph. 
The tool eventually confirmed that redundancies really exist 
and it was possible to propose their formal description. 

Several types of redundancies were defined and me-

thods for their elimination were proposed. To justify quali-
ty of our proposal an extensive experimental evaluation of 
proposed methods was performed on the number of different 
problem setups. It eventually confirmed that solutions can be 
improved by up to the order of magnitude using the sug-
gested methods. The secondary finding is that the better 
improvement can be gained for problems with higher num-
ber of unoccupied vertices. 

For future work it would interesting to revise algorithms 
for generating solutions of pebble motion and related prob-
lems to not to generate redundancies that we discovered in 
this work. A minor topic for future work is to develop more 
efficient elimination algorithms for proposed redundancies. 

REFERENCES 

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, “Introduction to 
Algorithms (Second edition),” MIT Press and McGraw-Hill, 2001, 
ISBN 0-262-03293-7. 

[2] A. Kishimoto, N. R. Sturtevant,  “Optimized algorithms for multi-
agent routing,”  Proceedings of the 7th International Joint Conference 
on Autonomous Agents and Multiagent Systems (AAMAS 2008), Vo-
lume 3, IFAAMAS 2008, pp. 1585-1588. 

[3] D. Kornhauser, G. L. Miller, P. G. Spirakis, “Coordinating Pebble 
Motion on Graphs, the Diameter of Permutation Groups, and Applica-
tions,” Proceedings of the 25th Annual Symposium on Foundations of 
Computer Science (FOCS 1984),  IEEE Press, 1984, pp. 241-250. 

[4] P. Koupý, “GraphRec - a visualization tool for entity movement on 
graph,” Student project web page, http://www.koupy.net/ 
graphrec.php, 2011, (January 2011). 

[5] D. Ratner and M. K. Warmuth, “Finding a Shortest Solution for the 
N×N Extension of the 15-PUZZLE Is Intractable,” Proceedings of the 
5th National Conference on Artificial Intelligence (AAAI 1986),  
Morgan Kaufmann Publishers, 1986, pp. 168-172. 

[6] M. R. K. Ryan, “Exploiting subgraph structure in multi-robot path 
planning,” Journal of Artificial Intelligence Research (JAIR), Volume 
31, (January 2008), AAAI Press, 2008, pp. 497-542. 

[7] P. Surynek, “A Novel Approach to Path Planning for Multiple Robots 
in Bi-connected Graphs,” Proceedings of the 2009 IEEE International 
Conference on Robotics and Automation (ICRA 2009),  IEEE Press, 
2009, pp. 3613-3619. 

[8] P. Surynek, “An Application of Pebble Motion on Graphs to Abstract 
Multi-robot Path Planning,” Proceedings of the 21st International 
Conference on Tools with Artificial Intelligence (ICTAI 2009), IEEE 
Press, 2009, pp. 151-158. 

[9] R. E. Tarjan, “Depth-First Search and Linear Graph Algorithms,” 
SIAM Journal on Computing, Volume 1 (2), pp. 146-160, Society for 
Industrial and Applied Mathematics, 1972. 

[10] K. C. Wang and A. Botea, “Tractable Multi-Agent Path Planning on 
Grid Maps,” Proceedings of the 21st International Joint Conference on 
Artificial Intelligence (IJCAI 2009), IJCAI Conference, 2009, pp. 
1870-1875. 

[11] R. M. Wilson, “Graph Puzzles, Homotopy, and the Alternating 
Group,” Journal of Combinatorial Theory, Ser. B 16, Elsevier, 1974, 
pp. 86-96. 

0

4

8

12

16

20

0 16 32 48 64 80 96 112 128 144

M
o

v
e

s 
p

e
r 

ti
m

e
 s

te
p

Step parallelism | Original | random bi-connected

0

4

8

12

16

20

0 16 32 48 64 80 96 112 128 144

M
o

v
e

s 
p

e
r 

ti
m

e
 s

te
p

Step parallelism | Inverse | random bi-connected

0

4

8

12

16

20

0 16 32 48 64 80 96 112 128 144

M
o

v
e

s 
p

e
r 

ti
m

e
 s

te
p

Step parallelism | Redundant | random bi-connected

0

4

8

12

16

20

0 16 32 48 64 80 96 112 128 144

M
o

v
e

s 
p

e
r 

ti
m

e
 s

te
p

Step parallelism | Long | random bi-connected

Time step 

Average parallelism = 7.096  

 

Time step 

Average parallelism = 7.569  

 

Time step 

Time step 

Average parallelism = 7.306  

 

Average parallelism = 7.235  

 


