
International Journal on Artificial Intelligence Tools

Vol. XX, No. X (2014) 1–19

 World Scientific Publishing Company

1

REDUNDANCY ELIMINATION IN HIGHLY PARALLEL SOLUTIONS OF

MOTION COORDINATION PROBLEMS
 *

PAVEL SURYNEK

Faculty of Mathematics and Physics, Charles University,
Malostranské náměstí 25, Praha, 118 00, The Czech Republic

pavel.surynek@mff.cuni.cz

Received: November 17, 2012

Accepted: March 4, 2013

Revised: May 5, 2013

Problems of motion coordination of multiple entities are addressed in this paper. These problems are

dealt on the abstract level where they can be viewed as tasks of constructing a spatial-temporal plan

for a set of identical mobile entities. The entities reside in a certain environment where they can

move. Each entity need to reach a given goal position supposed it is starting from some initial posi-

tion. The most abstract formal representations of coordinated motion problems are known as “pebble

motion on a graph” and “multi-robot path planning”. The existent algorithms for pebble motion and

multi-robot problems were suspected of generating solutions containing redundancies. This hypothe-

sis eventually confirmed in this work. We present several techniques for identifying and eliminating

redundancies from solutions generated by existent algorithms. An extensive experimental evaluation

was performed and it showed that the quality of generated solutions can be improved up to the order

of magnitude. We also identify parameters characterizing instances of problems where a significant

improvement is expectable.

Keywords: multi-robot path planning; pebble motion on a graph; redundancy elimination; parallel

plans; SAT based optimization.

1. Introduction, Context, and Motivation

Problems of coordinated motion of multiple identical entities as they are introduced in [4,

8, 10, 16] (terms “multi-robot path planning” or “cooperative path-finding” are also used

to denote the same or similar problem) represent a basic abstraction for many real-life

and theoretical tasks. The classical task that can be abstracted as a problem of coordinat-

ed motion takes place in a certain physical environment where identical mobile entities

are moving (typically represented by mobile robots). Each entity is given its initial and

goal positions in the environment between which it should relocate. The task is to con-

struct a spatial-temporal plan for all the entities such that they can reach their goal posi-

tions following the plan while the plan satisfies certain natural constraints. These con-

straints are constituted by a requirement that the entities must avoid obstacles in the envi-

ronment and must not collide with each other.

* This work is supported by the PRVOUK project reference number P46 provided by the Charles University in

Prague (Program rozvoje vědních oblastí na Univerzitě Karlově).

Pavel Surynek

2

The standard abstraction adopted throughout this work uses an undirected graph to

model the environment. Vertices of this graph represent positions in the environment and

edges represent passable regions between two positions. An arrangement of entities in the

environment is abstracted as a uniquely invertible assignment of entities to vertices. At

least one vertex remains unoccupied in order to make the movement of entities possible –

for example moving in a circle where each entity follows the preceding entity is not al-

lowed. The time is discrete; it is an ordered set of time steps isomorphic to the structure

of natural numbers. A way in which an arrangement of entities can be transformed into

another can slightly differ in variants of the problem. The best known abstract formaliza-

tions of coordinated motion problems are represented by pebble motion on a graph

(PMG) as defined in [4] and [16], and multi-robot path planning (MRPP) as defined in

[8, 10, 11] while the latter allows higher parallelism.

 Abstract problems of coordinated motion of multiple entities on a graph are motivated

by many real-life problems. The most typical motivating example is motion planning of a

group of mobile robots that are moving in 2-dimensional space. Generally, if there is

enough free space in the environment, algorithms based on search for shortest paths in a

graph with an eventual local repairs if collision occurs can be used [1]. However, if non-

trivial amount of space is occupied different approaches must be adopted.

Many well known puzzles can be formulated as coordinated motion on a graph. The

best known is so called Lloyd’s 15-puzzle and its generalizations as described in [6, 7]

and [16]. In practice, entities may be represented by various mobile or movable objects –

for example rearranging containers in some storage area can be interpreted as a problem

of coordinated motion where entities are represented by containers. Exactly this interpre-

tation has been used for planning motions of automated straddle carriers in a storage area

in Patrick port facility at Port Brisbane in Queensland as reported in [8]. Although the

approach suggested in [8] is applied on few movable entities it clearly demonstrates the

usefulness of discussed abstractions. Entities do not necessarily need to be physical ob-

jects. Virtual spaces of computer simulations and games contain many situations where

motions of certain entities must be planned. A typical example is a coordination of

groups of units in real-time strategic computer games (RTS) [14].

It is necessary to emphasize that contrary to multi-agent motion planning [3], the cen-

tralized approach is adopted in this work. This means that the environment is fully ob-

servable for the central planning mechanism and the individual entities merely execute

the centrally created plan.

There exist several relatively efficient methods for solving problems of coordinated

motion on a graph. This work is particularly targeted on solving methods described in

[10, 11]. These methods represent algorithms for the class of problems where the graph

modeling the environment is bi-connected [15] and the graph is densely occupied by

entities. More precisely, the number of entities is comparable to the size of the set of

vertices (that is,). Despite the good performance of these methods, generated

solutions are suspected of containing certain redundancies. This is a hypothesis whose

examination is the main contribution of this paper. If it is the case that generated solu-

 Redundancy Elimination in Highly Parallel Solutions of Motion Coordination Problems

3

tions contain redundancies, then a question how they can be removed to improve the

solution arises.

 The task was to analyze solutions of non-trivial size, which turned out to be infeasible

to be done manually. Moreover, we were searching redundancies of a priori unknown

nature. Therefore, a software tool GraphRec [5] allowing visual analysis of solutions of

problems of motion on a graph has been developed and employed in this analysis. Sever-

al types of redundancies were observed using the GraphRec software in generated solu-

tions. The most prominent three of them that we manage to formally capture are de-

scribed in this paper. Methods for automated discovering and elimination of these three

defined types of redundancies are suggested and analyzed theoretically as well as exper-

imentally. We also suggest to model the problem of motion on a graph as propositional

satisfiability (SAT) [1] which allows us to discover very generic redundancies automati-

cally.

The top level organization of the paper has two parts. The first part explains a specific

variant of the coordinated motion problem (section 2) and the basic solving algorithm

(section 3); this part mostly recalls existing concepts. The second part contains the main

contribution of this work; redundancy elimination methods are described (section 4), and

the benefit of suggested methods is justified in the experimental section (section 5). Addi-

tionally a SAT based solution improvement technique is described in section 6.

2. Pebble Motion on a Graph (PMG)

In the rest of the paper, we restrict ourselves on the variant of the entity motion coordina-

tion problem known as pebble motion on a graph (PMG) defined in [7] and [16]. The

work can be extended on other variants of the problem such as multi-robot path planning

(MRPP) using minor modifications only.

 The task in pebble motion on a graph is given by an undirected graph with an initial

and a goal arrangement of pebbles in vertices of the graph. Each vertex contains at most

one pebble (which represents a movable entity) and at least one vertex remains unoccu-

pied. The task is to find a sequence of moves for each pebble such that all the pebbles

reach their goal vertices. A pebble can move into a neighboring unoccupied vertex while

no other pebble is entering the same target vertex simultaneously. The following defini-

tion formalizes the problem. An illustration of the problem is shown in Fig. 1.

Definition 1 (pebble motion on a graph). Let be an undirected graph and let

 be a set of pebbles where . The initial arrangement of pebbles

is defined by an injective function
 (that is

 for

 with); the goal arrangement of pebbles is defined by another injective

function
 . A problem of PMG is the task to find a number and a sequence

 where

 is an injective function for every .

The following constraints must hold for :

(i)

 , that is, pebbles eventually reach their destinations.

Pavel Surynek

4

(ii) Either

 or

 for every and

 .

(iii)

 and

 for such that must hold

for every and , that is no two pebbles can enter the same

target vertex simultaneously.

The problem described above is formally a quadruple

 . □

In practice, the quality of solution matters. The typical measures of the quality of solu-

tion are its length (the total number of moves) and the makespan (which corresponds to

the number). These numbers are required to be small. Unfortunately, requiring either

the length of solution or its makespan to be as small as possible makes the problem in-

tractable [7] (the decision variant of the problem is NP-complete). On the other hand, if

there is no requirement on the quality, the question whether there exists a solution is in

the P class as it shown in [4] and [16].

However, methods showing evidence that the problem belongs to the P class described

in [4] and [16] generates excessively long solutions that are unsuitable for practice when

each movement of an entity represented by a pebble has a nontrivial cost. Therefore, it

was necessary to find a compromise between the quality of solution and computational

effort of its construction. Methods following this compromise are described in [10] and

[11]. Solutions produced by these methods were submitted for analysis into the visualiza-

tion tool in order to find if and how they can be further improved.

Fig 1. An illustration of a PMG problem. The task is to move pebbles from their initial positions specified by

 to the goal positions specified by

 . A solution of length 6 is shown.

3. Solving Coordinated Motion Problems

This section is devoted to a brief recall of algorithms described in [10] and [11]. Under-

standing how these algorithms work will provide us an insight into the structure of solu-

tions produced by them. This theoretical insight founded the hypothesis that solutions can

be further improved.

S+
P

S0

P v1

v2

v3

v5

v4

v8

v7

1

2

3
v6 v9

v1

v2

v3

v5

v4

v8

v7

2

3

v6 v9

1

=6

Solution of the problem of pebble motion
on a graph with P={1,2,3}

S
0
P

v1
v2
v3

S
6
P=S

+
P

v9
v8
v7

S
1
P

v4
v2
v3

S
2
P

v7
v1
v3

S
3
P

v8
v4
v2

S
4
P

v9
v7
v1

S
5
P

v9
v8
v4

P

1
2
3

 Redundancy Elimination in Highly Parallel Solutions of Motion Coordination Problems

5

A very important class of pebble motion problems is formed by those whose graph is

bi-connected which intuitively means that each pair of vertices is connected by two dis-

joint paths.

Definition 2 (connectivity, bi-connectivity). An undirected graph is connect-

ed if and for every pair of distinct vertices there exists a path connecting

 and in . An undirected graph is bi-connected if and for every

vertex the graph is con-

nected. □

The importance of this class of problems is assessed by the fact that they are almost

always solvable. Moreover, spatial environments in real tasks are often abstracted as two

dimensional grids which are bi-connected in most cases.

If the bi-connected graph contains at least two unoccupied vertices and it is not a cycle,

then every goal arrangement of pebbles is reachable from every initial arrangement [10].

If the graph contains just one unoccupied vertex which can be without loss of generality

fixed, then any arrangement of pebbles can be regarded as a permutation with respect to

the initial arrangement.

A permutation is even if it can be composed of the even number of transpositions; oth-

erwise it is odd. If the goal arrangement represents an even permutation, then the problem

is always solvable. In case of an odd permutation, the problem is solvable if and only if

the graph contains a cycle of the odd length [16].

An inductive construction of bi-connected graphs by adding handles is a pivotal con-

cept in developing solving algorithms. Let be a graph, a handle with respect

to is a sequence of vertices , where and for

 (it allowed that). The result of an addition of handle to graph is a

new graph , where and either if

 or if . Every bi-connected

graph can be constructed from a cycle by a sequence of handle additions.

3.1. The BIBOX-θ Solving Algorithm

The BIBOX-θ algorithm [11] solves a case of the PMG problem when the graph is bi-

connected and there is single unoccupied vertex. The algorithm provides a good perfor-

mance for the described class of problems in terms of speed and quality of generated

solutions. This is the main reason why solutions produced by this algorithm are studied.

In the first phase, a handle decomposition is found; that is, a cycle - called initial cycle

- and a sequence of handles is determined. Without loss of generality it is required that

the unoccupied vertex within the goal arrangement of pebbles is located in the initial

cycle. The algorithm then proceeds inductively according to the handle decomposition

from the last handle to the initial cycle with the first handle.

Two properties of bi-connected graphs with at least one unoccupied vertex are exploit-

ed while pebbles are placed within handles: (a) every vertex can be made unoccupied

(this is even true for a connected graph), (b) every pebble can be moved to an arbitrary

Pavel Surynek

6

vertex. A handle is processed in the following way. An orientation of the handle is cho-

sen first – this orientation determines ordering of vertices within the handle. The first and

the last vertex of the handle are the connection points to the remainder graph.

Then pebbles starting with the pebble whose goal position is in the second vertex of

the handle are placed into the handle in the stack manner. The current pebble is moved to

the last vertex of the handle.

Two cases are distinguished here. If the pebble is already somewhere in the handle it

must be moved outside first. If the current pebble is outside the handle, then it can be

moved into the last vertex of the handle using property (b).

After placing the pebble into the last vertex of the handle, the handle is rotated once in

the direction to the first vertex. When all the pebbles within the handle are processed the

task is to solve the problem of the same type on a smaller graph.

Nevertheless, the stack manner of placing pebbles cannot be applied for the initial cy-

cle and the first handle of the decomposition. The algorithm uses a database containing

pre-calculated optimal solutions for transpositions and rotation of pebbles along 3-cycles

in graphs consisting of a cycle and a handle. A solution to any solvable instance on the

initial cycle with the first handle is then composed of solutions from such a database.

3.2. A Case with More Unoccupied Vertices

If there are exactly two unoccupied vertices in the graph an alternative more efficient

placing of pebbles in the initial cycle and the first handle can be used [10]. If there are

more than two unoccupied vertices in the graph the approach proposed in [11] is to fill all

the remaining unoccupied vertices except two with extra pebbles. The instance is then

solved by the BIBOX-θ algorithm and the solution is post-processed by removing move-

ments of extra pebbles out of the solution.

This approach is however suspected of generating unnecessary movements for original

pebbles. Notice that original pebbles have to make quite complicated movements when

an extra pebble is being placed into a handle. All these movements of the original pebbles

are redundant in fact since movements of the extra pebble will be eventually filtered out.

4. Elimination of Redundancies

Several types of redundancies were discovered using the GraphRec software. A formal

description of these redundancies and algorithms for their elimination are provided in the

following sections. When reasoning about redundancies, it is convenient to assume solu-

tions to be sequential; that is, a solution has just one movement between consecutive time

steps. Fortunately, the BIBOX-θ algorithm can produce solutions in this form. A solution

of this form can be viewed as a sequence of moves.

The notation will denote a move of a pebble from a vertex to a ver-

tex commenced at time step . The move is called non-trivial if . From the

formal point of view, the sequential solution is a sequence of non-trivial moves

 (consistency with Definition 1 is also assumed).

 Redundancy Elimination in Highly Parallel Solutions of Motion Coordination Problems

7

Definition 3 (inverse moves). Two consecutive moves and

with are called inverse if , , and . □

Observe that a pair of inverse moves can be left out of the solution without affecting

its validity – resulting sequence still solves the problem. However, elimination of an

inverse pair may cause that another pair of inverse moves arises. Hence, it is necessary to

remove inverse moves from the solution repeatedly until there are any.

Algorithm 1. Elimination of inverse moves.

function Erase-Inverse-Moves : sequence

1: do

2:

3: let

4: for do

5: if and are inverse then

6:
7:

8: while

9: return

The process of elimination inverse moves is expressed as Algorithm 1. The worst case

time complexity of the algorithm is , the space complexity is .

Definition 4 (redundant moves). A sequence of moves

 ,

where is a an increasing sequence of indices, is

called redundant if
 ,

, and for each move

with it holds that . □

Redundant moves represents generalization of inverse moves (a pair of inverse moves

form a redundant sequence). It is a sequence of moves, which relocates a pebble into

some vertex for the second time while the other pebbles do not enter this vertex at any

time step between the beginning and the end of the sequence. Eliminating a redundant

sequence of moves preserves validity of the solution.

Again, it is necessary to remove redundant sequences repeatedly since its removal may

cause that another redundant sequence arises.

Algorithm 2 formalizes the process of removing redundant moves in the pseudo-code.

The worst case time complexity is , the space complexity is .

Definition 5 (long sequence). Let
 be a set of vertices occupied by pebbles at time step

 . A sequence of moves

 , where

 is an increasing sequence of indices, is called long if

and there exists a path
 in such that ,

 ,

and for all the moves with it holds that

 . □

Pavel Surynek

8

The concept of long sequence is a generalization of redundant sequence (the path is

empty in the case of redundant sequence). Intuitively, the long sequence can be replaced

by a sequence of moves along a shorter path (cutoff path) into which other pebbles do not

enter between the beginning and the end of the sequence. Replacing a long sequence of

moves by a sequence of moves along the path again preserves validity of the solution.

Again, the replacement of long sequences must be performed repeatedly since new long

sequences may arise.

Algorithm 2. Elimination of redundant moves.

function Erase-Redundant-Moves : sequence

1: do

2: Find-Redundant-Moves

3:

4: while

5: return

function Find-Redundant-Moves : sequence

6: let

7: for do {beginning of redundant sequence}

8: for do

{end of redundant sequence}

9: if then

10: {redundant sequence}

11: for do

12: if then

13: if Check-Redundant-Moves then return

14: return

function Check-Redundant-Moves : boolean

15: let

16: for do

17: if then return

18: return

The process of replacement is formally expressed as Algorithm 3. The worst case time

complexity is ; the space complexity is .

Redundant moves and long sequences were described manually using the GraphRec

software. Without the visualization software we would be unable to discover them.

Notice alos that the gradual generalization was adopted in the description of redundan-

cies. Although long sequences subsume both less general redundancies, it is not advisable

to apply their replacement directly. It is better to apply elimination of redundancies step-

wise from the less general one to more general ones. The reason for this practice is the

increasing time complexity of redundancy elimination algorithms. A sequence of moves

submitted to the more complex algorithm is potentially shortened by eliminating less

general redundancies by following this practice.

 Redundancy Elimination in Highly Parallel Solutions of Motion Coordination Problems

9

Algorithm 3. Replacement of long sequences.

function Replace-Long-Moves : sequence

1: do

2: FindLongMoves

3: ;

4: while

5: return

function Find-Long-Moves : pair

6: let

7: for do

8: for do

9: if then

10:

11: for do

12: if then

13: Check-Long-Moves

14: if then

15: let

16:
17: return

18: return

function Check-Long-Moves : sequence

19: let

20: ;
 ;

21: for do

22: if then

23: ;

24: let be a shortest path between and in

25: if is defined and then return

26: return

5. Experimental Evaluation

An experimental evaluation was made with above three suggested methods for redundan-

cy elimination. Algorithms 1, 2, and 3 were implemented in C++ and were tested on a set

of benchmark instances of PMG. Solutions found by the BIBOX-θ [11] algorithm on

these benchmark instances were submitted to redundancy elimination methods.

Several characteristics of redundancy elimination were evaluated: the reduction of the

total number of moves within solutions, parallel makespan, average parallelism, and

runtime were measured. The implementation of redundancy elimination algorithms al-

most exactly follows the pseudo-code given in the previous section.

It was always the case that solution was processed by the less general redundancy

elimination before it was submitted to more general and more sophisticated one. This

measure ensures that the more time consuming algorithms obtains already processed

solution for which there is a chance to be significantly shorter. The complete source code

to allow reproducibility of all the experiments presented in this paper and raw experi-

Pavel Surynek

10

mental data are provided at the website: http://ktiml.mff.cuni.cz/~surynek/research/j-

redundancy-2012.

Fig. 2. Sequential length distribution on random bi-connected graphs. A collection of graphs consisting of

 vertices with length of handles ranging uniformly between and were generated for each number of

unoccupied vertices. Minimum, maximum, average, first quartile, and third quartile out of sequential solution
lengths of random instances over graphs from the collection are shown. The above characteristics of the solu-

tion length distribution are shown for original solutions as well as for solutions after removal of redundancies

by the selected technique. The average improvement of solution is shown too in the same chart. It is possible to
observe that solution lengths are distributed in a relatively narrow zone around the average length (approximate-

ly of the average length). The zone tends to narrow yet more for more sophisticated redundancy elimina-
tion.

Two structurally different sets of instances of the problem of PMG were tested. The

first set of problems consists of randomly generated bi-connected graphs with approxi-

mately vertices. The initial and the goal arrangement of pebbles were generated as a

random permutation. The construction of the random bi-connected graphs exploits the

construction that starts with a cycle followed by a gradual addition of handles to the cur-

rently constructed graph. Specifically, graphs were constructed by adding handles of

random length (uniform distribution from interval) to the initial cycle of length .

Tests were done with a collection of 10 different random bi-connected graphs of the

above setup.

The second set of testing instances consists of a grid of the size where the initial

and the goal arrangement of pebbles were again random permutations.

0

100

200

300

400

4 12 20 28 36 44 52 60 68 76 84

N
u

m
b

er
 o

f
m

o
ve

s

Sequential Length, Original,
random bi-connected

Min
Q1
Average
Q3
Max

1

2

3

4

5

0

100

200

300

400

4 12 20 28 36 44 52 60 68 76 84
N

u
m

b
er

 o
f

m
o

ve
s

Sequential Length, Inverse,
random bi-connected

Min
Q1
Average
Q3
Max
Imp. avg.

1

2

3

4

5

0

100

200

300

400

4 12 20 28 36 44 52 60 68 76 84

N
u

m
b

er
 o

f
m

o
ve

s

Sequential Length, Independent,
random bi-connected

Min
Q1
Average
Q3
Max
Imp. avg.

1

2

3

4

5

0

100

200

300

400

4 12 20 28 36 44 52 60 68 76 84

N
u

m
b

er
 o

f
m

o
ve

s

Sequential Length, Long,
random bi-connected

Min
Q1
Average
Q3
Max
Imp. avg.

Number of unoccupied
vertices

Number of unoccupied
vertices

Number of unoccupied

vertices

Number of unoccupied

vertices

http://ktiml.mff.cuni.cz/~surynek/research/j-redundancy-2012
http://ktiml.mff.cuni.cz/~surynek/research/j-redundancy-2012

 Redundancy Elimination in Highly Parallel Solutions of Motion Coordination Problems

11

Fig. 3. Solution length improvement on random bi-connected graph and 88 grid. The total number of moves

of the original solution and improvement ratio after applying redundancy elimination techniques are shown. As
the number of unoccupied vertices grows the better improvements can be achieved. Up to 5 times smaller

solutions can be obtained.

The series of results presented in Fig. 2 are devoted to an evaluation of the distribution

of the total number of moves within the solution on random bi-connected graphs. All the

three redundancy elimination methods were evaluated in this test. The solution length is

shown in the dependence on the number of unoccupied vertices which ranged from to

 . The following characteristics calculated out of solution lengths for instances over the

mentioned collection of graphs are shown for each number of unoccupied vertices:

maximum, minimum, first quartile, third quartile, and average length.

It can be observed from results in Fig. 2 that the sequential solution lengths tend to be

close to the average solution length; more precisely they are in the zone of approximately

 around the average length from which it can be concluded that the original

BIBOX-θ and redundancy elimination techniques have a stable behavior.

0

1000

2000

3000

4000

5000

6000

7000

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2 6 10 14 18 22 26 30 34 38 42

N
u

m
b

er
 o

f
m

o
ve

s

Sequential Length | random bi-connected

Inverse
Redundant
Long
Original

0

500

1000

1500

2000

2500

1

10

45 49 53 57 61 65 69 73 77 81 85 89

N
u

m
b

er
 o

f
m

o
ve

s

Sequential Length | random bi-connected

Inverse

Redundant

Long

Original

0

500

1000

1500

2000

1

10

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

N
u

m
b

er
 o

f
m

o
ve

s

Sequential Length | grid 8x8

Inverse

Redundant

Long

Original

Number of unoccupied vertices

Number of unoccupied
vertices

Number of unoccupied
vertices

Pavel Surynek

12

To keep the results readable the remaining results are presented for a single bi-

connected graph only – one of those 10 randomly generated bi-connected graphs was

chosen.

Fig. 4. Parallel makespan improvement. Redundancy elimination has even better effect on the makespan than

on the size of the solution. Removal of redundancies allows more efficient increasing of the parallelism. Up to

10 times shorter solutions can be obtained on bi-connected graphs.

The reduction of the total number of moves within the solution depending on the in-

creasing number of unoccupied vertices is shown in Fig. 3. It can be observed from Fig. 3

together with Fig. 2 that up to 5 times smaller solution can be obtained by applying re-

dundancy elimination. The most expensive elimination of long sequences is beneficial

when there is approximately and more unoccupied vertices.

0

100

200

300

400

500

600

1

1.2

1.4

1.6

1.8

2

2 6 10 14 18 22 26 30 34 38 42

M
ak

es
p

an

Parallel Makespan | random bi-connected

Inverse Redundant

Long Original

0

50

100

150

200

250

300

1

10

44 48 52 56 60 64 68 72 76 80 84 88

M
ak

es
p

an

Parallel Makespan | random bi-connected

Inverse
Redundant
Long
Original

0

50

100

150

200

250

300

350

1

10

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

M
ak

es
p

an

Parallel Makespan | grid 8x8

Inverse

Redundant

Long

Original

Number of unoccupied vertices

Number of unoccupied
vertices

Number of unoccupied

vertices

 Redundancy Elimination in Highly Parallel Solutions of Motion Coordination Problems

13

Results regarding the effect of redundancy elimination on parallel makespan are shown

in Fig. 4. These results correlate well with the total number of moves while the improve-

ment is slightly better for the makespan.

Fig. 5. Average parallelism (average number of mover per time step). The redundancy elimination leads to

increasing of the parallelism most significantly when there is 50% to 90% of unoccupied vertices in the graph.

This observation is further quantified in Fig. 5. where the dependence of the average

parallelism (which is defined as the total number of moves divided by the makespan) on

the number of unoccupied vertices is shown. It can be observed that redundancy elimina-

tion typically leads to a slight increase in the average parallelism.

Results regarding runtime on a testing machine are summarized in Fig. 6. Expectably,

the runtime consumed to eliminate long sequences is highest while it is still reasonable

for an offline post-processing. Eliminating inverse moves and redundant sequences is

relatively cheap so they can be used as an on-line post-processing tool.

The last part of the results presented in Fig. 7 is devoted to an investigation of step

parallelism – that is, the number of moves performed simultaneously at the individual

time steps. A single random bi-connected graph used in previous tests is presented here

as well. There were vertices out of unoccupied. Although it is difficult to make any

analysis of such results, one aspect is quite apparent from presented results – it can be

observed that the qualitatively most significant change occurs when the elimination of

redundant moves is used (this observation has been done also on other graphs and setups

which are not presented here). On the other hand, the change obtained by applying elimi-

nation of inverse moves on the original solution as well as the change obtained by elimi-

0

2

4

6

8

10

12

14

2 10 18 26 34 42 50 58 66 74 82

M
o

ve
s

p
er

 t
im

e
st

ep

Average Parallelelism | random bi-connected

Original

Inverse

Redundant

Long

0

2

4

6

8

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

M
o

ve
s

p
er

 t
im

e
st

ep

Average Parallelelism | grid 8x8

Original

Inverse

Redundant

Long

Number of unoccupied
vertices

Number of unoccupied vertices

Pavel Surynek

14

nating long sequences of moves from the solution which is already free of redundant

moves is relatively little.

Fig. 6. Runtime necessary for eliminating redundancies. Eliminating long sequences is computationally the
most costly (test were run on an Pentium 4, 2.4GHz, 512MB RAM, under Mandriva Linux 10.1, 32-bit edition).

It is possible to conclude that the solution can be improved by up to the order of mag-

nitude in the measured characteristics for both types of tested graphs.

Removal of redundant sequences represents the best trade-off between detection cost

and solution improvement according to performed experiments. Whereas eliminating

inverse moves or long sequences feature extreme situations; the former brings almost no

improvement; the latter seems to be computationally too costly for an on-line post-

processing.

0.01

0.1

1

10

100

1000

2 6 10 14 18 22 26 30 34 38 42

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Runtime| random bi-connected

Original Inverse

Redundant Long

0.01

0.1

1

10

100

45 49 53 57 61 65 69 73 77 81 85 89

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Runtime| random bi-connected
Original

Inverse

Redundant

Long

0.01

0.1

1

10

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Runtime| grid 8x8

Original Inverse

Redundant Long

Number of unoccupied vertices

Number of unoccupied
vertices

Number of unoccupied
vertices

 Redundancy Elimination in Highly Parallel Solutions of Motion Coordination Problems

15

An expectable result is that the better improvement of solutions is gained when there

are more unoccupied vertices in the input graph. Notice that definitions of redundancies

are based on the mutual non-interfering of motions of pebbles. The more unoccupied

space is available in the graph the less interference between moves of pebbles is possible.

Fig. 7. Step parallelism on random bi-connected graph. The graph consists of vertices and of them are

unoccupied. The length of handles was uniformly generated from the range - the same setup as in other
experiments. Number of moves in the individual time steps is shown.

6. SAT Based Solution Improvements: An Overview

Our novel solution optimization technique called COBOPT employs SAT solving technol-

ogy [1] to optimize the solution with respect to the makespan. The technique has been

suggested in [12]. To be able to use SAT solvers in this way we need to obtain some

(sub-optimal) solution to the PMG instance first. Let this initial solution be called a base

solution. In this regard we used the same original solution as the base solution as in the

case of redundancy elimination methods.

 The crucial building block for using SAT solving technology is an encoding of mo-

tion coordination instance as an instance of propositional satisfiability. That is, we need

to build a propositional formula such that it is satisfiable if and only if a solution of a

certain makespan to the given motion coordination instance exists. Suppose that we are

given makespan . We model the arrangements of pebbles at every time step

where the arrangement at time step is equal to the initial state and the arrangement at

time step is equal to the goal state. The individual arrangement consists of vectors of

propositional variables for each vertex of such that it tells us what pebble is located in

0

4

8

12

16

20

0 16 32 48 64 80 96 112 128 144

M
o

ve
s

p
er

 t
im

e
st

ep

Step parallelism, Original,
random bi-connected

0

4

8

12

16

20

0 16 32 48 64 80 96 112 128 144

M
o

ve
s

p
er

 t
im

e
st

ep

Step parallelism, Inverse,
random bi-connected

0

4

8

12

16

20

0 16 32 48 64 80 96 112 128 144

M
o

ve
s

p
er

 t
im

e
st

ep

Step parallelism, Redundant,
random bi-connected

0

4

8

12

16

20

0 16 32 48 64 80 96 112 128 144

M
o

ve
s

p
er

 t
im

e
st

ep

Step parallelism, Long,
random bi-connected

Time step

Average parallelism = 7.096

Time step

Average parallelism = 7.569

Time step Time step

Average parallelism = 7.306

Average parallelism = 7.235

Pavel Surynek

16

the given vertex. Constraints to enforce valid transitions between consecutive time steps

are also added. This encoding will be referred to as an inverse encoding in experiments.

 Having such a propositional formula we are able to solve the given solvable PMG

problem optimally with respect to the makespan. This is done by asking if a solution of

some makespan exists, where is selected according to some search strategy. This

asking strategy may be based for example on binary search – actually this is a strategy we

use.

Notice that it is not possible to check that there is no solution to the PMG instance us-

ing this technique. However, as we use the technique to replace sub-optimal sub-solutions

in the already constructed base solution we always know that the instance is solvable.

Algorithm 4. COBOPT: SAT-based PMG solution optimization – basic scheme based

on binary search.

function COBOPT-Optimize-Motion-Coordination-Plan : solution

1:
2: do

3:

4: let

5: ;
6: while do

7: Find-Last-Reachable-Arrangement

8: Compute-Optimal-Solution

9:

10: while
11: return

function Find-Last-Reachable-Arrangement
 : integer

12: let

13:

14: while do

15:

16:

17: Encode

18: if Solve-SAT then

19: else

20: return

After producing a base solution, this is submitted to a SAT based optimization pro-

cess. A maximum bound for encoding coordination instances is specified. Then sub-

sequences in the base solution are replaced with computed optimal sub-solution. Suppose

that we are currently optimizing at time step . It is computed what is the largest

such that the time step can be reached from the time step with no more than

steps. Then sub-solution of the base solution from the time step to is replaced by the

optimal one obtained from the SAT solver. The process then continues with optimization

at time step until the whole base solution is processed.

 Redundancy Elimination in Highly Parallel Solutions of Motion Coordination Problems

17

Fig. 8. Makespan comparison on the 88 grid. Optimal solutions for up to 22 and 30 agents can be found by

SAT based optimization. Only up to 16 agents can be solved sub-optimally by WHCA*. The timeout for SAT

based optimization was 3600 seconds.

Fig. 9. Makespan comparison on the 1616 grid. Optimal solutions for up to 40 agents can be found by SAT-

based optimization; in the same range WHCA* can find near optimal solution as well. The timeout for SAT

based optimization was 3600 seconds.

The optimization process can be iterated by taking new solution as the base one until

a fixed point is reached. The binary search is employed to find and the optimal sub-

solution in order to reduce the number of SAT solver invocations – see Algorithm 4.

which summarizes basic COBOPT optimization method formally.

 Notice that separation points in the base solution are selected on the greedy basis –

optimization always continues on the first not yet processed time step. We also consid-

ered optimizing placement of separation point by dynamic programming techniques. This

approach generates slightly better base solution decomposition. However it is at the great

expense in overall runtime as many more invocation of the SAT solver are necessary.

In the experimental evaluation with SAT based optimization of solutions we also made

comparison with the WHCA* algorithm [9] that is known to generate solutions that have

makespan near to the optimum. WHCA* is however not able to tackle instances with

environments densely occupied by agents.

Results showing comparison of the SAT-based optimization with respect to the base

solution as well as with respect to WHCA* on 4-connected grids are shown in Fig. 8 and

Fig. 9. The time limit for optimization was set to 3600 seconds. The process either found

0

20

40

60

80

0 4 8 12 16 20 24

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Makespan|Grid 88|few agents

Base solution

WHCA*

Inverse

0

200

400

600

28 32 36 40 44 48 52

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Makespan|Grid 88|many agents

Base solution

Inverse

0

40

80

120

160

0 4 8 12 16 20 24 28 32 36 40

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Makespan|Grid 1616|few agents

Base solution

WHCA*

Inverse

0

200

400

600

800

1000

48 64 80 96 112 128

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Makespan|Grid 1616|many agents

Base solution

Inverse

Number of agents
Number of agents

Number of agents Number of agents

SAT-based
SAT-based

SAT-based

SAT-based

Pavel Surynek

18

an optimal solution or the time limit was reached. It can be observed that SAT based

optimization generates better solutions than WHCA*. Optimal solutions were obtained in

cases with few agents.

If we compare SAT-based optimization with redundancy elimination methods it can be

stated that SAT-based optimization is more general. It is able to discover a redundancy of

a priori unknown type. On the other SAT based optimization is more time consuming

which makes it suitable for off-line solving of the problem only while redundancy elimi-

nations can be used on-line. Lot of improvements in the makespan when SAT based

optimization is used comes from increasing parallelism – more moves are performed per

single time step. It may happen that even though makespan of the solution has been im-

proved the number of moves within the solution may increase.

7. Summary, Conclusions, and Future Work

This work addressed the quality (makespan) of solutions of problems motion coordina-

tion. Particularly, solutions generated by the existing algorithm BIBOX-θ for the given

class of the problem were analyzed with respect to the presence of certain type of redun-

dancies. Our hypothesis was that there exist certain types redundancies in generated solu-

tions while we were not aware how do they look like.

A special visualization tool GraphRec was used for analyzing solutions produced by

the BIBOX-θ algorithm. This tool allowed automating two tasks that cannot be made

manually – proper drawing of a graph which a given instance consists of and visualizing

moves of entities over this graph. The tool eventually confirmed that redundancies really

exist and it was possible to propose their formal description.

Several types of redundancies were defined and methods for their elimination were

proposed. To justify quality of our proposal an extensive experimental evaluation of

proposed methods was performed on the number of different problem setups. It eventual-

ly confirmed that solutions can be improved by up to the order of magnitude using the

suggested methods. The secondary finding is that the better improvement can be gained

for problems with higher number of unoccupied vertices.

As a next step in solution improvements we suggest to employ SAT solving technolo-

gy. A propositional formula satisfiable if and only if a given instance of motion coordina-

tion problem is solvable within the given makespan is constructed. Such a formula allows

asking what is the makespan optimal replacement for a given sub-solution of an existing

solution. The solution improvement process then repeatedly replaces sub-solutions by

optimal ones until time limit is reached or the makespan optimal solution is found.

The SAT based technique generates high quality solutions with respect to the

makespan however it is very time consuming. Thus it is more suitable for off-line im-

provements of solutions. On the other hand redundancy elimination methods are fast

enough and can be used on-line.

 Redundancy Elimination in Highly Parallel Solutions of Motion Coordination Problems

19

References

1. N. Eén, N. Sörensson, “An Extensible SAT-solver,” Proceedings of Theory and Applica-

tions of Satisfiability Testing (SAT 2003), pp. 502-518, LNCS 2919, Springer, 2004.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, “Introduction to Algorithms (Se-

cond edition),” MIT Press and McGraw-Hill, 2001, ISBN 0-262-03293-7.

3. A. Kishimoto, N. R. Sturtevant, “Optimized algorithms for multi-agent routing,” Pro-

ceedings of the 7th International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2008), Volume 3, IFAAMAS 2008, pp. 1585-1588.

4. D. Kornhauser, G. L. Miller, P. G. Spirakis, “Coordinating Pebble Motion on Graphs, the

Diameter of Permutation Groups, and Applications,” Proceedings of the 25th Annual

Symposium on Foundations of Computer Science (FOCS 1984), IEEE Press, 1984, pp.

241-250.

5. P. Koupý, “GraphRec - a visualization tool for entity movement on graph,” Student pro-

ject web page, http://www.koupy.net/graphrec.php, 2011, (January 2011).

6. I. Parberry, “A real-time algorithm for the (nˆ2-1)-puzzle,” Information Processing Let-

ters, Volume 56 (1), pp. 23-28, Elsevier, 1995.

7. D. Ratner and M. K. Warmuth, “Finding a Shortest Solution for the N×N Extension of

the 15-PUZZLE Is Intractable,” Proceedings of the 5th National Conference on Artificial

Intelligence (AAAI 1986), Morgan Kaufmann Publishers, 1986, pp. 168-172.

8. M. R. K. Ryan, “Exploiting subgraph structure in multi-robot path planning,” Journal of

Artificial Intelligence Research (JAIR), Volume 31, (January 2008), AAAI Press, 2008,

pp. 497-542.

9. D. Silver, “Cooperative Pathfinding,” Proceedings of the 1st Artificial Intelligence and

Interactive Digital Entertainment Conference (AIIDE 2005), AAAI Press, 2005, pp. 117-

122.

10. P. Surynek, “A Novel Approach to Path Planning for Multiple Robots in Bi-connected

Graphs,” Proceedings of the 2009 IEEE International Conference on Robotics and Auto-

mation (ICRA 2009), IEEE Press, 2009, pp. 3613-3619.

11. P. Surynek, “An Application of Pebble Motion on Graphs to Abstract Multi-robot Path

Planning,” Proceedings of the 21st International Conference on Tools with Artificial In-

telligence (ICTAI 2009), IEEE Press, 2009, pp. 151-158.

12. P. Surynek, “Towards Optimal Cooperative Path Planning in Hard Setups through

Satisfiability Solving”, Proceedings of PRICAI 2012, LNCS 7458, Springer, 2012, pp.

564-576.

13. R. E. Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM Journal on

Computing, Volume 1 (2), pp. 146-160, Society for Industrial and Applied Mathematics,

1972.

14. K. C. Wang and A. Botea, “Tractable Multi-Agent Path Planning on Grid Maps,” Pro-

ceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI

2009), IJCAI Conference, 2009, pp. 1870-1875.

15. J. Westbrook, R. E. Tarjan, “Maintaining bridge-connected and bi-connected components

on-line,” Algorithmica, Volume 7, Number 5&6, pp. 433–464, Springer, 1992.

16. R. M. Wilson, “Graph Puzzles, Homotopy, and the Alternating Group,” Journal of Com-

binatorial Theory, Ser. B 16, Elsevier, 1974, pp. 86-96.

http://www.koupy.net/graphrec.php

