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Problem of motion on a graph 
 Abstraction for tasks of motion of multiple (autonomous or 

passive) entities in a certain environment (real or virtual). 
 Entities have given an initial and a goal arrangement in the 

environment. 

 We need to plan movements of entities in time,  so that 
entities reach the goal arrangement while physical limitations 
are observed. 

 Physical limitations are: 
 Entities must not collide with each other. 

 Entities must not collide with obstacles in the environment. 

 There are two basic abstractions of the task: 
 The problem of pebble motion on a graph. 

 The problem of path-planning for multiple robots. 
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Problem of pebble motion on a graph (1) 
Wilson, 1974; Kornhauser et al., 1984 

 A popular moving puzzle, that can be abstracted 
as the problem of pebble motion on a graph is 
known as Lloyd’s fifteen. 
 Entities are represented by pebbles labeled 

by numbers. 

 The environment is modeled as an undirected graph where 
vertices represent locations in the environment occupied by 
pebbles and edges enable pebbles to go to the neighboring 
location. 

 Formal definition of the task of pebble motion on a graph: 
 It is a quadruple Π = (G, P, SP

0, SP
+), where: 

 G=(V,E) is an undirected graph, 
 P = {p1,p2,...,pμ}, where μ<|V| is a set of pebbles, 
 SP

0: P V is a uniquely invertible function determining the initial arrangement 
of pebbles in vertices of G, and 

 SP
+: P V is a uniquely invertible function determining the goal arrangement 

of pebbles in vertices of G. 
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Problem of pebble motion on a graph (2) 
Wilson, 1974; Kornhauser et al., 1984 

 Time is discrete in the model. Time steps and their ordering is 
isomorphic to the structure of natural numbers. 

 The dynamicity of the task is as follows: 
 A pebble occupying a vertex at time step i can move into a 

neighboring vertex (the move is finished at time step i+1) if the 
target vertex is unoccupied at time step i and no other pebble is 
moving simultaneously into the same target vertex 

 For the given Π = (G, P, SP
0, SP

+), we need to find: 

 A sequence of moves for every pebble such that dynamicity 
constraint is satisfied and every pebble reaches its goal vertex. 
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Time step: 

Solution of an instance of the problem of 

pebble motion on a graph with P={1,2,3} 
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Is there any real-life motivation? 
 Container rearrangement 

(entity = container) 

 Heavy traffic 
(entity = automobile (in jam)) 

 Data transfer 
(entity = data packet) 

 Generalized lifts 
(entity = lift)  
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Is the motion task easy or hard? 
 Basic variant of the task is easy to solve: 

 There exists an algorithm with worst case time complexity of 
O(|V|3) that generates solutions of the makespan O(|V|3) for any 
instance of pebble motion on G=(V,E) (Kornhauser et al., 1984). 
 

 If we want a solution that is as short as possible the 
complexity increases: 

 The optimization variant of the problem of pebble motion on a 
graph is NP-hard (Ratner a Warmuth, 1986). 
 

 We focused on generating and improving sub-optimal 
solutions: 

 Restriction on bi-connected graphs – the task is almost always 
solvable. 
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The case with bi-connected graph 
 Instances over bi-connected graph are practically most important. 

 Almost all the goal arrangements of pebbles are reachable from any initial 
arrangement. 

 We allow only a single unoccupied vertex (this represents the most 
difficult case). 

 An undirected graph G=(V,E) is bi-connected if|V|≥3 and vV the 
graph G=(V-{v},E’) where E’={{x,y}E | x,y ≠ v} is connected. 

 The important property: Every bi-connected graph can be 
constructed from a cycle by adding handles. 
→ handle decomposition 

 
initial cycle 

1st handle 

2nd handle 

3rd handle 
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Algorithm BIBOX-θ (1) 
Surynek, 2009 

 Algorithm BIBOX-θ solves tasks of pebble motion on a graph. 

 The input graph is supposed to be bi-connected. 

 The algorithm is exploits handle decomposition of the input graph. 

 Just one vertex is supposed to be unoccupied. 

 If this is not the case, dummy pebbles are added to the graph. They are 
eventually filtered out of the final solution. 

 Algorithms produces a solution of any instance over G=(V,E) in the 
worst case time of O(|V|4), still practically better than (Kornhauser 
et al., 1984). 

 The basic ability it to move a 
pebble into a selected vertex: 

 Relocation of the unoccupied vertex, 

 rotations along handles. 

 

p2 

p4 

p5 

p1 

p3 

p6 p7 

p8 

p9 p12 

p10 p11 

p13 

p14 
p15 

p16 

p17 

C0 

C(L1) 

C(L2) 

C(L3) 

Pavel Surynek  ICTAI 2011 



Algorithm BIBOX-θ (2) 
 Using the ability of moving a selected pebble into a selected vertex 

more complex movements can be done: 
 Stacking pebble into a handle: 

 

 
 

 

 

 The process of stacking 
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Algorithm BIBOX-θ (3) 
 Initial cycle and the first handle (so called θ-like graph) 

represent a special case. 
 The process of stacking does not work 

here. 

 The resulting (even) permutation of 
pebbles is composed of rotations 
along 3-cycles (without further details). 
 Bottleneck of the algorithm – known constructions of solutions to 

3-cycle rotations use too many moves. 

 We exploit a database containing pre-computed optimal solutions 
to 3-cycle rotations instead (a form of pattern database) 

 The overall sub-optimal solution is composed of optimal solutions 
to 3-cycle rotations. 
 → Sub-optimal solution of relatively high quality. 
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The major drawback of the described process 
 If the initial graph is not fully occupied by pebbles at the 

beginning. 
 Dummy pebbles are added, modified instance is solved. 

 Movements of dummy pebbles are filtered out eventually. 

 Several types of redundancies in generated solutions were 
discovered using visualization software GraphRec (Koupý, 2010): 
 (i) Inverse moves  

 A move that  reverts the directly preceding move. 

 (ii) Redundant moves 
 A sequence of moves that relocates a pebble into the same vertex (notice 

possible interference). 

 (iii) Long sequence of moves 
 A sequence of moves that relocates a pebble into some vertex while there 

exists a shorter sequence doing the same (notice possible interference). 
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(i) Inverse moves 

 Pebble 1 has performed a pair of inverse moves. 

 Let us have a sequence of moves Ф 

 A simple algorithm can eliminate inverse moves from Ф in the 
worst case time of O(|Ф|2) 

 Removal of a single pair of inverse moves can result into 
occurrence of a new pair of inverse moves. 
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(ii) Redundant moves 

 Pebble 1 has performed a sequence of redundant moves. 
 It has returned to the starting vertex without interfering with other 

pebbles. 

 A simple algorithm can eliminate redundant moves from Ф in the worst 
case time of O(|Ф|4). 

 New redundant sequences can appear as well. 
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(iii) Long sequence of moves 

 Pebble 1 has performed long sequence of moves. 
 It is possible to go along a shorter path without interfering with other 

pebbles. 

 A simple algorithm can eliminate long sequences from Ф in the worst 
case time of O(|Ф|4+|Ф|3|V|2). 

 Again, new long sequences of moves can appear. 
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Experimental evaluation (1) 

Pavel Surynek 
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 Random bi-connected graph: 
 Addition of handles of random lengths to the currently constructed graph. 

 Initial and goal arrangement of pebbles are random permutations. 
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Solution size - grid 8x8 

Experimental evaluation (2) 
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 Grid 8x8: 
 The initial and goal arrangement of pebble is 

a random permutation again. 
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Concluding remarks 
 

 Visualization software GraphRec has been used to acquire 
knowledge about solutions of instances of pebble motion 
problem. 
 

 Acquired knowledge has been used to identify redundancies 
and to develop algorithms to eliminate them. 
 

 The experimental evaluation showed that the proposed 
elimination of redundancies can improve solutions 
significantly. 

 Especially if there are many unoccupied vertices 
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