

Redundancy Elimination in Highly Parallel Solutions of Motion Coordination Problems Pavel Surynek

Charles University in Prague, Czech Republic and Kobe University, Japan

Problem of motion on a graph

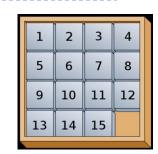
- ▶ **Abstraction** for tasks of motion of multiple (autonomous or passive) entities in a certain environment (real or virtual).
 - Entities have given an initial and a goal arrangement in the environment.
 - We need to plan movements of entities in time, so that entities reach the goal arrangement while physical limitations are observed.
- Physical limitations are:
 - Entities must not collide with each other.
 - ▶ Entities must **not collide with obstacles** in the environment.
- There are two basic abstractions of the task:
 - ▶ The problem of *pebble motion on a graph*.
 - ▶ The problem of *path-planning for multiple robots*.

I**CTAI** 2011

Problem of pebble motion on a graph (1)

Wilson, 1974; Kornhauser et al., 1984

- A popular moving puzzle, that can be abstracted as the problem of pebble motion on a graph is known as Lloyd's fifteen.
 - Entities are represented by pebbles labeled by numbers.

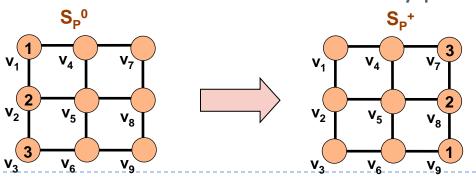


- The environment is modeled as an undirected graph where vertices represent locations in the environment occupied by pebbles and edges enable pebbles to go to the neighboring location.
- Formal definition of the task of pebble motion on a graph:
 - It is a quadruple $\Pi = (G, P, S_P^0, S_P^+)$, where:
 - ▶ G=(V,E) is an undirected graph,
 - ▶ $P = \{p_1, p_2, ..., p_u\}$, where $\mu < |V|$ is a **set of pebbles**,
 - ▶ S_P^0 : P →V is a uniquely invertible function determining the **initial arrangement** of pebbles in vertices of G, and
 - ▶ S_P^+ : P →V is a uniquely invertible function determining the **goal arrangement** of pebbles in vertices of G.

Problem of **pebble motion on a graph** (2)

Wilson, 1974; Kornhauser et al., 1984

- ▶ Time is discrete in the model. **Time steps** and their ordering is isomorphic to the structure of natural numbers.
- ▶ The **dynamicity** of the task is as follows:
 - A pebble occupying a vertex at time step *i* can move into a neighboring vertex (the move is finished at time step *i+1*) if the target vertex is **unoccupied** at time step *i* and **no other pebble** is moving simultaneously into the same target vertex
- For the given $\Pi = (G, P, S_p^0, S_p^+)$, we need to find:
 - A sequence of moves for every pebble such that dynamicity constraint is satisfied and every pebble reaches its goal vertex.



Solution of an instance of the problem of pebble motion on a graph with $P=\{1,2,3\}$

makespan=7 $\begin{array}{c} \textbf{M}_{1} = [\textbf{v}_{1}, \ \textbf{v}_{4}, \ \textbf{v}_{7}, \ \textbf{v}_{8}, \ \textbf{v}_{9}, \ \textbf{v}_{9}, \ \textbf{v}_{9}] \\ \textbf{M}_{2} = [\textbf{v}_{2}, \ \textbf{v}_{2}, \ \textbf{v}_{1}, \ \textbf{v}_{4}, \ \textbf{v}_{7}, \ \textbf{v}_{8}, \ \textbf{v}_{8}] \\ \textbf{M}_{3} = [\textbf{v}_{3}, \ \textbf{v}_{3}, \ \textbf{v}_{3}, \ \textbf{v}_{2}, \ \textbf{v}_{1}, \ \textbf{v}_{4}, \ \textbf{v}_{7}] \\ \hline \textbf{Time step:} \quad \textbf{1} \quad \textbf{2} \quad \textbf{3} \quad \textbf{4} \quad \textbf{5} \quad \textbf{6} \quad \textbf{7} \\ \end{array}$

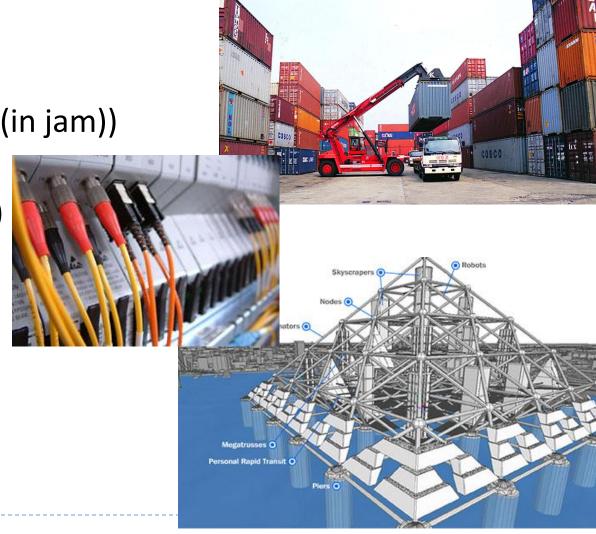
Is there any real-life motivation?

Container rearrangement (entity = container)

Heavy traffic (entity = automobile (in jam))

- Data transfer (entity = data packet)
- Generalized lifts (entity = lift)





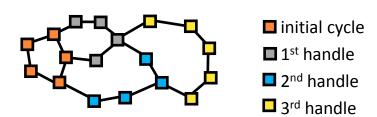
Is the motion task easy or hard?

- **Basic** variant of the task is **easy to solve**:
 - There exists an algorithm with worst case time complexity of $O(|V|^3)$ that generates solutions of the makespan $O(|V|^3)$ for any instance of pebble motion on G=(V,E) (Kornhauser et al., 1984).
- If we want a **solution** that is **as short as possible** the complexity increases:
 - ▶ The optimization variant of the problem of pebble motion on a graph is **NP-hard** (Ratner a Warmuth, 1986).
- We focused on generating and improving sub-optimal solutions:
 - Restriction on bi-connected graphs the task is almost always solvable.

ICTAL 201

The case with bi-connected graph

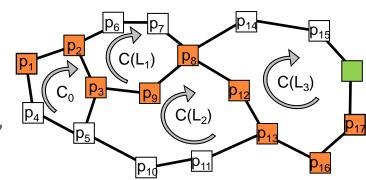
- Instances over bi-connected graph are practically most important.
 - Almost all the goal arrangements of pebbles are reachable from any initial arrangement.
- We allow only a **single unoccupied vertex** (this represents the most difficult case).
- ▶ An undirected graph G=(V,E) is **bi-connected** if $|V| \ge 3$ and $\forall v \in V$ the graph $G=(V-\{v\},E')$ where $E'=\{\{x,y\}\in E\mid x,y\neq v\}$ is connected.
- ▶ The **important property:** Every bi-connected graph can be constructed from a **cycle** by adding **handles**.
 - → handle decomposition



Algorithm BIBOX-θ (1)

Surynek, 2009

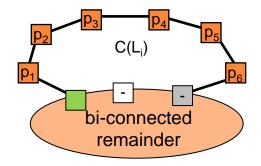
- \blacktriangleright Algorithm **BIBOX-0** solves tasks of pebble motion on a graph.
 - ▶ The input graph is supposed to be **bi-connected**.
 - ▶ The algorithm is exploits handle decomposition of the input graph.
 - Just one vertex is supposed to be unoccupied.
 - If this is not the case, dummy pebbles are added to the graph. They are eventually filtered out of the final solution.
 - ▶ Algorithms produces a solution of any instance over G=(V,E) in the worst case time of O(|V|⁴), still practically better than (Kornhauser et al., 1984).
- The basic ability it to move a pebble into a selected vertex:
 - Relocation of the unoccupied vertex,
 - rotations along handles.



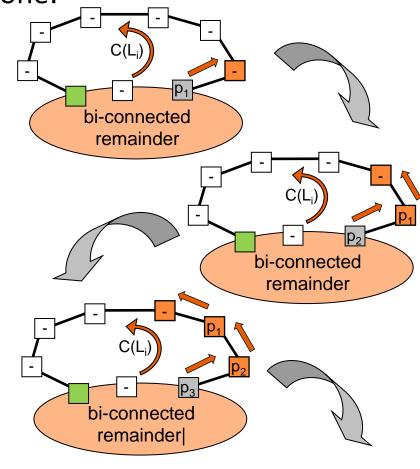
Algorithm BIBOX-θ (2)

Using the ability of moving a selected pebble into a selected vertex more complex movements can be done:

Stacking pebble into a handle:



- The process of stacking
 - Consider the last handle
 - Move the pebble into the grey vertex.
 - A rotation of the handle is made using the green unoccupied vertex.



Algorithm BIBOX-θ (3)

Initial cycle and the first handle (so called θ-like graph) represent a special case.

- The process of stacking does not work here.
- The resulting (even) **permutation** of pebbles is composed of rotations along 3-cycles (without further details).
 - ▶ **Bottleneck** of the algorithm known constructions of solutions to 3-cycle rotations use too many moves.
 - We exploit a database containing pre-computed optimal solutions to 3-cycle rotations instead (a form of pattern database)
 - ▶ The **overall sub-optimal solution** is composed of optimal solutions to 3-cycle rotations.
 - ▶ → Sub-optimal solution of relatively high quality.

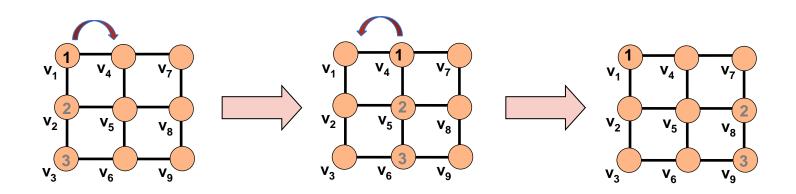
 $C(L_1)$

The major drawback of the described process

- If the initial graph is not fully occupied by pebbles at the beginning.
 - Dummy pebbles are added, modified instance is solved.
 - Movements of dummy pebbles are filtered out eventually.
- Several types of redundancies in generated solutions were discovered using visualization software GraphRec (Koupý, 2010):
 - (i) Inverse moves
 - A move that reverts the directly preceding move.
 - (ii) Redundant moves
 - A sequence of moves that relocates a pebble into the same vertex (notice possible interference).
 - (iii) Long sequence of moves
 - A sequence of moves that relocates a pebble into some vertex while there exists a shorter sequence doing the same (notice possible interference).

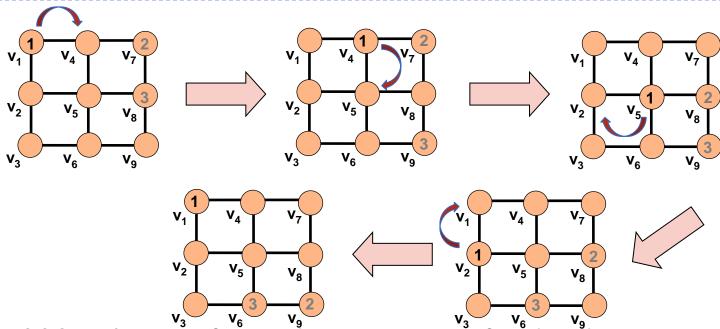
CTAI 2011

(i) Inverse moves



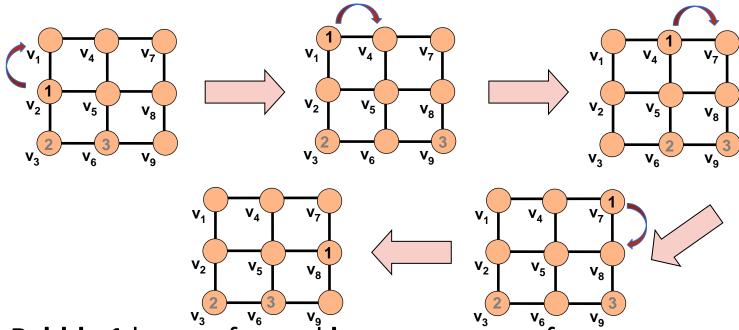
- Pebble 1 has performed a pair of inverse moves.
 - Let us have a sequence of moves Φ
 - A simple algorithm can eliminate inverse moves from Φ in the worst case time of $O(|\Phi|^2)$
 - Removal of a single pair of inverse moves can result into occurrence of a new pair of inverse moves.

(ii) Redundant moves



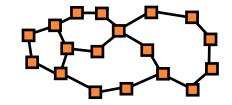
- Pebble 1 has performed a sequence of redundant moves.
 - It has returned to the starting vertex without interfering with other pebbles.
 - A simple algorithm can eliminate redundant moves from Φ in the worst case time of $O(|\Phi|^4)$.
 - New redundant sequences can appear as well.

(iii) Long sequence of moves

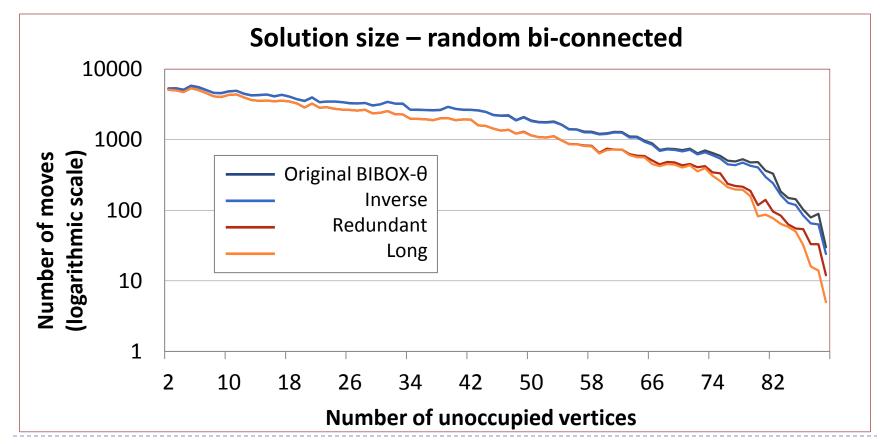


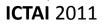
- Pebble 1 has performed long sequence of moves.
 - It is possible to go along a shorter path without interfering with other pebbles.
 - A simple algorithm can eliminate long sequences from Φ in the worst case time of $O(|\Phi|^4+|\Phi|^3|V|^2)$.
 - Again, new long sequences of moves can appear.

Experimental evaluation (1)



- Random bi-connected graph:
 - Addition of handles of random lengths to the currently constructed graph.
 - Initial and goal arrangement of pebbles are random permutations.

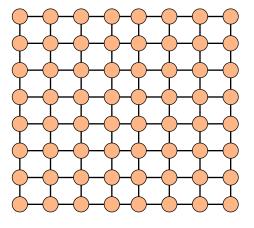


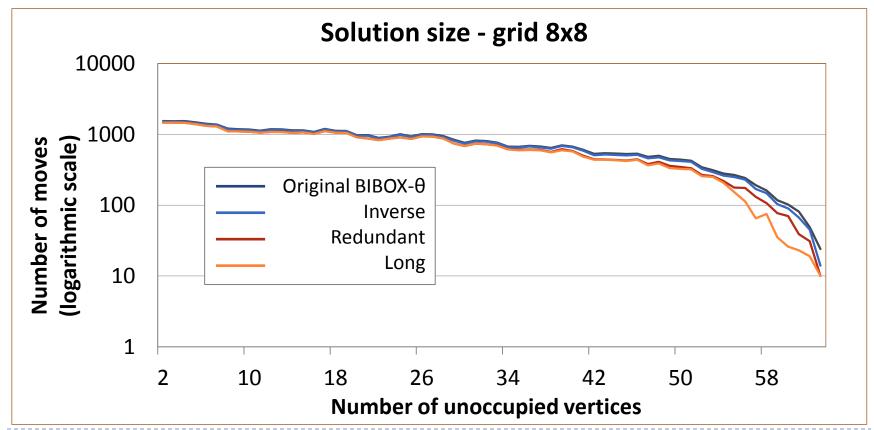


Experimental evaluation (2)

Grid 8x8:

The initial and goal arrangement of pebble is a random permutation again.





Concluding remarks

- Visualization software GraphRec has been used to acquire knowledge about solutions of instances of pebble motion problem.
- Acquired knowledge has been used to identify redundancies and to develop algorithms to eliminate them.
- The experimental evaluation showed that the proposed elimination of redundancies can improve solutions significantly.
 - Especially if there are many unoccupied vertices