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Problems of motion coordination of multiple entities are addressed in this paper. These problems are 

dealt on the abstract level where they can be viewed as tasks of constructing a spatial-temporal plan 

for a set of identical mobile entities. The entities reside in a certain environment where they can 

move. Each entity need to reach a given goal position supposed it is starting from some initial posi-

tion. The most abstract formal representations of coordinated motion problems are known as “pebble 

motion on a graph” and “multi-robot path planning”. The existent algorithms for pebble motion and 

multi-robot problems were suspected of generating solutions containing redundancies. This hypothe-

sis eventually confirmed in this work. We present several techniques for identifying and eliminating 

redundancies from solutions generated by existent algorithms. An extensive experimental evaluation 

was performed and it showed that the quality of generated solutions can be improved up to the order 

of magnitude. We also identify parameters characterizing instances of problems where a significant 

improvement is expectable. 

Keywords: multi-robot path planning; pebble motion on a graph; redundancy elimination; parallel 

plans; SAT based optimization. 

1.   Introduction, Context, and Motivation 

Problems of coordinated motion of multiple identical entities as they are introduced in [4, 

8, 10, 16] (terms “multi-robot path planning” or “cooperative path-finding” are also used 

to denote the same or similar problem) represent a basic abstraction for many real-life 

and theoretical tasks. The classical task that can be abstracted as a problem of coordinat-

ed motion takes place in a certain physical environment where identical mobile entities 

are moving (typically represented by mobile robots). Each entity is given its initial and 

goal positions in the environment between which it should relocate. The task is to con-

struct a spatial-temporal plan for all the entities such that they can reach their goal posi-

tions following the plan while the plan satisfies certain natural constraints. These con-

straints are constituted by a requirement that the entities must avoid obstacles in the envi-

ronment and must not collide with each other. 
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The standard abstraction adopted throughout this work uses an undirected graph to 

model the environment. Vertices of this graph represent positions in the environment and 

edges represent passable regions between two positions. An arrangement of entities in the 

environment is abstracted as a uniquely invertible assignment of entities to vertices. At 

least one vertex remains unoccupied in order to make the movement of entities possible – 

for example moving in a circle where each entity follows the preceding entity is not al-

lowed. The time is discrete; it is an ordered set of time steps isomorphic to the structure 

of natural numbers. A way in which an arrangement of entities can be transformed into 

another can slightly differ in variants of the problem. The best known abstract formaliza-

tions of coordinated motion problems are represented by pebble motion on a graph 

(PMG) as defined in [4] and [16], and multi-robot path planning (MRPP) as defined in 

[8, 10, 11] while the latter allows higher parallelism. 

 Abstract problems of coordinated motion of multiple entities on a graph are motivated 

by many real-life problems. The most typical motivating example is motion planning of a 

group of mobile robots that are moving in 2-dimensional space. Generally, if there is 

enough free space in the environment, algorithms based on search for shortest paths in a 

graph with an eventual local repairs if collision occurs can be used [1]. However, if non-

trivial amount of space is occupied different approaches must be adopted. 

Many well known puzzles can be formulated as coordinated motion on a graph. The 

best known is so called Lloyd’s 15-puzzle and its generalizations as described in [6, 7] 

and [16]. In practice, entities may be represented by various mobile or movable objects – 

for example rearranging containers in some storage area can be interpreted as a problem 

of coordinated motion where entities are represented by containers. Exactly this interpre-

tation has been used for planning motions of automated straddle carriers in a storage area 

in Patrick port facility at Port Brisbane in Queensland as reported in [8]. Although the 

approach suggested in [8] is applied on few movable entities it clearly demonstrates the 

usefulness of discussed abstractions. Entities do not necessarily need to be physical ob-

jects. Virtual spaces of computer simulations and games contain many situations where 

motions of certain entities must be planned. A typical example is a coordination of 

groups of units in real-time strategic computer games (RTS) [14]. 

It is necessary to emphasize that contrary to multi-agent motion planning [3], the cen-

tralized approach is adopted in this work. This means that the environment is fully ob-

servable for the central planning mechanism and the individual entities merely execute 

the centrally created plan. 

There exist several relatively efficient methods for solving problems of coordinated 

motion on a graph. This work is particularly targeted on solving methods described in 

[10, 11]. These methods represent algorithms for the class of problems where the graph 

modeling the environment is bi-connected [15] and the graph is densely occupied by 

entities. More precisely, the number of entities   is comparable to the size of the set of 

vertices (that is,         ). Despite the good performance of these methods, generated 

solutions are suspected of containing certain redundancies. This is a hypothesis whose 

examination is the main contribution of this paper. If it is the case that generated solu-
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tions contain redundancies, then a question how they can be removed to improve the 

solution arises. 

 The task was to analyze solutions of non-trivial size, which turned out to be infeasible 

to be done manually. Moreover, we were searching redundancies of a priori unknown 

nature. Therefore, a software tool GraphRec [5] allowing visual analysis of solutions of 

problems of motion on a graph has been developed and employed in this analysis. Sever-

al types of redundancies were observed using the GraphRec software in generated solu-

tions. The most prominent three of them that we manage to formally capture are de-

scribed in this paper. Methods for automated discovering and elimination of these three 

defined types of redundancies are suggested and analyzed theoretically as well as exper-

imentally. We also suggest to model the problem of motion on a graph as propositional 

satisfiability (SAT) [1] which allows us to discover very generic redundancies automati-

cally. 

The top level organization of the paper has two parts. The first part explains a specific 

variant of the coordinated motion problem (section 2) and the basic solving algorithm 

(section 3); this part mostly recalls existing concepts. The second part contains the main 

contribution of this work; redundancy elimination methods are described (section 4), and 

the benefit of suggested methods is justified in the experimental section (section 5). Addi-

tionally a SAT based solution improvement technique is described in section 6. 

2.   Pebble Motion on a Graph (PMG) 

In the rest of the paper, we restrict ourselves on the variant of the entity motion coordina-

tion problem known as pebble motion on a graph (PMG) defined in [7] and [16]. The 

work can be extended on other variants of the problem such as multi-robot path planning 

(MRPP) using minor modifications only. 

 The task in pebble motion on a graph is given by an undirected graph with an initial 

and a goal arrangement of pebbles in vertices of the graph. Each vertex contains at most 

one pebble (which represents a movable entity) and at least one vertex remains unoccu-

pied. The task is to find a sequence of moves for each pebble such that all the pebbles 

reach their goal vertices. A pebble can move into a neighboring unoccupied vertex while 

no other pebble is entering the same target vertex simultaneously. The following defini-

tion formalizes the problem. An illustration of the problem is shown in Fig. 1. 

 

Definition 1 (pebble motion on a graph). Let         be an undirected graph and let 

              be a set of pebbles where      . The initial arrangement of pebbles 

is defined by an injective function   
      (that is   

        
      for     

        with    ); the goal arrangement of pebbles is defined by another injective 

function   
     . A problem of PMG is the task to find a number   and a sequence 

      
    

      
 
  where   

      is an injective function for every          . 

The following constraints must hold for   : 

(i)   
 

   
 , that is, pebbles eventually reach their destinations. 
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(ii) Either   
       

       or    
       

          for every     and   

         . 

(iii)   
       

       and    
       

       for      such that     must hold 

for every      and            , that is no two pebbles can enter the same 

target vertex simultaneously. 

The problem described above is formally a quadruple                
    

  . □ 

In practice, the quality of solution matters. The typical measures of the quality of solu-

tion are its length (the total number of moves) and the makespan (which corresponds to 

the number  ). These numbers are required to be small. Unfortunately, requiring either 

the length of solution or its makespan to be as small as possible makes the problem in-

tractable [7] (the decision variant of the problem is NP-complete). On the other hand, if 

there is no requirement on the quality, the question whether there exists a solution is in 

the P class as it shown in [4] and [16]. 

However, methods showing evidence that the problem belongs to the P class described 

in [4] and [16] generates excessively long solutions that are unsuitable for practice when 

each movement of an entity represented by a pebble has a nontrivial cost. Therefore, it 

was necessary to find a compromise between the quality of solution and computational 

effort of its construction. Methods following this compromise are described in [10] and 

[11]. Solutions produced by these methods were submitted for analysis into the visualiza-

tion tool in order to find if and how they can be further improved. 

 

 

Fig 1.  An illustration of a PMG problem. The task is to move pebbles from their initial positions specified by 

  
  to the goal positions specified by   

 . A solution of length 6 is shown. 

3.   Solving Coordinated Motion Problems 

This section is devoted to a brief recall of algorithms described in [10] and [11]. Under-

standing how these algorithms work will provide us an insight into the structure of solu-

tions produced by them. This theoretical insight founded the hypothesis that solutions can 

be further improved. 
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A very important class of pebble motion problems is formed by those whose graph is 

bi-connected which intuitively means that each pair of vertices is connected by two dis-

joint paths. 

Definition 2 (connectivity, bi-connectivity). An undirected graph         is connect-

ed if       and for every pair of distinct vertices       there exists a path connecting 

  and   in  . An undirected graph         is bi-connected if       and for every 

vertex     the graph                                    is con-

nected. □ 

The importance of this class of problems is assessed by the fact that they are almost 

always solvable. Moreover, spatial environments in real tasks are often abstracted as two 

dimensional grids which are bi-connected in most cases. 

If the bi-connected graph contains at least two unoccupied vertices and it is not a cycle, 

then every goal arrangement of pebbles is reachable from every initial arrangement [10]. 

If the graph contains just one unoccupied vertex which can be without loss of generality 

fixed, then any arrangement of pebbles can be regarded as a permutation with respect to 

the initial arrangement. 

A permutation is even if it can be composed of the even number of transpositions; oth-

erwise it is odd. If the goal arrangement represents an even permutation, then the problem 

is always solvable. In case of an odd permutation, the problem is solvable if and only if 

the graph contains a cycle of the odd length [16]. 

An inductive construction of bi-connected graphs by adding handles is a pivotal con-

cept in developing solving algorithms. Let         be a graph, a handle with respect 

to   is a sequence of vertices                   , where       and      for 

          (it allowed that    ). The result of an addition of handle   to graph   is a 

new graph           , where                   and either              if 

    or                                            if    . Every bi-connected 

graph         can be constructed from a cycle by a sequence of handle additions. 

3.1.   The BIBOX-θ Solving Algorithm 

The BIBOX-θ algorithm [11] solves a case of the PMG problem when the graph is bi-

connected and there is single unoccupied vertex. The algorithm provides a good perfor-

mance for the described class of problems in terms of speed and quality of generated 

solutions. This is the main reason why solutions produced by this algorithm are studied. 

In the first phase, a handle decomposition is found; that is, a cycle - called initial cycle 

- and a sequence of handles is determined. Without loss of generality it is required that 

the unoccupied vertex within the goal arrangement of pebbles is located in the initial 

cycle. The algorithm then proceeds inductively according to the handle decomposition 

from the last handle to the initial cycle with the first handle. 

Two properties of bi-connected graphs with at least one unoccupied vertex are exploit-

ed while pebbles are placed within handles: (a) every vertex can be made unoccupied 

(this is even true for a connected graph), (b) every pebble can be moved to an arbitrary 
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vertex. A handle is processed in the following way. An orientation of the handle is cho-

sen first – this orientation determines ordering of vertices within the handle. The first and 

the last vertex of the handle are the connection points to the remainder graph. 

Then pebbles starting with the pebble whose goal position is in the second vertex of 

the handle are placed into the handle in the stack manner. The current pebble is moved to 

the last vertex of the handle. 

Two cases are distinguished here. If the pebble is already somewhere in the handle it 

must be moved outside first. If the current pebble is outside the handle, then it can be 

moved into the last vertex of the handle using property (b). 

After placing the pebble into the last vertex of the handle, the handle is rotated once in 

the direction to the first vertex. When all the pebbles within the handle are processed the 

task is to solve the problem of the same type on a smaller graph. 

Nevertheless, the stack manner of placing pebbles cannot be applied for the initial cy-

cle and the first handle of the decomposition. The algorithm uses a database containing 

pre-calculated optimal solutions for transpositions and rotation of pebbles along 3-cycles 

in graphs consisting of a cycle and a handle. A solution to any solvable instance on the 

initial cycle with the first handle is then composed of solutions from such a database.  

3.2.   A Case with More Unoccupied Vertices 

If there are exactly two unoccupied vertices in the graph an alternative more efficient 

placing of pebbles in the initial cycle and the first handle can be used [10]. If there are 

more than two unoccupied vertices in the graph the approach proposed in [11] is to fill all 

the remaining unoccupied vertices except two with extra pebbles. The instance is then 

solved by the BIBOX-θ algorithm and the solution is post-processed by removing move-

ments of extra pebbles out of the solution. 

This approach is however suspected of generating unnecessary movements for original 

pebbles. Notice that original pebbles have to make quite complicated movements when 

an extra pebble is being placed into a handle. All these movements of the original pebbles 

are redundant in fact since movements of the extra pebble will be eventually filtered out. 

4.   Elimination of Redundancies 

Several types of redundancies were discovered using the GraphRec software. A formal 

description of these redundancies and algorithms for their elimination are provided in the 

following sections. When reasoning about redundancies, it is convenient to assume solu-

tions to be sequential; that is, a solution has just one movement between consecutive time 

steps. Fortunately, the BIBOX-θ algorithm can produce solutions in this form. A solution 

of this form can be viewed as a sequence of moves. 

The notation          will denote a move of a pebble    from a vertex    to a ver-

tex    commenced at time step  . The move is called non-trivial if      . From the 

formal point of view, the sequential solution is a sequence of non-trivial moves   

                       (consistency with Definition 1 is also assumed). 
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Definition 3 (inverse moves). Two consecutive moves          and                

with               are called inverse if        ,        , and        . □ 

 

Observe that a pair of inverse moves can be left out of the solution without affecting 

its validity – resulting sequence still solves the problem. However, elimination of an 

inverse pair may cause that another pair of inverse moves arises. Hence, it is necessary to 

remove inverse moves from the solution repeatedly until there are any. 

 
Algorithm 1. Elimination of inverse moves. 

function Erase-Inverse-Moves    : sequence 

1: do 

2:      

3:  let                                        

4:  for             do 

5:   if          and                are inverse then 

6:                                  
7:        

8: while     

9: return   
 

 

The process of elimination inverse moves is expressed as Algorithm 1. The worst case 

time complexity of the algorithm is        , the space complexity is       . 

Definition 4 (redundant moves). A sequence of moves     
    

    
           , 

where                              is a an increasing sequence of indices, is 

called redundant if      
              ,        

, and for each move          

with             it holds that                   . □ 

Redundant moves represents generalization of inverse moves (a pair of inverse moves 

form a redundant sequence). It is a sequence of moves, which relocates a pebble into 

some vertex for the second time while the other pebbles do not enter this vertex at any 

time step between the beginning and the end of the sequence. Eliminating a redundant 

sequence of moves preserves validity of the solution. 

Again, it is necessary to remove redundant sequences repeatedly since its removal may 

cause that another redundant sequence arises. 

Algorithm 2 formalizes the process of removing redundant moves in the pseudo-code. 

The worst case time complexity is        , the space complexity is       . 

 

Definition 5 (long sequence). Let   
  be a set of vertices occupied by pebbles at time step 

 . A sequence of moves     
    

    
           , where                     

         is an increasing sequence of indices, is called long if      
               

and there exists a path                      
  in   such that    ,     

    , 

and for all the moves          with             it holds that        

           . □ 
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The concept of long sequence is a generalization of redundant sequence (the path   is 

empty in the case of redundant sequence). Intuitively, the long sequence can be replaced 

by a sequence of moves along a shorter path (cutoff path) into which other pebbles do not 

enter between the beginning and the end of the sequence. Replacing a long sequence of 

moves by a sequence of moves along the path   again preserves validity of the solution. 

Again, the replacement of long sequences must be performed repeatedly since new long 

sequences may arise. 

 

Algorithm 2. Elimination of redundant moves. 

function Erase-Redundant-Moves    : sequence 

1: do 

2:    Find-Redundant-Moves    

3:        

4: while     

5: return   

 

function Find-Redundant-Moves    : sequence 

6: let                               

7: for             do {beginning of redundant sequence} 

8: for                 do 

{end of redundant sequence} 

9:   if             then 

10:        {redundant sequence} 

11:    for             do 

12:     if        then                

13:    if Check-Redundant-Moves        then return   

14: return   
 

function Check-Redundant-Moves        : boolean 

15: let                               

16: for                 do 

17:  if                  then return        

18: return      
 

 

The process of replacement is formally expressed as Algorithm 3. The worst case time 

complexity is                 ; the space complexity is               . 

Redundant moves and long sequences were described manually using the GraphRec 

software. Without the visualization software we would be unable to discover them. 

Notice alos that the gradual generalization was adopted in the description of redundan-

cies. Although long sequences subsume both less general redundancies, it is not advisable 

to apply their replacement directly. It is better to apply elimination of redundancies step-

wise from the less general one to more general ones. The reason for this practice is the 

increasing time complexity of redundancy elimination algorithms. A sequence of moves 

submitted to the more complex algorithm is potentially shortened by eliminating less 

general redundancies by following this practice. 
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Algorithm 3. Replacement of long sequences. 

function Replace-Long-Moves      : sequence 

1: do 

2:        FindLongMoves      

3:       ;       

4: while              

5: return   

 

function Find-Long-Moves      : pair 

6: let                               

7: for             do 

8:  for                 do 

9:   if       then 

10:        

11:    for             do 

12:     if        then                

13:      Check-Long-Moves              

14:    if      then 

15:     let                

16:                               
17:      return       

18: return        

 

function Check-Long-Moves                  : sequence 

19: let                               

20:          ;         
 ;                      

21: for                 do 

22:  if       then 

23:                ;  
                    

24: let   be a shortest path between    and    in            

25: if   is defined and       then return   

26: return    
 

5.   Experimental Evaluation 

An experimental evaluation was made with above three suggested methods for redundan-

cy elimination. Algorithms 1, 2, and 3 were implemented in C++ and were tested on a set 

of benchmark instances of PMG. Solutions found by the BIBOX-θ [11] algorithm on 

these benchmark instances were submitted to redundancy elimination methods. 

Several characteristics of redundancy elimination were evaluated: the reduction of the 

total number of moves within solutions, parallel makespan, average parallelism, and 

runtime were measured. The implementation of redundancy elimination algorithms al-

most exactly follows the pseudo-code given in the previous section. 

It was always the case that solution was processed by the less general redundancy 

elimination before it was submitted to more general and more sophisticated one. This 

measure ensures that the more time consuming algorithms obtains already processed 

solution for which there is a chance to be significantly shorter. The complete source code 

to allow reproducibility of all the experiments presented in this paper and raw experi-
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mental data are provided at the website: http://ktiml.mff.cuni.cz/~surynek/research/j-

redundancy-2012. 

 

 

 

 

Fig. 2. Sequential length distribution on random bi-connected graphs. A collection of    graphs consisting of 

   vertices with length of handles ranging uniformly between   and   were generated for each number of 

unoccupied vertices. Minimum, maximum, average, first quartile, and third quartile out of sequential solution 
lengths of random instances over graphs from the collection are shown. The above characteristics of the solu-

tion length distribution are shown for original solutions as well as for solutions after removal of redundancies 

by the selected technique. The average improvement of solution is shown too in the same chart. It is possible to 
observe that solution lengths are distributed in a relatively narrow zone around the average length (approximate-

ly      of the average length). The zone tends to narrow yet more for more sophisticated redundancy elimina-
tion.  

 
Two structurally different sets of instances of the problem of PMG were tested. The 

first set of problems consists of randomly generated bi-connected graphs with approxi-

mately    vertices. The initial and the goal arrangement of pebbles were generated as a 

random permutation. The construction of the random bi-connected graphs exploits the 

construction that starts with a cycle followed by a gradual addition of handles to the cur-

rently constructed graph. Specifically, graphs were constructed by adding handles of 

random length (uniform distribution from interval     ) to the initial cycle of length  . 

Tests were done with a collection of 10 different random bi-connected graphs of the 

above setup. 

The second set of testing instances consists of a grid of the size     where the initial 

and the goal arrangement of pebbles were again random permutations.  
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Fig. 3. Solution length improvement on random bi-connected graph and 88 grid. The total number of moves 

of the original solution and improvement ratio after applying redundancy elimination techniques are shown. As 
the number of unoccupied vertices grows the better improvements can be achieved. Up to 5 times smaller 

solutions can be obtained. 

 

The series of results presented in Fig. 2 are devoted to an evaluation of the distribution 

of the total number of moves within the solution on random bi-connected graphs. All the 

three redundancy elimination methods were evaluated in this test. The solution length is 

shown in the dependence on the number of unoccupied vertices which ranged from   to 

  . The following characteristics calculated out of solution lengths for instances over the 

mentioned collection of    graphs are shown for each number of unoccupied vertices: 

maximum, minimum, first quartile, third quartile, and average length. 

It can be observed from results in Fig. 2 that the sequential solution lengths tend to be 

close to the average solution length; more precisely they are in the zone of approximately 

     around the average length from which it can be concluded that the original 

BIBOX-θ and redundancy elimination techniques have a stable behavior. 
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To keep the results readable the remaining results are presented for a single bi-

connected graph only – one of those 10 randomly generated bi-connected graphs was 

chosen. 

 

 
 

 
 

 
 

 
Fig. 4. Parallel makespan improvement. Redundancy elimination has even better effect on the makespan than 

on the size of the solution. Removal of redundancies allows more efficient increasing of the parallelism. Up to 

10 times shorter solutions can be obtained on bi-connected graphs. 

 
The reduction of the total number of moves within the solution depending on the in-

creasing number of unoccupied vertices is shown in Fig. 3. It can be observed from Fig. 3 

together with Fig. 2 that up to 5 times smaller solution can be obtained by applying re-

dundancy elimination. The most expensive elimination of long sequences is beneficial 

when there is approximately     and more unoccupied vertices. 
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Results regarding the effect of redundancy elimination on parallel makespan are shown 

in Fig. 4. These results correlate well with the total number of moves while the improve-

ment is slightly better for the makespan. 

 

 
 

 
 

 
Fig. 5. Average parallelism (average number of mover per time step). The redundancy elimination leads to 

increasing of the parallelism most significantly when there is 50% to 90% of unoccupied vertices in the graph. 

This observation is further quantified in Fig. 5. where the dependence of the average 

parallelism (which is defined as the total number of moves divided by the makespan) on 

the number of unoccupied vertices is shown. It can be observed that redundancy elimina-

tion typically leads to a slight increase in the average parallelism. 

Results regarding runtime on a testing machine are summarized in Fig. 6. Expectably, 

the runtime consumed to eliminate long sequences is highest while it is still reasonable 

for an offline post-processing. Eliminating inverse moves and redundant sequences is 

relatively cheap so they can be used as an on-line post-processing tool. 

The last part of the results presented in Fig. 7 is devoted to an investigation of step 

parallelism – that is, the number of moves performed simultaneously at the individual 

time steps. A single random bi-connected graph used in previous tests is presented here 

as well. There were    vertices out of    unoccupied. Although it is difficult to make any 

analysis of such results, one aspect is quite apparent from presented results – it can be 

observed that the qualitatively most significant change occurs when the elimination of 

redundant moves is used (this observation has been done also on other graphs and setups 

which are not presented here). On the other hand, the change obtained by applying elimi-

nation of inverse moves on the original solution as well as the change obtained by elimi-
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nating long sequences of moves from the solution which is already free of redundant 

moves is relatively little. 

 

 
 

 
 

 
 

 

Fig. 6. Runtime necessary for eliminating redundancies. Eliminating long sequences is computationally the 
most costly (test were run on an Pentium 4, 2.4GHz, 512MB RAM, under Mandriva Linux 10.1, 32-bit edition). 

 
It is possible to conclude that the solution can be improved by up to the order of mag-

nitude in the measured characteristics for both types of tested graphs.  

Removal of redundant sequences represents the best trade-off between detection cost 

and solution improvement according to performed experiments. Whereas eliminating 

inverse moves or long sequences feature extreme situations; the former brings almost no 

improvement; the latter seems to be computationally too costly for an on-line post-

processing. 
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An expectable result is that the better improvement of solutions is gained when there 

are more unoccupied vertices in the input graph. Notice that definitions of redundancies 

are based on the mutual non-interfering of motions of pebbles. The more unoccupied 

space is available in the graph the less interference between moves of pebbles is possible. 

 

 

 

Fig. 7. Step parallelism on random bi-connected graph. The graph consists of    vertices and    of them are 

unoccupied. The length of handles was uniformly generated from the range       - the same setup as in other 
experiments. Number of moves in the individual time steps is shown. 

6.   SAT Based Solution Improvements: An Overview 

Our novel solution optimization technique called COBOPT employs SAT solving technol-

ogy [1] to optimize the solution with respect to the makespan. The technique has been 

suggested in [12]. To be able to use SAT solvers in this way we need to obtain some 

(sub-optimal) solution to the PMG instance first. Let this initial solution be called a base 

solution. In this regard we used the same original solution as the base solution as in the 

case of redundancy elimination methods. 

 The crucial building block for using SAT solving technology is an encoding of mo-

tion coordination instance as an instance of propositional satisfiability. That is, we need 

to build a propositional formula such that it is satisfiable if and only if a solution of a 

certain makespan to the given motion coordination instance exists. Suppose that we are 

given makespan  . We model the arrangements of pebbles at every time step         

where the arrangement at time step   is equal to the initial state and the arrangement at 

time step   is equal to the goal state. The individual arrangement consists of vectors of 

propositional variables for each vertex of   such that it tells us what pebble is located in 
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the given vertex. Constraints to enforce valid transitions between consecutive time steps 

are also added. This encoding will be referred to as an inverse encoding in experiments. 

 Having such a propositional formula we are able to solve the given solvable PMG 

problem optimally with respect to the makespan. This is done by asking if a solution of 

some makespan   exists, where   is selected according to some search strategy. This 

asking strategy may be based for example on binary search – actually this is a strategy we 

use. 

Notice that it is not possible to check that there is no solution to the PMG instance us-

ing this technique. However, as we use the technique to replace sub-optimal sub-solutions 

in the already constructed base solution we always know that the instance is solvable. 

  

Algorithm 4. COBOPT: SAT-based PMG solution optimization – basic scheme based 

on binary search.  
 

function COBOPT-Optimize-Motion-Coordination-Plan          : solution 

1:         
2: do 

3:          

4:  let        
      

   
5:      ;        
6:  while     do 

7:       Find-Last-Reachable-Arrangement     
          

8:           Compute-Optimal-Solution     
    

    

9:        

10: while             
11: return     

 

function Find-Last-Reachable-Arrangement      
        : integer 

12: let       
      

   
13:             

14: while       do 

15:           

16:                 

17:    Encode     
    

     

18:  if Solve-SAT     then     

19:  else     

20: return   
 

  

After producing a base solution, this is submitted to a SAT based optimization pro-

cess. A maximum bound    for encoding coordination instances is specified. Then sub-

sequences in the base solution are replaced with computed optimal sub-solution. Suppose 

that we are currently optimizing at time step  . It is computed what is the largest      

such that the time step    can be reached from the time step   with no more than    

steps. Then sub-solution of the base solution from the time step   to     is replaced by the 

optimal one obtained from the SAT solver. The process then continues with optimization 

at time step    until the whole base solution is processed.  
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Fig. 8. Makespan comparison on the 88 grid. Optimal solutions for up to 22 and 30 agents can be found by 

SAT based optimization. Only up to 16 agents can be solved sub-optimally by WHCA*. The timeout for SAT 

based optimization was 3600 seconds. 

 

  
 

Fig. 9. Makespan comparison on the 1616 grid. Optimal solutions for up to 40 agents can be found by SAT-

based optimization; in the same range WHCA* can find near optimal solution as well. The timeout for SAT 

based optimization was 3600 seconds. 

 

The optimization process can be iterated by taking new solution as the base one until 

a fixed point is reached. The binary search is employed to find    and the optimal sub-

solution in order to reduce the number of SAT solver invocations – see Algorithm 4.  

which summarizes basic COBOPT optimization method formally.  

 Notice that separation points in the base solution are selected on the greedy basis – 

optimization always continues on the first not yet processed time step. We also consid-

ered optimizing placement of separation point by dynamic programming techniques. This 

approach generates slightly better base solution decomposition. However it is at the great 

expense in overall runtime as many more invocation of the SAT solver are necessary. 

In the experimental evaluation with SAT based optimization of solutions we also made 

comparison with the WHCA* algorithm [9] that is known to generate solutions that have 

makespan near to the optimum. WHCA* is however not able to tackle instances with 

environments densely occupied by agents. 

Results showing comparison of the SAT-based optimization with respect to the base 

solution as well as with respect to WHCA* on 4-connected grids are shown in Fig. 8 and 

Fig. 9. The time limit for optimization was set to 3600 seconds. The process either found 
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an optimal solution or the time limit was reached. It can be observed that SAT based 

optimization generates better solutions than WHCA*. Optimal solutions were obtained in 

cases with few agents. 

If we compare SAT-based optimization with redundancy elimination methods it can be 

stated that SAT-based optimization is more general. It is able to discover a redundancy of 

a priori unknown type. On the other SAT based optimization is more time consuming 

which makes it suitable for off-line solving of the problem only while redundancy elimi-

nations can be used on-line. Lot of improvements in the makespan when SAT based 

optimization is used comes from increasing parallelism – more moves are performed per 

single time step. It may happen that even though makespan of the solution has been im-

proved the number of moves within the solution may increase. 

7.   Summary, Conclusions, and Future Work 

This work addressed the quality (makespan) of solutions of problems motion coordina-

tion. Particularly, solutions generated by the existing algorithm BIBOX-θ for the given 

class of the problem were analyzed with respect to the presence of certain type of redun-

dancies. Our hypothesis was that there exist certain types redundancies in generated solu-

tions while we were not aware how do they look like. 

A special visualization tool GraphRec was used for analyzing solutions produced by 

the BIBOX-θ algorithm. This tool allowed automating two tasks that cannot be made 

manually – proper drawing of a graph which a given instance consists of and visualizing 

moves of entities over this graph. The tool eventually confirmed that redundancies really 

exist and it was possible to propose their formal description. 

Several types of redundancies were defined and methods for their elimination were 

proposed. To justify quality of our proposal an extensive experimental evaluation of 

proposed methods was performed on the number of different problem setups. It eventual-

ly confirmed that solutions can be improved by up to the order of magnitude using the 

suggested methods. The secondary finding is that the better improvement can be gained 

for problems with higher number of unoccupied vertices. 

As a next step in solution improvements we suggest to employ SAT solving technolo-

gy. A propositional formula satisfiable if and only if a given instance of motion coordina-

tion problem is solvable within the given makespan is constructed. Such a formula allows 

asking what is the makespan optimal replacement for a given sub-solution of an existing 

solution. The solution improvement process then repeatedly replaces sub-solutions by 

optimal ones until time limit is reached or the makespan optimal solution is found. 

The SAT based technique generates high quality solutions with respect to the 

makespan however it is very time consuming. Thus it is more suitable for off-line im-

provements of solutions. On the other hand redundancy elimination methods are fast 

enough and can be used on-line. 
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