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A new type of partially global consistency derived from      -consistency called bounded      -
consistency (B2C-consistency) is presented in this paper. It is designed for application in proposi-

tional satisfiability (SAT) as a building block for a preprocessing tool. Together with the new 

B2C-consistency a special mechanism for selecting regions of the input SAT instance with difficult 

constraint setup was also proposed. This mechanism is used to select suitable difficult sub-problems 

whose simplification through consistency can lead to a significant reduction in the effort needed to 

solve the instance. A new prototype preprocessing tool preprocessSIGMA which is based on the 

proposed techniques was implemented. As a proof of new concepts a competitive experimental eval-

uation on a set of relatively difficult SAT instances was conducted. It showed that our prototype pre-

processor is competitive with respect to the existent preprocessing tools LiVer, NiVer, HyPre, 

blocked clause elimination (BCE), and Shatter with saucy 3.0. 

Keywords: SAT; CSP; SAT preprocessing; local consistency; global consistency; 

     -consistency; probability; difficult instances; hyper-resolution; blocked clause elimination; 

symmetry; 

1.   Introduction and Motivation 

Recent works dealing with difficult instances of propositional satisfiability (SAT) [1, 2, 8, 

10, 26] indicate that an intelligent preprocessing focused on the structure of an instance 

can dramatically reduce the effort needed to solve it. Technically, the preprocessing task 

is done by transforming the input instance into another one (hopefully simpler), which is 

subsequently submitted to a general purpose SAT solver [8, 13]. It is crucial that the pre-

processing step is fast enough relative to the runtime of the SAT solver on the prepro-

cessed instance. 

In this work, we further develop ideas from [26] where the input propositional formu-

la is interpreted as a graph, in which graph structures – namely complete sub-graphs – are 

identified and, after some calculation involving the number and the size of complete sub-
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graphs, an inference is made. The drawback of the original idea from [26] is that it re-

quires the input instance to be relatively well structured to be able to identify acceptable 

complete sub-graph decomposition. In this paper, we overcome this major drawback 

using two new techniques. First, a new type of consistency derived from      -
consistency [11] called bounded      -consistency with complete graphs 

(B2C-consistency) is proposed. It uses graph interpretation of a sub-problem on which 

reasoning over its decomposition into complete sub-graphs is performed and can there-

fore be regarded as a partially global reasoning mechanism. Second, a new mechanism 

for selecting a sub-problem suitable for applying the consistency is proposed. In order to 

maximize the benefit of inferences made through consistency, we proposed to apply it on 

regions of the input instance with a locally difficult constraint setup. It means that we are 

trying to choose such a sub-problem for applying the consistency that, in itself, is difficult 

in a certain sense (focusing on the difficulty proved to be beneficial in [26] but the previ-

ous technique required the whole instance to exhibit a difficult constraint setup). We were 

primarily inspired by the difficulty of well known problems such as the pigeon/hole prin-

ciple (P/H principle) or FPGA routing [1, 2] and we are trying to select regions of the 

instance which, in terms of certain properties, are similar to these difficult instances. To 

do this, a characteristic called the expected number of satisfied tuples of values is used so 

that regions that have this characteristic similar to difficult instances are used as sub-

problems on which B2C-consistency is applied. In this way, we are able to discover sub-

problems with a hidden difficulty and simplify them with the proposed consistency rea-

soning, which provides a faster solution of the output instance. 

As a validation of the proposed concepts a prototype SAT preprocessing tool 

preprocessSIGMA [27] based on B2C-consistency and a new sub-problem selection 

technique have been implemented. The performed experimental evaluation showed that 

our prototype preprocessing tool is competitive with respect to existent prominent pre-

processing tools such as LiVer [25], NiVer [25], HyPre [5], blocked clause elimina-

tion [16, 20] (precosat-465), and Shatter with saucy 3.0 [2, 21] which is so 

far the latest version. 

This work has been iteratively developed and preceding work related to the presented 

one appeared in [26]. The organization of the paper is as follows: basic concepts from 

constraint programming [11] and SAT are introduced in Section 2. The concept of 

B2C-consistency is subsequently developed (Section 3). The following section (Section 

4) deals with the question of how to build a preprocessing tool exploiting 

B2C-consistency. Finally (Section 5), an extensive experimental evaluation focused on 

the competitiveness and the investigation of internal properties of the implemented pre-

processor is presented. 

2.   Background from Constraint Programming and Propositional Satisfiability 

Let us start with the basic notation and definitions used in the rest of the paper. This sec-

tion represents the basic background from constraint programming [11] and proposition-

al satisfiability [8], which the new concepts rely on. 

Tuples and lists (that is, sequences) consisting of some objects will be denoted using 

brackets (for example       denotes an ordered pair consisting of two objects   and  ;    
denotes the empty list). 
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Definition 1 (Constraint Satisfaction Problem) [11]. A constraint satisfaction problem 

(CSP) over a given finite universe   is a triple         where   is a finite set of varia-

bles,   is a finite set of constraints, and        is a function assigning each variable 

a finite domain. A constraint     is a construct of the form     
    

       
       where 

     is the arity of constraint  ,    
    

       
   with   

    for            is called 

a scope of  , and        
       

          
   is a relation that enumerates a set 

of tuples of values for which constraint   is satisfied. □ 

 

For simplicity, it is sometimes assumed that         for every    . We will use 

this assumption as well in certain cases. Furthermore, it is assumed that we can reorder 

variables in the scope of a constraint arbitrarily using the above notation. For example, if 

there is a constraint              in  , we can suppose that there is also an equivalent 

formulation of   as a constraint              in   where relation    can be obtained 

from    by swapping its components. 

 

Definition 2 (Solution of CSP) [11]. An assignment       such that           
for every     is called a solution of a given CSP         if it is defined for every 

variable in   and all the constraints in   are satisfied by  . That is, it holds that 

     
       

          
       for every constraint       

    
       

        . □ 

 

Regarding constraints, we will sometimes use a formulation that some tuple of values 

is allowed/forbidden by a constraint, which means exactly that the tuple belongs or does 

not belong to the defining relation of the constraint. 

Closely related to CSP is the propositional satisfiability problem (SAT) [8, 10]. It is 

introduced in the following two definitions. Note that in CSP we are trying to find a valu-

ation of variables such that all the constraints are satisfied (that is, the conjunction of all 

the constraints is satisfied). In SAT the task is similar. We are trying to find a proposi-

tional valuation that satisfies all the clauses of the input formula (the formula has typical-

ly the form of a conjunction of clauses – CNF). 

 

Definition 3 (Propositional Formula) [10]. A propositional formula in the conjunctive 

normal form (CNF) over a given set of propositional variables   is a conjunction:    
 
    

where      and each    with             is a clause that puts into a disjunction 

literals over variables from  . That is,       
   

    for           where      is 

the size of the clause and either   
    or   

     for some variable     for every 

          . □ 

 

Definition 4 (Propositional Satisfiability Problem) [10]. A valuation of propositional 

variables is an assignment                 . The given valuation of variables   

can be naturally extended to a valuation of formulae over   denoted as   . A proposi-

tional satisfiability problem (SAT) with a formula   over   is the task of determining 

whether there exists a valuation   of   such that           . □ 

 

We are about to work with the concept of consistencies [11] in SAT which is, howev-

er, the concept from constraint programming used over CSPs. Hence, it is convenient to 
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define translation of SAT to CSP so that we are able to work with consistencies in SAT 

through this translation. For this purpose, we chose the so-called literal encoding [6, 27] 

which provides such a translation in the natural way. 

 

Definition 5 (Literal Encoding of SAT) [27]. Let      
 
    with    

   

    for   
        be a propositional formula in CNF over  . A literal encoding of   is a CSP 

         
    

    
   where   

                 ,   
           

              for 

every          ; and there are constraints between all the pairs of variables as fol-

lows:      
     

 
  where    

    
       and    

 
   

       is forbidden by relation    defining 

constraint               
   with              ,             , and              if 

there is     such that either     
  and      

 
 or      

  and     
 
. □ 

 

The stripe above the generic symbols is used to distinguish constant symbols (with 

the stripe) which do not evaluate from variables (without the stripe) which do evaluate 

(down to other constants). Note that literal encoding is a binary CSP; that is, all the con-

straints have arity of at most  . 

For our purposes, literal encoding is further processed to capture constraints imposed 

by the original formula more explicitly (note that there is an incompatibility between 

complementary literals only at this stage). A new incompatibility is introduced as a con-

straint between every two literals   
  and   

 
 with               such that    , 

             and              if the singleton unit propagation [12, 26] with the  

setting   
       infers that   

 
       with respect to   (that is, it is set that 

  
      ; all the other variables are left unassigned and unit propagation follows). Let 

this modification of literal encoding be called an explicit literal encoding and it will be 

denoted as          
    

    
   (the upper index implies that the first stage of infer-

ence has been made). 

We are now ready to define the so-called      -consistency [11]. It is a generaliza-

tion of  -consistency [24] which checks whether a value is supported by a  -tuple of 

values from the domains of other variables. Within      -consistency, it is checked 

whether a pair of consistent values has a supporting  -tuple of values. If there is no such 

supporting  -tuple of values the value or the pair of values respectively can be ruled out 

from further consideration by an additional constraint. 

An auxiliary operation of projection denoted as       will be used to transform a tu-

ple   into another tuple with respect to patterns   and  . Tuple   and pattern   are of the 

same size and   is contained by  . The result of the projection is obtained by matching 

pattern   on   followed by selecting components of   associated with their counterparts 

in   that correspond to   (for instance,                        ). 

 

Definition 6 (     -Consistency) [11]. Let     be a natural number,         be a 

CSP, and                   be a      -tuple of distinct variables. A pair of values 

         and              with              for every binary constraint 

              
   in   is called to be      -consistent with respect to  -list of varia-

bles            if there exists a  -tuple of values         ,         , ,    

      such that for every constraint       
    

       
       in   with    
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                  it holds that                               

    
     

  
    . The 

pair of values          and              is called to be      -consistent if it is 

     -consistent with respect to all the  -tuples of variables          . Finally, CSP 

        is called to be      -consistent if all the pairs of values from domains of every 

two distinct variables are      -consistent. □ 

 

It is not difficult to see that checking whether there exists a supporting  -tuple of val-

ues with respect to a fixed  -list of variables of unbounded size   is an   -complete 

problem [22] in both  -consistency and      -consistency (for example, the graph color-

ing problem can be reduced to the task of searching for a supporting  -tuple). Hence, 

unless     , the support cannot be found in polynomial time. 

Another simple observation is that a support with respect to a fixed list of variables 

can be found in         by traversing all the involved  -tuples of values. This is also the 

currently best known upper bound of the time complexity of the search for a support 

within      -consistency enforcing algorithms [11]. 

Both the discussed higher level consistencies represent powerful techniques when   is 

bounded by the number of variables only. After enforcing  -consistency/     -
consistency with   high enough it is possible to obtain a solution of a problem in a back-

track-free manner [11]. Without providing more details, the high enough   means that it 

is at least the width of the constraint graph of the given CSP which does not exceed the 

number of variables [14]. 

3.   Bounded      -Consistency with Complete Graphs – B2C Consistency 

Our new concept of the so-called bounded      -consistency with complete graphs 

(B2C-consistency) combines the inference strength of      -consistency with graph-

based global reasoning. The global oriented reasoning in SAT which is of our interest 

was first introduced in [26]. Particularly, the idea of exploiting global information re-

flected in complete sub-graphs in a certain graph interpretation of the problem has been 

taken from the previous work and further elaborated. However, global reasoning itself 

turned out to be unilateral and hence not ideally suitable for using in SAT preprocessing. 

Therefore, it is suggested in this work to enhance global reasoning with 

     -consistency, which is quite universal and is supposed to help in cases where global 

reasoning alone is unsuitable. If both the approaches – global and      -consistency – are 

applied together a synergic effect is produced in certain situations. 

Local consistencies such as  -consistency and related consistencies in SAT have been 

studied in several works [7, 23, 29]. The common approach in these works is to encode a 

given task so that a local consistency of interest is simulated by unit propagation [12]. 

Our approach takes an instance of SAT problem as a list of clauses (constraints) and 

applies the consistency directly without caring about the way how the original task has 

been encoded into the instance. The result is a set of forbidden value assignments in the 

case of B2C-consistency which is subsequently submitted to a SAT solver together with 

the original instance as a list of additional clauses. 

The major obstacle with      -consistency is that it is difficult to enforce because it 

is necessary to search for a consistent  -tuple of values, which means to traverse the 

search space of the size of      in the worst case (supposed that all the variables have an 
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identical domain of  ). Hence, to preserve low computation costs of the consistency 

enforcing algorithm we suggest to bound the consistency in some way. It has been chosen 

to bound the number of steps of the search for a consistent  -tuple by constant  . 

B2C-consistency is again defined with respect to a      -tuple of distinct variables. 

Again, it checks whether a given pair of values from domains of two distinct variables 

have a supporting  -tuple in domains of remaining   variables. The following sections 

describe how the new consistency is enforced supposed that      -list of variables has 

been already determined. The process of selecting a promising      -tuple is discussed 

later. 

3.1.   A Graph Derived from SAT – Graph Interpretation 

Let          
    

    
   be an explicit literal encoding of a given propositional formu-

la  . Next, let us have     and an ordered      -tuple of selected variables   
  

             
 
  
         

 
    

    
  with                        where       for 

                with    . 

 

 

Figure 1. Graph interpretation. An original input Propositional formula   with four clauses is shown (upper 

left). Then a corresponding explicit literal encoding (upper right – that is, a literal encoding after singleton unit 

propagation) – the CSP model consisting of four variables is provided. The lower part depicts a graph interpre-

tation over three variables selected in the CSP model. Dotted edges represent binary clauses that come from 

singleton unit propagation. 
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It is more convenient to define consistency with respect to an undirected graph de-

rived from the constraint network. A target undirected graph will be represented by the 

so-called graph interpretation in the given context. It is defined with respect to   
  as an 

undirected graph     
           where a set of vertices    consists of      

        
   

           and a set of edges    contains edge     
      

  
  with                 

such that    ,              , and               if it holds that     
      

  
     for 

some constraint           
 
  
      in   

  (edges stand for forbidden pairs of values; that 

is, an edge represents a conflict). 

3.2.   Initial Setup of B2C-Consistency 

We are about to utilize structural information contained in the graph interpretation. It has 

been shown in the previous work [26] that useful structural information is constituted by 

the knowledge of complete constraint sub-graphs. Regarding the given context, we can 

observe that at most one literal can be satisfied in a complete sub-graph in the graph 

interpretation of a literal encoding of a SAT instance. If a large enough complete sub-

graph is detected in the graph interpretation, its knowledge can be used for an efficient 

search space pruning or a strong global inference. The exact process of doing so will be 

explained in detail in the following text. 

A decomposition into complete sub-graphs of a given graph interpretation      
   

        is constructed first. It is a task of finding number     and sets   
 ,   

 , ,   
     

called decomposition sets that satisfy the following conditions: 

(i)    
  

      ; that is, all the vertices are covered by the decomposition; 

(ii)   
    

 
 for any two               such that    ; that is, the decomposi-

tion is not allowed to contain redundancies; 

(iii)   
  induces a complete sub-graph over edges from    for every   
         ; 

(iv)         with          there exists             such that         
 ; 

that is, all the edges are covered by complete sub-graphs. 

Observe that if no further objective is imposed on the decomposition into complete 

sub-graphs, it can be easily constructed by setting        and putting endpoints of each 

edge into its own decomposition vertex set. On the other hand, the construction of de-

composition with respect to any reasonable objective (such as maximizing the size of 

complete sub-graphs or minimizing number  ) is a difficult task [15, 22]. 

In our approach we try to obtain large complete sub-graphs. However, this require-

ment is not that strict so we have settled for a greedy approach for the construction of 

decomposition. The greedy algorithm used in our work is shown using a pseudo-code as 

Algorithm 1 (            denotes the number of edges from   adjacent to   ). 

The algorithm always prefers a vertex with the highest degree with respect to the re-

maining set of edges. Such a vertex is included into the constructed complete graph and 

the task is reduced to its neighborhood. This is repeated until the neighborhood of the 

currently constructed complete sub-graph is empty (a neighborhood of a complete sub-

graph is a set of vertices that are connected to all of the vertices of the sub-graph). Once 
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the complete sub-graph is finished its edges are removed from the original graph and the 

process continues until there are no edges. 

The construction of a decomposition as shown in Algorithm 1 heuristically prefers a 

construction of a large complete sub-graph at the beginning. This strategy proved to pro-

duce decompositions of acceptable quality for sub-sequent usage within the 

B2C-consistency enforcing algorithm. 

 

Proposition 1 (Greedy Time/Space Complexity). A greedy algorithm for the decompo-

sition of a graph interpretation     
           into complete sub-graphs can be imple-

mented to have the worst case time complexity of           
  . The corresponding worst 

case space complexity is of             . ■ 

 

Commentary: Observe that there may be up to      complete sub-graphs in the decom-

position (each edge constitutes a decomposition set). All the edges of the input graph 

interpretation may be investigated within the construction of an individual complete sub-

graph which adds      steps (which is       
 ). Adding a vertex with the maximum de-

gree into a complete sub-graph consumes      steps while it may be repeated up to      
times. Altogether, we have     

  steps for one complete sub-graph. 

Regarding the space complexity it can be argued that several copies of the input graph 

need to be stored, which makes              if the neighborhood of a vertex is repre-

sented using linked lists. ■ 

 

 
Algorithm 1. Greedy algorithm for decomposing a graph interpretation into complete sub-graphs. The output 

decomposition is returned as a sequence of decomposition sets of vertices where each of them induces a com-

plete sub-graph. 

 function Decompose-Graph-Interpretation     
           : sequence 

  /* Parameters:      
    - a graph interpretation for decomposing */ 

 1:     

 2: while      do 

 3:     
    

 4:                  /* an auxiliary graph for gradual dismantling */ 

 5:  while      
  do 

 6:    let           
  be a vertex such that                   

 7:                               
   

 8:      
    

         
 9:                          

 10:          
  
 
  

 11:         
  
 

 
  

 12:                               

 12:        

 13: return    
    

      
   

 
 

There are some more properties of the decomposition into complete sub-graphs. Note 

that decomposition sets intersect vertices corresponding to a domain of a single variable 

at most once. This is due to the fact that there are no edges between vertices correspond-



 Preprocessing in Propositional Satisfiability Using Bounded (2,k)-Consistency 

 

9 

ing to a single domain and due to condition (iii). On the other hand, a single vertex may 

be included in several decomposition sets. 

3.3.   B2C-Consistency Enforcing Algorithm 

B2C-consistency will be defined algorithmically as this is the most natural way to do 

that. Suppose that a decomposition into complete sub-graphs of a given graph interpreta-

tion has already been constructed. The basic idea is to enforce bounded 

     -consistency using only   steps in the search for a supporting  -tuple. This search 

will be accompanied by a special pruning which will use the decomposition into com-

plete sub-graphs to obtain more global reasoning. It is supposed that the search is done in 

a some systematic way by extending a partial selection of a supporting tuple of values. 

Regardless of the exact process of the search for the support, we can assume that some 

values/vertices are selected into the partial supporting tuple at every step of the process. 

The selection automatically rules out several other values/vertices – more precisely, val-

ues/vertices that are present together with the selected ones in some complete sub-graph 

are ruled out (this is due to the condition that no more than one literal can be selected in a 

complete sub-graph). 

 

 

Figure 2. Pigeon hole (P/H) principle – graph interpretation with complete sub-graphs. The standard proposi-

tional model of the P/H principle   for     and     is shown in the left part. A graph interpretation over 

the explicit literal encoding of   with selected variables    ,    , and     is shown in the right part together with its 

decomposition into complete sub-graphs (notice that the decomposition shown here can be found by the pre-
sented greedy algorithm – Algorithm 1). 

Nevertheless, the main innovative reasoning mechanism uses the decomposition in a 

different way. At every point of the process there are still some candidate values/vertices 

for selection into the final supporting  -tuple. Each one is included in some decomposi-
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tion sets from which no value/vertex has been selected yet. Let   be a set of such not yet 

used decomposition sets and let   be a set of already selected vertices. As only one val-

ue/vertex can be selected from each complete sub-graph we can make the following prun-

ing: if it happens that          , the search in the current branch of the support search 

tree can be terminated as it is not possible to extend the partial selection so that it will 

finally consist of   elements. This kind of reasoning is especially useful for problems 

with non-local properties such as the P/H principle or FPGA Switch-Box routing [1]. For 

illustration see Figure 2 (if      and      have been already selected, then    ,    , 

and        ,       and hence we can conclude that      and      are inconsistent). 

 

 
Algorithm 2. Search for a supporting  -tuple of values within B2C-consistency. It is supposed that a decompo-

sition into complete sub-graphs   of a given graph interpretation     
   with respect to a      -list of varia-

bles   
  has already been calculated. 

 function Check-B2C-Consistency     
         

         
               : propositional 

  /* Parameters:     
         

     - a pair of values for consistency checking 

          
    - a graph interpretation for decomposing, 

           - a decomposition of     
   into 

           complete sub-graphs, 

            - the number of allowed search steps. */ 

 1:         Search-B2C-Support     
         

           
                

 2: return   
 

 function Search-B2C-Support     
         

           
               : pair 

  /* Parameters:    - a set of already selected supports. */ 

 1: if       then return (        

 2: let      
       

         
      

 3: for each       
               do 

 4:  if     then return          /* all the steps were consumed */ 

 5:         

 6:  for each      do /* check of constraints */ 

 7:   if            
             

           
          then         

 8:  let                       
          

 9:  if           then         /* global check */ 

 10:  if   then 

 11:   if       then /* some supports still remain to be found */ 

 12:           Search-B2C-Support     
         

              
       

 13:                   
        

 14:    if   then return          
 15:   else /* all the supports have been found */ 

 16:    return (        
 17:        

 18: return           

 

 

The process of B2C-consistency enfording for a pair of values and a fixed list of vari-

ables   
         

 
    
 
           

 
    

  is shown as Algorithm 2. The algorithm searches for 

a supporting  -tuple of values for a given pair of values     
           and       

     

          in domains of       
 
         . The search is done through a systematic extension 
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of the current partial selection of supporting values/vertices. This functionality is imple-

mented using recursive calls, which simulates chronological backtracking search. 

The algorithm for enforcing B2C-consistency for a pair of values should be regarded 

as an incomplete proof of non-existence of a support. That is, if the algorithm finds the 

given pair of values to be inconsistent then there is actually no support for them (that is, it 

managed to prove that there is no support using   search steps and other techniques; 

      is returned by Check-B2C-Consistency in this case). However, if it does not find 

the given pair of values to be inconsistent, one of the following cases might happen: a 

supporting  -tuple of values was found or the algorithm ran out of the allowed number of 

search steps   (     is returned in this case). 

 

Proposition 2 (B2C Time/Space Complexity). If     then the algorithm for enforc-

ing B2C-consistency with a decomposition into complete sub-graphs   of a graph inter-

pretation     
           of a      -list of variables   

  can be implemented to have 

the worst case time complexity of            ; otherwise, the worst case time complexi-

ty is        . The corresponding worst case space complexity is             . ■ 

 

Commentary: It is not difficult to observe that the algorithm needs to go through all the 

      -tuples in the worst case if the number of the allowed search steps   is unbounded. 

Checking a  -tuple may consume up to      constraint checks (namely checks against 

complete sub-graphs). If   is bounded then obviously at most   steps are done while each 

step consumes up to     constraint checks. 

As all the data elements are accessed sequentially no extra data structures are needed. 

Hence, we need to store graph interpretation and its decomposition into complete sub-

graphs, which we already know to be of             . The space needed to store the 

resulting  -tuple is again of             . ■ 

 

Here it depends on our perception of  . It is natural to perceive it as a part of the input 

and hence the complexity of search for a support is exponential with unbounded  . 

Therefore, the time consumption represents the main bottleneck of the method. However, 

having the global reasoning based on complete sub-graphs, still much can be done in   

steps while   is bounded. 

4.   Building a SAT Preprocessing Tool 

We intended to use B2C-consistency as a basis for a SAT preprocessing tool. As we have 

seen, it may not be simply used for that task in its raw form due to its time complexity. A 

good compromise between the computational effort and strength of the inference has to 

be found. This section describes how a list of variables should be chosen and how to set 

particular parameters of B2C-consistency to make it suitable for the intended prepro-

cessing tool. 

4.1.   Selection of  -tuples of CSP Variables 

As it is computationally infeasible to achieve B2C-consistency with respect to all the 

 -tuples of variables and pairs of values in their domains in a non-trivially large SAT 

instance, some selection of promising subsets of variables on which the consistency will 
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be applied has to be done. The selection is considered to be promising if there is a chance 

that the consistency rules out some pair of values (that is, the ruled out pair of values 

cannot be a part of any solution). At the same time, the information captured in the fact 

that a given pair of values is incompatible should be valuable for a SAT solver in a cer-

tain sense. This requirement is imposed by the intention to use B2C-consistency as a 

preprocessing tool. Hence, the information should not be easily derivable by the SAT 

solver itself since informing the SAT solver about the inconsistency between a pair of 

trivially incompatible values is not helpful. 

Our approach is to select  -tuples of variables induced by a region of the instance 

with difficult constraint setup that however can be tackled by the consistency. Such a 

setup provides a chance to extract valuable information by B2C-consistency. The well 

known SAT model of the pigeon hole principle (P/H principle) – more precisely its ex-

plicit literal encoding – is a representative of such a setup which is well known for resist-

ing from being handled by SAT solvers [1]. All the instances of the P/H principle are 

unsatisfiable. Having a suitable graph interpretation for the P/H principle as it is shown in 

Figure 2 (that is, clauses modeling that each pigeon is placed in some hole are selected as 

a      -tuple of CSP variables for the graph interpretation) we are able to calculate 

various useful probabilistic characteristics. 

Let   be the number of pigeons and let   be the number of holes where it holds that 

     . A constraint tightness   in a binary CSP will be defined as the ratio of the 

number of allowed pairs of values to the number of all the possible pairs of values. Par-

ticularly in the case of the P/H principle it holds that   
 
 
   

 
 
   

 
  

 
 in the graph interpreta-

tion as described above. 

 
Table 1. Probabilistic characteristics of the graph interpretation in the P/H principle. 

Configuration:  
pigeons ( ) 

  

holes 

(     ) 

Constraint 

tightness   

  
 
  

  
 
   

 
 

 
 

Probability of 

satisfiability 

of a random 

 -tuple   

   
 

 
  

   
   

Expected number 

of satisfied 

 -tuples   

       
 

 
  

   
   

 

 

    0.5 0.125 1 

    0.333333 0.087791 7.111111 

    0.25 0.056314 57.66504 

    0.2 0.035184 549.7558 

    0.166667 0.021737 6084.888 

    0.142857 0.01335 76961.62 

 

Another interesting characteristic is the probability of a randomly selected assignment 

of values to   variables   calculated from the constraint tightness. It is a reasonable as-

sumption that the satisfaction of individual pairs of values within the assignment is inde-

0 
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Constraint density 
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pendent of each other. Then it holds for the probability of satisfaction of a random  -

tuple of values that         
 
   which is     

 
 
      

  in the case of the P/H principle. 

Finally, we will investigate the expected number of satisfied  -tuples of values  , 

which will be defined as the total number of possible  -tuples multiplied by  . It holds 

that               

 
 
      

  in the case of the P/H principle. Several examples of 

probabilistic characteristics are shown in Table 1. The limit behavior of the above charac-

teristics with     is summarized in the following easy-to-prove proposition. 

 

Proposition 3 (Limit P/H Characteristics). The probability of satisfiability of a random 

 -tuple of values   in a graph interpretation of the P/H principle converges to   for 

   ; that is,          
 

 
  

   
    . The expected number of satisfied  -tuples of 

values   in the P/H principle is           
 

 
       which is    

 

  
 
     

  and blows up to 

   for    ; that is,               

 
  

   
     . ■ 

 

We will generalize the P/H principle so that there will be strictly less holes than pi-

geons but not necessarily one fewer. The generalized P/H principle is unsatisfiable as 

well. A sample of probabilistic characteristics of the model of the generalized P/H princi-

ple is shown in Table 2. 

 
Table 2. Expected number of satisfied tuples of values in the generalized P/H principle. 

 

Expected number of satisfied 

 -tuples         

 
  

 
   

 

Number of holes   

Number of 

pigeons   3 4 5 

2 6.0 12.0 20.0 

3 8.0 27.0 64.0 

4 7.111 45.563 163.84 

5 4.213 57.665 335.544 

6 1.664 54.737 549.756 

7 0.438 38.968 720.576 

  

Our aim is to select      -tuples of CSP variables for B2C-consistency in the ex-

plicit literal encoding          
    

    
   which has similar probabilistic characteris-

tics that are exhibited by the model of the (generalized) P/H principle. This selection is 

supposed to ensure the required properties – that is, a similar level of difficulty as the P/H 

principle and the similar constraint setup. The following incremental mechanism for 

selecting the next variable based on estimating probabilistic characteristics from the cur-

rently selected variables will be used. 

2 

4 

6 

8 

1E-32 
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1E-16 

1E-08 

1 

100000000 
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6 

8 
10 
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14 

16 

Expected SAT p-tuples 

#Holes (h) 

#Pigeons (p) 

p  <2..16>  

h  <3..7> 

1st quartile = 5.107 
median = 20.806 
3rd quartile = 113.92 
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The requirement which is specified as a part of the input together with   is the inter-

val for the expected number of satisfied      -tuples of values. Let    and    be the 

lower and upper bound for this interval respectively. The first CSP variable into the 

     -tuple is supposed to be selected using some specific process (randomly or sys-

tematically; actually a systematic process is used within the experimental implementa-

tion). Other CSP variables are selected incrementally; suppose that 

  
         

 
    
 
           is a tuple of the already selected CSP variables (if     then 

the process is finished). Let        be a candidate CSP variable. 

 

 
Algorithm 3. Process of selecting a suitable      -tuple of CSP variables. Variables are heuristically select-

ed to prefer the resulting expected number of satisfied      -tuples of values in the interval of         or near 
this interval from below or above. 

 function Select-CSP-Variables         
        

    
    

         : tuple 

 /* Parameters:     - size of the tuple of CSP variables, 

           - the first CSP variable, 

            - explicit literal encoding, 

       ,     - lower and upper bounds for the expected number of 

          satisfied      -tuples of values. */ 

 1: for           do 

 2:  for each          
  do 

 3:   let           is the constraint tightness in         
 
    
 
             

 4:                         
   
   

   
 

   

             
      

 

   /* the following let form assigns   if undefined */ 

 5:  let       
  such that                     

                
 6:  let       

  such that                     
                

 7:  let       
  such that              

 8:  if       then 

 9:         
 10:  else 

 11:   if       then 

 12:          
 13:   else 

 14:    if                          then 

 15:           
 16:    else 

 17:           

 18: return        
 
    
 
           

 

 

The expected number of the satisfied      -tuples with        denoted as           is 

estimated as follows: let           be the constraint tightness among variables from the set 

   
           (already selected variables together with the new candidate) then 

                      
   
   

   
 

   

             
      

. That is, the product of sizes of 

domains of the final      -tuple is estimated as      th power of the geometric mean 

of sizes of the domain of already selected variables. The constraint tightness is supposed 

to be preserved for the final      -tuple. If                 then        may be used 
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as the next CSP variable for the      -tuple. If there are multiple variables satisfying 

this condition any of them may be selected (in the implementation that one with   closest 

to 
     

 
 is selected). The whole process of selection of CSP variables for B2C-

consistency is formalized as Algorithm 3. 

 

Proposition 4 (Selection Time/Space Complexity). The algorithm for selecting CSP 

variables can be implemented to have the worst case time complexity of        
       . 

A space of        
    is needed in addition to the space necessary for storing CSP 

     . ■ 

 

Commentary: Each new CSP variable is selected for the resulting tuple out of at most 

   
   CSP variables for which estimation of the expected number of satisfied    

  -tuples must be calculated. Calculating this estimation with respect to a single variable 

consumes          steps as it is necessary to calculate constraint tightness relatively to 

all the already selected variables. A new variable is included exactly   times. 

Additional space is needed for storing probabilistic characteristics for CSP variables, 

which consumes the space of      
   . A space of      is needed to store the resulting 

tuple of CSP variables. ■ 

 

It is infeasible in large SAT instances to compute and to store constraint tightness be-

tween all the pairs of variables on the current commodity hardware because there are too 

many such pairs (notice that there may be more than        clauses in large SAT in-

stances which makes more than        
 

          pairs of variables; that would re-

quire approximately several terabytes of memory). Hence, it is necessary to compute 

constraint tightness on demand. 

4.2.   SAT Preprocessing with B2C-Consistency 

An experimental SAT preprocessing tool based on B2C-consistency called 

preprocessSIGMA [27] was implemented in C++ in order to conduct an experimental 

evaluation and to provide proof of the concept. To achieve the best inference strength of 

preprocessing,      -tuples are selected according to the theory in the previous section 

so that the expected number of satisfied tuples of values belongs into the interval typical 

for the model of the generalized P/H principle. We select   uniformly from the interval 

        as it experimentally proved to be computationally manageable in reasonable time. 

In typical SAT instances arity of clauses ranges from   to    [18] while the most 

common are small clauses with arities  ,  , and   – domain sizes in the corresponding 

literal encoding are exactly the same. The expected number of satisfied tuples of values 

for a setup of the P/H principle with corresponding           and          belongs 

into the interval                 while the 1
st
 quartile, median, and 3

rd
 quartile are equal 

to      ,       ,       , respectively. Taking into account that we are preferring the 

non-existence of satisfied tuple of values, it is advisable to select the preferred interval 

for the expected number of satisfied tuples of values         with    low below the medi-

an and slightly below the 1
st
 quartile and    slightly above the median. A preliminary 

experimental evaluation with SAT instances containing mainly small clauses showed that 

the best setting is                    which well correlates with the above probabilistic 



Pavel Surynek 

 

16 

estimations. The use of different bounds resulted in deriving less valuable forbidden pairs 

of values in the preprocessing step (that is, explicit forbidding of such pairs by adding 

new clauses had a limited positive effect). 

As the computation of B2C-consistency is a time consuming operation it is done only 

for a certain number of tuples of variables. More precisely, small formulae with less than 

or equal to      variables are allowed    times the number variables B2C-consistency 

checks. Large formulae (that is, those with more than      variables) are allowed   

times square root of the number of variables B2C-consistency checks (currently, there is 

no smooth transition between these two rates as it was not necessary to be implemented 

for experimental evaluation). In both cases, the number of steps of the search for a con-

sistent  -tuple was bounded by the constant       . This setup of   was manually 

tailored during the development of the method. 

We are aware that the presence of several parameters in the method may be problem-

atic since the user is required to set them. However, in our analysis we provide some 

ideas for their setting and, most importantly, the parameters can be regarded as an oppor-

tunity for further optimization by methods for automated parameter tuning (programming 

by optimization) [17]. 

5.   Experimental Evaluation 

The experimental evaluation of our prototype SAT preprocessor preprocessSIGMA 

focused on discovering the benefit of B2C-consistency in the context of other existent 

preprocessing techniques and on the evaluation of internal properties of the experimental 

implementation. It also should provide a justification for the theory we have discussed 

earlier. 

5.1.   Basic Competitive Experimental Evaluation 

The experimental implementation of B2C-consistency within our prototype tool 

preprocessSIGMA has been competitively evaluated with respect to the most promi-

nent existing tools for SAT preprocessing. Particularly, the following preprocessing tools 

have been evaluated: LiVer [25], NiVer [25], HyPre [5], Shatter with Saucy 

version 3.0 [2, 21] (here abbreviated as saucy-3), and the technique of blocked clause 

elimination [16, 20] (here abbreviated as BCE) implemented within precosat-465 

[20] (here abbreviated as BCE). As the reference SAT solver MiniSAT version 2.2 [13] 

with an built-in SatElite preprocessing step has been used. 

LiVer and NiVer use resolution-based variable elimination for preprocessing; 

LiVer allows a bounded increase in the total number of literals in the resulting formula 

while NiVer does not allow any increase in this number. The HyPre preprocessing tool 

is based on binary hyper-resolution and equivalence reasoning. Shatter represents a 

tool most akin to our preprocessSIGMA as it employs a certain kind of global reason-

ing as well. Symmetries in the input formula are detected and symmetry-breaking clauses 

are added by Shatter into the output formula. To detect symmetries, the graph iso-

morphism problem [28] needs to be solved during the preprocessing process which is 

done by the Saucy module. The performance of the Saucy module is crucial in Shat-

ter. 
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Table 3. Listing of results for a fraction of the set of testing instances used in our experimental evaluation. The 

number of conflicts MiniSAT 2.2 encountered on the original instances and on those preprocessed by 

HyPre, LiVer, NiVer, saucy-3, and our preprocessSIGMA are shown. The best performing prepro-

cessors on each instance are marked in bold (the timeout for both preprocessing and MiniSAT was set to 256 

seconds). Observe the large differences among individual preprocessors. 

Conflicts Variables Clauses 
C/V 

Ratio 
Original HyPre BCE LiVer NiVer saucy-3 sigma SAT/UNSAT 

bart12.shuffled  180 820 4.555 105 212 105 118 118 603 105 SAT 

bart14.shuffled  195 905 4.641 104 402 104 100 100 102 104 SAT 

bart16.shuffled  210 990 4.714 103 106 103 103 103 215 103 SAT 

bart20.shuffled  270 1476 5.466 121 127 206 103 103 160 121 SAT 

ca004.shuffled  80 168 2.1 43 29 48 32 29 42 43 UNSAT 

ca008.shuffled  130 370 2.846 145 117 175 102 150 151 145 UNSAT 

ca016.shuffled  272 780 2.867 449 293 465 416 326 357 433 UNSAT 

ca032.shuffled  558 1606 2.878 943 752 1103 739 657 901 790 UNSAT 

difp_19_99_arr_rcr  1201 6563 5.464 209417 141649 343814 58305 304092 209417 92754 SAT 

difp_19_99_wal_rcr  1775 10446 5.885 134284 31031 92343 108681 158235 N/A 15245 SAT 

difp_21_1_arr_rcr  1453 7967 5.483 191884 63546 126655 538426 427292 191884 45453 SAT 

difp_21_99_arr_rcr  1453 7967 5.483 190663 97408 66191 249983 350142 190663 35704 SAT 

dp04u03.shuffled  1017 2411 2.370 70 26 77 72 63 N/A 61 UNSAT 

dp05s05.shuffled  1885 4818 2.555 90 138 80 116 100 N/A 46 SAT 

ezfact32_6.shuffled  769 4777 6.211 422 33088 169 32957 32957 422 209 SAT 

ezfact32_7.shuffled  769 4777 6.211 5744 29574 173 46659 46659 5744 836 SAT 

ezfact32_9.shuffled  769 4777 6.211 1181 47191 218 64056 64056 1181 160 SAT 

ezfact32_10.shuffled  769 4777 6.211 1990 1988 406 22500 22500 1990 448 SAT 

fpga10_11_uns_rcr  220 1122 5.1 4935017 8315862 4935017 4866421 4866421 548002 2 UNSAT 

fpga10_12_uns_rcr  240 1344 5.6 7209341 7219129 7140410 7183640 7218248 645603 1 UNSAT 

fpga10_13_uns_rcr  260 1586 6.1 6466487 6511919 5963904 6497147 6497268 264637 1 UNSAT 

fpga10_15_uns_rcr  300 2130 7.1 5390760 5401469 5361172 5387934 5405715 91837 1 UNSAT 

fpga10_8_sat  120 448 3.733 201 163 201 201 201 65 201 SAT 

fpga10_9_sat  135 549 4.066 202 168 202 202 202 100 202 SAT 

fpga12_11_sat  198 968 4.888 200 405 200 200 200 54 200 SAT 

fpga12_12_sat  216 1128 5.222 208 102 208 208 208 36 208 SAT 

homer06.shuffled  180 830 4.611 272019 209811 272019 258487 258487 39341 1 UNSAT 

homer10.shuffled  360 3460 9.611 641132 502279 641132 464639 464639 144 2 UNSAT 

homer16.shuffled  264 1476 5.590 6525641 6527180 6484372 6766937 6682636 3195152 3 UNSAT 

homer20.shuffled  440 4220 9.590 3230156 3249156 3043099 3265756 3207038 87585 2 UNSAT 

lisa19_0_a.shuffled  1201 6563 5.464 235824 117828 209804 381242 108878 235824 15534 SAT 

lisa19_1_a.shuffled  1201 6563 5.464 445563 439709 688143 208567 528589 445563 320076 SAT 

lisa21_1_a.shuffled  1453 7967 5.483 328846 121498 67873 4841 309122 328846 93629 SAT 

med11.shuffled  341 5556 16.293 41 197 102 101 101 41 41 SAT 

med17.shuffled  782 18616 23.805 106 151 4599 808 808 106 106 SAT 

qg1-7.shuffled  686 6816 9.935 49 115 44 67 67 242 49 SAT 

term1_gr_2pin_w3.shuffled  746 3517 4.714 52 69 27 21 124 52 9 UNSAT 

term1_gr_rcs_w3.shuffled  606 2518 4.155 7 7 7 7 7 11 1 UNSAT 

 

The experimental evaluation was done with a set of 344 difficult SAT instances (mix-

ture of satisfiable and unsatisfiable) taken from the Satisfiability Library (SATLib – only 

structured instances have been taken) [18] and from the crafted category of the SAT 

Competitions 2002/2003 and 2007/2009 (all the problems from the crafted category of a 

size up to 600kB have been taken). The complete set of instances used in the experi-

mental evaluation can be found at the website: http://ktiml.mff.cuni.cz/ 

http://ktiml.mff.cuni.cz/~surynek/research/j-preprocess-2011
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~surynek/research/j-preprocess-2011. This website also contains experimental data in the 

raw form and the complete source code in C++ necessary to reproduce all the presented 

experiments. 

 

 

 

Figure 3. Competitive comparison of preprocessing tools (conflicts). The number of conflicts that occurred 

when solving the original and preprocessed SAT instances by MiniSAT 2.2 are shown (instances are sorted 

for each preprocessor to get increasing sequences – easier instances tend to be on the left while hard instances 

tend to be on the right). Our preprocessSIGMA is compared with HyPre, LiVer, NiVer, BCE, and 

saucy-3 on a set of SAT instances from SATLib and SAT Competitions 2003/2004 and 2007/2009. It can be 

observed that HyPre, LiVer, NiVer, and BCE have only marginal effect (upper part) compared to 

preprocessSIGMA and saucy-3 (lower part) which both deliver significant improvements. If timeout was 

reached the instance was excluded from the figure. 

Several characteristics were measured during the evaluation process. The most in-

formative characteristic is the number of conflicts that occurred during the process of 

solving. The conflicts can be regarded as a dead-end in the backtracking-based search 

process. The number of conflicts has been measured for the original instances and for 

instances processed by individual SAT preprocessors from our test suite. The number of 
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conflicts corresponds well with the overall runtime. The CPU time
*
 has been measured as 

well to obtain the complete picture of performance of all the SAT preprocessors. 

 

 

 

 

Figure 4. Improvement ratio in the number of conflicts gained by the application of preprocessor. The ordering 

of instances per preprocessor is the same as in Figure 3. It can be observed that NiVer and LiVer cause 

worsening in a significant number of instances. HyPre is particularly successful on easier instances. The best 

improvement can be achieved by saucy-3 and preprocessSIGMA while saucy-3 has an advantage in 

large instances and preprocessSIGMA dominates in easier nes. 

A small fraction of the set of instances (38 out of 344)  used in the experimental eval-

uation together with their characteristics and results regarding the number of conflicts 

after preprocessing is shown in Table 3. In all the tests presented in this paper, prepro-

cessing and solving by MiniSAT was run for at most 256 seconds of CPU time; that is, 

the total runtime per instance is limited to 512 seconds of CPU time. The full competitive 

 
* All the tests were run on a machine with Intel Xeon 2.0GHz CPU, 12 GB of RAM, under Ubuntu Linux 

version 8.04, Kernel 2.6.24-19 SMP. 
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comparison of the number of conflicts that MiniSAT encountered when solving the 

original instances and preprocessed ones is shown in Figure 3. 

There are large improvements and large differences among individual SAT prepro-

cessors observable in Table 3 and Figure 3. Hence, preprocessing seems to be a powerful 

tool and the choice of the right preprocessor is a crucial decision point with an important 

performance impact. 

 

 

 

Figure 5. Competitive comparison of preprocessing tools according to runtime†. The runtime of preprocessing 

plus the runtime of solving preprocessed instances are shown. Instances are sorted according to the increasing 

runtime (each preprocessor has its own sorting of instances). The advantage of preprocessSIGMA and 

saucy-3 is slightly reduced as they both require longer runtime for preprocessing than other preprocessors. 

However, they are still dominant on medium hard to very hard instances. On easier instances saucy-3 pre-

vails over preprocessSIGMA but the difference is narrowing towards harder instances where saucy-3 

often did not finish in the given timeout and preprocessSIGMA became better option. 

 
† Notice there are more instances in runtime figures. This is due to the fact that instances where preprocessing 

did not finish are included in runtime figures but they are not included in figures regarding conflicts. 
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The evaluation implies that preprocessors solely relying on simplification through lo-

cal inferences such as resolution, hyper-resolution, and blocked clause elimination – that 

is HyPre, LiVer, Niver, and BCE – deliver almost no improvement on the evaluated 

set of difficult SAT instances (even worsening in a significant number of instances ap-

peared). These results indicate that preprocessing employing local inference rules only is 

unable to discover and exploit a higher level structure encoded in the instance. 

On the other hand, saucy-3 as well as preprocessSIGMA, which both employ 

global reasoning, deliver significant improvements in terms of the number of conflicts on 

preprocessed instances. Hence, global reasoning seems to be beneficial in instances en-

coding a certain kind of a high level structure. 

 

   
 

 

Figure 6. Additional results regarding runtime – runtime without preprocessing/aggregated improvement. 

Left: If merely the SAT solving runtime is accounted then preprocessSIGMA delivers better performance in 

easier to moderately difficult instances than saucy-3. In difficult instances the performances of 

preprocessSIGMA and saucy-3 are matched. 

Right: The improvement of the overall solving time over the whole evaluated set of instances. Only preproces-

sors based on global reasoning – saucy-3 and preprocessSIGMA – deliver considerable improvement. 

Approximately 20% of the original runtime is saved in the case of preprocessSIGMA. 

In instances of easy to medium difficulty, preprocessSIGMA delivers a better pos-

itive effect in preprocessing than saucy-3 – up to 100 times less conflicts are encoun-

tered in instances preprocessed with preprocessSIGMA than in the original ones. The 

difference between preprocessSIGMA and saucy-3 diminishes in instances of top 

difficulty (saucy-3 becomes marginally better in several instances). 

The results, however, should not be interpreted as that preprocessing by resolu-

tion/hyper-resolution is useless. In simpler instances it is typically more beneficial [4] if 

we take into account a tradeoff between the benefit and computational costs. Moreover, 

we need to consider that the version of MiniSAT we used has its own built-in preproces-

sor SatElite. The results may thus show that simple resolution-based preprocessing is 

not enough to outperform the benefit of the use of SatElite (although this claim may 

require further investigation). 

0.01 

0.1 

1 

10 

100 

1000 

0 24
 

48
 

72
 

96
 

12
0 

14
4 

16
8 

19
2 

21
6 

24
0 

26
4 

28
8 

31
2 

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

 

Solving Runtime|without preprocessing 

Original 

saucy-3 

sigma 
0.8087 

0.8937 

0.9683 

0.9936 

0.9968 

1 

1.0099 

0 

0.
2

 

0.
4

 

0.
6

 

0.
8

 1 

1.
2

 

sigma 

saucy-3 

HyPre 

BCE 

NiVer 

Original 

LiVer 

Relative Improvement|Overall Runtime 

% of runtime w.r.t. original SAT Instance (sorted) 



Pavel Surynek 

 

22 

An experimental evaluation regarding the runtime is shown in Figure 5 and Figure 6. 

It can be observed that if merely solving runtime is measured, then the picture is almost 

the same is in the case of conflicts – preprocessSIGMA and saucy-3 clearly outper-

forms the others (BCE, HyPre, LiVer, and Niver). The situation changes if the time 

for preprocessing is accounted (that is, total runtime = preprocessing runtime + solving 

runtime is taken into account). Here preprocessSIGMA starts lagging behind all oth-

ers in easier instances due to its long runtime. 

A similar phenomenon but not that profound can be observed for saucy-3, which 

loses against BCE, HyPre, LiVer, and NiVer in easier instances. The situation chang-

es in more difficult instances where saucy-3 and preprocessSIGMA perform better 

than others. Even preprocessSIGMA matches saucy-3 on yet more difficult in-

stances. 

If the total runtime for the whole testing suite is considered, we get an interesting 

comparison: both saucy-3 and preprocessSIGMA save up to     of the total 

runtime compared to the situation without preprocessing while the other tools (BCE, 

HyPre, LiVer, and Niver) provide no or marginal improvement only. 

Note that the match in overall runtime with saucy-3 in more difficult instances has 

been achieved despite the not well optimized implementation of preprocessSIGMA 

(this is also the reason why we need to limit the size of the tested instances). Regarding 

the preprocessing time with preprocessSIGMA there is a great potential for further 

improvement. 

5.2.   B2C-Consistency on Integer Factorization 

An especially good performance was exhibited by our preprocessing tool based on 

B2C-consistency in instances encoding integer factorization problem [3] (satisfiable 

instances). The first observation made in these instances is that B2C-consistency is able 

to make many inferences of inconsistent pairs of values that can be ruled out in the pre-

processed instance afterwards. 

 An additional experimental evaluation showed that the more inconsistent pairs of 

values are inferred, the greater the reduction of the number of conflicts (as well as 

runtime) can be achieved on the resulting instance. However, this property contradicts the 

requirement of bounding the number of B2C-consistency checks which is needed to be 

low to preserve reasonable time consumption (if we want to infer as many inconsistent 

pairs of values as possible we should perform as many consistency checks as possible). 

Hence, there is still room for improvement on integer factorization problems using fine 

tuning of the parameters of B2C-consistency such as the allowed number of constraint 

checks. 

The competitive results regarding the integer factorization problem are shown in Fig-

ure 7. Clearly, preprocessSIGMA is the best for almost all the instances in terms of 

the number of conflicts it can save. Surprisingly, saucy-3 did not finish preprocessing 

for approximately half of the instances in the given timeout of 256 seconds. Regarding 

relative improvement, it rarely happens that the tested preprocessors cause worsening 

(only LiVer and NiVer exhibited this behavior marginally). 

If we look at the overall runtime, saucy-3 loses due to its frequent depleting the 

timeout. Another observation is that accounting preprocessing time does not change the 
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picture of relative performance so much as the solving time for the instances is quite long 

compared to the preprocessing time. 

 

 

 

 

Figure 7. Competitive evaluation in an instance encoding the integer factorization problem. 

Upper left: The absolute number of conflicts that MiniSAT 2.2 has encountered in instances encoding 

integer factorization [3] after preprocessing by tested SAT preprocessors is shown. Clearly, 

preprocessSIGMA provides the best performance while saucy-3 surprisingly lost to all the preprocessors. 

BCE seems to be a good option on integer factorization although it delivers mediocre performance on other 

instances from the tested set. 
Upper right: Improvement ratio in terms of the number of conflicts is shown. Instances are sorted in the same 

order as in the previous figure. 

Lower left: Runtime measurement also includes instances where saucy-3 did not finish in the given timeout 

of 256.0 seconds which is approximately half of the instances encoding integer factorization. 

Lower right: The aggregated improvement achieved by preprocessSIGMA in the overall runtime is 

                    on integer factorization. The second best BCE lost by a significant margin of almost 

    to the winner. 
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The cumulative runtime improvement achieved by preprocessSIGMA on integer 

factorization instances is        compared to        on the complete set of testing 

instances. 

A surprising result has been obtained for saucy-3 which was unexpectedly outper-

formed by all the local inference based preprocessors BCE, HyPre, LiVer, and 

NiVer. 

5.3.   Experimental Evaluation of the Variables Selection Process 

The last part of the experiments was devoted to an evaluation of the selection of variables 

for consistency checks. This evaluation is important in order to verify whether all the 

internal processes of B2C-consistency worked as expected. This aspect concerns mainly 

the selection of a list of variables for the consistency check. 

The expected number of satisfied tuples of values over the variables selected by Al-

gorithm 3 with the setup of                    over all the consistency checks on the 

tested instances has the following probabilistic characteristics – minimum, first quartile, 

median, third quartile, maximum equal to      ,       ,       ,        , and 

              respectively (in this test only instances from SATLib were used). A more 

detailed insight into the distribution of the expected number of satisfied tuples of values 

over selected variables is provided in a partial histogram shown in  

Figure 8. 

 

 

 
 

Figure 8. Partial histogram of the expected number of satisfied tuples ( ). The histogram characterizes the 

selection of variables made by Algorithm 3 over all the testing SAT instances and all the B2C-Consistency 
checks. Only the part up to the 3rd quartile is shown. It can be observed that most of the selections of tuples of 

variables have the expected number of satisfied tuples of values within the interval                    as it 
was required. 

5.4.   Summary of Experimental Evaluation 

If we summarize the results of the experimental evaluation we can state that 

B2C-consistency with the proposed process for the selection of variables represents a 
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powerful technique that can be used as a basis of a SAT preprocessing tool. Our experi-

mental evaluation has proven that prototype preprocessing tool preprocessSIGMA 

based on B2C-consistency is fully competitive with respect to the existent prominent 

SAT preprocessing tools in terms of saving the number of conflicts as well as in terms of 

the overall runtime. Competitiveness in terms of runtime has been achieved despite the 

not well optimized implementation of the prototype. 

An especially good performance was exhibited by preprocessSIGMA in instances 

encoding integer factorization problems where there is still room for fine tuning the pa-

rameters of B2C-consistency to achieve yet better performance. 

The evaluation of the internal characteristics of our prototype preprocessing tool – 

namely the evaluation of the process of selection of the list of variables for consistency 

check – indicates a good match with theoretical expectations. 

6.   Conclusion and Future Work 

In this paper, a new type of consistency called B2C-consistency (bounded 

     -consistency) for use in Propositional satisfiability (SAT) has been presented. This 

new consistency has been inspired by both global constraints and local consistency. Basi-

cally, it is      -consistency with the bounded number of search steps for proving incon-

sistency enriched by reasoning over complete sub-graphs of pair-wise conflicting literals. 

Reasoning over complete sub-graphs introduces a global aspect into proving inconsisten-

cy and it can improve the consistency enforcing process significantly especially in SAT 

instances encoding the well known P/H principle (pigeon/hole principle) and similar 

principles which are known to be difficult for a standard solving process based on search. 

The whole design of new consistency is explained in the context of modeling SAT as 

a constraint satisfaction problem (CSP) using the so-called explicit literal encoding (that 

is, literal encoding with explicit clauses obtained by singleton unit propagation). 

Next we investigated probabilistic properties of the so-called generalized P/H princi-

ple – particularly the expected number of satisfied (consistent) tuples of values with re-

spect to a tuple of the selected variables for consistency check. The investigation showed 

that a certain distribution of the expected number of satisfied tuples is characteristic for 

the P/H principle where many inconsistent tuples of values can be found. Therefore we 

proposed a process for the selection of variables which is trying to select variables so that 

the corresponding expected number of satisfied tuples of variables has a similar probabil-

istic distribution as in the case of the P/H principle. Using this process, we are trying to 

identify difficult sub-problems (such as the P/H principle) that can be yet resolved by 

B2C-consistency. 

To evaluate our proposal we implemented B2C-consistency and the process of selec-

tion of variables within the prototype SAT preprocessing tool preprocessSIGMA. The 

experiments have confirmed that B2C-consistency and the variable selection process are 

beneficial and that we are able to select variables for consistency checks with similar 

probabilistic characteristics as in the case of the generalized P/H principle. The competi-

tive evaluation on a set of 344 SAT instances from SATLib, SAT Competition 2003/2004 

and 2007/2009 (mixture of satisfiable and unsatisfiable) showed that 

preprocessSIGMA delivers better results than the existent preprocessing tools BCE, 

HyPre, LiVer, and Niver which are based on local reasoning and comparable results 
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to saucy-3 based on symmetry breaking. In instances encoding the integer factorization 

problem preprocessSIGMA performed as far the best of all the tested preprocessing 

tools. Moreover, preprocessSIGMA has some advantages with respect to the compa-

rable saucy-3. It is easier to implement – in saucy-3, graph isomorphism which, in 

itself, is a difficult problem needs to be solved – and it has many parameters that can be 

further fine tuned. Note that we have achieved a competitive performance despite the not 

well optimized implementation of preprocessSIGMA.   

There are several interesting questions for future work. At present, we used a charac-

terization of the distribution of an expected number of satisfied tuples of values with two 

parameters – the lower and the upper bound. It would be interesting to use more parame-

ters to control the shape of the resulting distribution over all the consistency checks more 

precisely. 

Another interesting investigation may be done with a repeated use of 

B2C-consistency. Consider a preprocessed instance to be preprocessed once again. Un-

fortunately, this approach is impractical at the current implementation stage as the setup 

of preprocessing is relatively time-consuming, and in order to preserve relatively ac-

ceptable competitiveness we cannot afford to run the process more than once. However, a 

more efficient implementation may change the situation. 
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