
A Simple Approach to Solving Cooperative Path-Finding

as Propositional Satisfiability Works Well

Pavel Surynek

Charles University Prague, Faculty of Mathematics and Physics

Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic

pavel.surynek@mff.cuni.cz

Abstract. This paper addresses makespan optimal solving of cooperative path-

finding problem (CPF) by translating it to propositional satisfiability (SAT). A

novel very simple SAT encoding of CPF is proposed and compared with exist-

ing elaborate encodings. The conducted experimental evaluation shown that the

simple design of the encoding allows solving it faster than existing encodings

for CPF in cases with higher density of agents.

Keywords: cooperative path-finding (CPF), propositional satisfiability (SAT),

SAT encodings, A*

1 Introduction and Context1

The problem of cooperative path-finding (CPF) [12, 14] represents an abstraction for

variety of problems where the task is to relocate some physical agents, robots, or

other objects so that they do not collide with each other. Each agent is given its initial

position in a certain environment and its task is to reach a given goal position. The

centralized planning mechanism finds a spatial-temporal path for each agent through

which the agent can relocate to its goal. The difficulty in CPF comes from possible

interactions among relocated agents, which is imposed by the requirement that they

must not collide with each other. The more agents appear in the instance the more

complex interaction arises and consequently the instance is harder to solve.

 There are many motivations for introducing CPF. Classical multi-robot relocation

problems where agents are represented by actual mobile robots can be viewed as CPF.

The indifference between agents in terms of their properties allows abstraction where

the environment is modeled as an undirected graph and agents as items placed in

vertices of this graph [14].

 Contemporary approaches to solving CPF include polynomial time sub-optimal

algorithms [18] as well as methods that generate optimal solutions in certain sense

[15, 16]. This work focuses on generating makespan optimal solutions to CPF where

the makespan is the maximum of arrive times over all the agents.

 Related makespan optimal methods for CPF currently include methods employing

translation of CPF to propositional satisfiability (SAT) [16, 17], methods based on

This work is supported by the Czech Science Foundation (contract no. GAP103/10/1287).

mailto:pavel.surynek@mff.cuni.cz

conflict resolution between paths for individual agents [13], and classical A* based

methods equipped with powerful heuristics [15]. The first mentioned approach excels

in relatively small environments with high density of agents while latter two ap-

proaches are better in large environments with few agents.
 This work tries to contribute to SAT-based methods. Particularly, it is inspired by
[16] and [17] where quite complex and elaborate propositional encodings called IN-

VERSE and ALL-DIFFERENT were proposed. The question here has been what would
happen if a straightforward design of the encoding is adopted.

2 Cooperative Path Planning and Related Questions

An arbitrary undirected graph can be used to model the environment

where agents are moving. Let be a finite set of agents. Then, an arrangement of

agents in vertices of graph will be fully described by a location function ;

the interpretation is that an agent is located in a vertex . A generalized

inverse of denoted as .

Definition 1 (COOPERATIVE PATH FINDING). An instance of cooperative path-finding

problem is a quadruple
 where location functions and

 define the initial and the goal arrangement of a set of agents in respectively. □

 An arrangement at the -th time step can be transformed by a transition action

which instantaneously moves agents in the non-colliding way to form a new arrange-

ment . The resulting arrangement must satisfy validity conditions:

(i) either or holds

 (agents move along edges or not move at all),

(ii)

 (agents move to vacant vertices only), and

(iii)

 (no two agents enter the same target/unique invertibility of

 resulting arrangement).

Figure 1. Cooperative path-finding (CPF) on a 4-connected grid. The task is to relocate three

agents , , and to their goal vertices so that they do not collide with each other. A solu-

tion of makespan 4 is shown.

Definition 2 (SOLUTION, MAKESPAN). A solution of a makespan to a cooperative

path finding instance
 is a sequence of arrangements

a1

a2

a3

v2

v1

v3

v4

v5

v6

v7

v8

v9

a1

a2

a3
v2

v1

v3

v4

v5

v6

v7

v8

v9

CPF Σ=(G, {a1,a2,a3}, α0, α
+
) α

+

α0

a1

a2

a3

α0

v1

v2

v7

α1

v1

v3

v4

α2

v2

v3

v4

α3

v5

v3

v1

α4 = α
+

v8

v3

v2

(1)

(3)

(2)

 where and is a result of valid transformation of

for every . □

 The task in CPF is to transform using above valid transitions to . An illustra-

tion of CPF and its solution is depicted in Figure 1. A notation will be also used to

denote the makespan. If it is a question whether there exists a solution of of the

makespan at most a given bound we are speaking about a bounded CPF (bCPF). It

is known that bCPF is -complete and finding makespan optimal solution to CPF is

 -hard [10].

3 A Simple SAT Encoding of the Bounded Variant of CPF

Let us describe a simple encoding called DIRECT of bCPF
with makespan bound where and with

 . Arrangements of agents over the graph at all the time steps from to will

be represented (that is, the graph will be expanded over time). The encoding will use a

propositional variable for each vertex, agent, and a time step which will be assigned

 , if and only if the given agent appears in a given vertex at given time step.

Definition 3 (DIRECT ENCODING). A DIRECT encoding of a given bCPF
 with makespan bound consists of propositional variables

 for

every , , . The interpretation is that
 is

assigned if and only if appears in at time step . The following con-

straints modeling validity conditions on consecutive arrangements are introduced:

 (a)

 for every ,

 and

 (an agent is placed in exactly one vertex at each time step)

 (b)

 for every ,

 and
 (at most one agent is placed in each vertex at each time step)

(c)

 for every ,

 , and

 (an agent relocates to some of its neighbors or makes no move)

(d)

 for every , such that

 and
 (target vertex of a move must be vacant and the source vertex will be vacant

 after the move is performed). □

Observe that a conjunctive normal form (CNF) [2] of the formula has been ob-

tained; it will be denoted as .

SAT-Based Optimal CPF Solving

The suggested DIRECT encoding is intended for makespan optimal CPF solving. As it

is possible to solve bCPF with given makespan bound by translating it to SAT, an

(4)

(5)

(6)

(7)

optimal makespan and corresponding solution can be obtained using multiple queries

to a SAT solver with encoded bCPF. Various strategies exist for getting the optimal

makespan. The simplest one and very efficient one at the same time is to try sequen-

tially makespan bounds until equal to the optimal makespan is encoun-

tered. The sequential increasing strategy is also used in domain independent planners

such as SATPLAN [8], SASE [7] and others. Before a makespan optimal solution is

searched, the solvability of the CPF instance should be checked by some of fast sub-

optimal polynomial time solving algorithms such as PUSH-AND-ROTATE [18].

4 Experimental Evaluation

The proposed DIRECT encoding has been competitively evaluated with respect to

other existing two propositional encodings of bCPF called INVERSE [16] and ALL-

DIFFERENT [17]. Various static characteristics of encodings such as its size and

runtime behavior were compared. The SAT-based solving has been compared with

another state-of-the-art method developed around A* algorithm called OD+ID [15].

Table 1. Static characteristics of encodings over 8⨯8 grid. INVERSE, ALL-DIFFERENT, and
DIRECT encodings are compared. bCPF instances are generated over the 4-connected grid of
size 8⨯8 with of cells occupied by obstacles. Makespan bound is always 16. The num-
ber of variables and clauses, the ratio of the number of clauses and the number of variables, and
the average clause length are listed for different sizes of the of agents . DIRECT encoding is
biggest in terms of the length of formula but has smallest clauses in average and is most con-
strained out of all the encodings.

Grid 8⨯8
INVERSE ALL-DIFFERENT DIRECT

|Agents|

1
#Variables

#Clauses
Ratio

Length
8 358.7

31 327.9
3.748
2.616

1 489.3
7 930.4

5.325
3.057

814.4
23 241.9

28.539
2.149

4
10 019.5
55 437.0

5.532
2.641

7 834.5
34 781.9

4.440
3.103

3 257.6
115 934.3

35.589
2.272

16
11 680.3
91 344.5

7.820
3.127

67 088.3
216 745.4

3.231
3.147

13 030.4
840 540.6

64.506
2.505

32
12 510.7

122 170.3
9.765
3.733

230 753.0
646 616.2

2.802
3.168

26 060.8
2 738 584.7

105.084
2.621

 The experimental setup uses random CPF instances over 4-connected grids with

randomly placed obstacles. This is a standard benchmark for evaluating CPF solving

methods suggested in [14]. Initial locations and goals of agents were distributed ran-

domly over the grid. Grids of sizes 6⨯6, 8⨯8, and 12⨯12 were used in experiments;

 were occupied by obstacles. All CPF the instances were solvable. Glucose

version 3.0 [1] SAT solver has been used in the experimental evaluation. All the

source codes used to conduct experiments are posted on website to allow full repro-

ducibility of presented results: http://ktiml.mff.cuni.cz/~surynek/research/pricai2014.

Static Evaluation of Encodings

There are several static characteristics of propositional formulae in CNF that are cor-

related with performance of their solving by most SAT solvers. The size of the formu-

http://ktiml.mff.cuni.cz/~surynek/research/

la in terms of the number of variables and the number of clauses determines the time

needed to find a solution significantly.

 Static characteristics of the DIRECT encoding are compared with other two propo-

sitional encodings over the 8⨯8 grid – INVERSE and ALL-DIFFERENT – in Table 1.

Results for various numbers of agents are shown. The winner according to each char-

acteristic is shown in bold (short clauses, high constrainedness, small formula are

preferred). It can be observed that the smallest encoding in terms of the number of

variables and clauses is the INVERSE one while the biggest one is the DIRECT encoding

with ALL-DIFFERENT encoding standing in the middle. However in terms of the clause

to variable ratio and the size of clauses, the DIRECT encoding seems to be the best as it

has highest number of shortest clauses.

Runtime Evaluation of Encodings

The speed of SAT-based optimal CPF solving with the three discussed encodings has

been evaluated. Again, 4-connected grids of various sizes were used in experiments.

The runtime1 needed for finding an optimal solution has been measured for the num-

ber of agents ranging from 1 to half of the number of vertices in the graph. The

timeout of 1 minute has been used (since the increasing number of agents makes the

CPF instance more difficult, the timeout has been reached before the limit of the

number of agents in the largest grid). For each number of agents, random instances

of bCPF have been generated and solved.

Grid 8⨯8
1 2 4 8 12 16 20 24 32

|A|

Makespan 5.6 5.3 8.0 9.7 10.8 11.0 11.5 11.5 10.4

Figure 2. Runtime of SAT-based CPF solving – grid 8⨯8. Glucose 3.0 is used as an exter-

nal solver in SAT-based solving. For each number of agents, random instances were solved

and the average runtime is reported. The DIRECT encoding can be solved the fastest for the

higher occupancy with agents and it is the only encoding for which all the instances have been

solved in a given timeout of 1 minute. The average optimal makespan for selected numbers of

agents is shown in the table in the bottom. Note that OD+ID is fastest for sparsely populated

graphs but its increases runtime quickly with higher number of agents.

1 All the runtime measurements were done on an 4-core CPU Xeon 2.0GHz with 12GB

RAM under Linux kernel 3.5.0-48.

0.001

0.01

0.1

1

10

100

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Runtime | Grid 8⨯8 | 10% obstacles

INVERSE

ALL-DIFFERENT

OD+ID

DIRECT

|A|

 Evaluation of SAT-based CPF solving would be incomplete if it is not compared

with other state-of-the-art solving methods. Therefore A*-based method OD+ID [7] is

included into competitive comparison.

 Runtime results for the 8⨯8 grid are shown in Figure 2. Also average optimal

makespans are shown. In case of grids of size 6⨯6 and 8⨯8, the SAT-based solving

with the DIRECT encoding is the best option if the occupancy of the graph with agents

is . That is, the DIRECT encoding is a better option for more difficult instances

on these two grids. The closest competitor to the DIRECT encoding is the ALL-

DIFFERENT encoding which is a better option for less occupied graphs. In very sparse-

ly occupied graphs, OD+ID method is the best as lot of independence among agents

can be found. However, OD+ID degrades dramatically if there is higher concentration

of agents in the graph since agents become more interdependent and independence

heuristics no longer work.

 The INVERSE encoding was always the worst option out of all the tested methods.

We consider that the reason for its weak performance is that relatively long clauses

appear in it. On the other hand, short clauses of the DIRECT encoding and their abun-

dance promoting unit propagation are the main reasons for the good performance of

this encoding. We observed that solving of formulae of the DIRECT encoding by the

SAT solver is relatively fast while large portion of the time is consumed by generat-

ing the formula (the formula is generated into file, which is subsequently read by the

SAT solver). Hence, there is still room to increase the speed of SAT-based solving if

the solving process is better engineered.

6 Discussion, Conclusions, and Future Works

A new propositional encoding of the makespan bounded cooperative path-finding

problem (bCPF) has been proposed. The idea of the work was to design very simple

encoding with no elaborate technique behind and to check how it stands with respect

to existing relatively elaborate encodings for the problem. The new encoding has been

called DIRECT as it encodes the bCPF problem in the most straightforward way we

were able to imagine.

 The DIRECT encoding has been used within the SAT-based framework for solving

CPF (unbounded version) optimally. The comparison with existing two encodings

INVERSE [16] and ALL-DIFFERENT [17] as well as with A* search based method

OD+ID [15] on random CPF instances over 4-connected grids has been done and

showed surprising results. The DIRECT encoding despite its relatively naive design

performed better than the ALL-DIFFERENT encoding on instances with occupancy by

agents and almost always better than the INVERSE encoding.

 Generally, the SAT-based approach turned out to be better whatever encoding has

been used than the A* based OD+ID whenever occupancy with agents has been higher

than trivial. This can be explained by the fact that OD+ID‘s heuristic cannot detect

independence among agents. Note also that this method can be regarded as all-in-one

while in the SAT-based approach the SAT solver itself is external. It is unrealistic to

implement equivalent number of propagation, learning, and heuristic techniques in the

all-in-one solution as they are in SAT solvers, which we can access through encoding

the problem in this formalism in a relatively simple way.

References

1. Audemard, G., Simon, L. The Glucose SAT Solver. http://labri.fr/perso/lsimon/glucose/,

2013, [accessed in June 2014].

2. Biere, A., Heule, M., van Maaren, H., Walsh, T. Handbook of Satisfiability. IOS Press,

2009.

3. Bjork, M. Successful SAT Encoding Techniques. Journal on Satisfiability, Boolean Model-

ing and Computation, Addendum, IOS Press, 2009.

4. Dechter, R. Constraint Processing. Morgan Kaufmann Publishers, 2003.

5. Eén, N., Sörensson, N. An Extensible SAT-solver. Proceedings of Theory and Applications

of Satisfiability Testing (SAT 2003), pp. 502-518, LNCS 2919, Springer, 2004.

6. Gent, I. P., Walsh, T. The SAT Phase Transition. Proceedings of the 11th European Con-

ference on Artificial Intelligence (ECAI 1994), pp. 105–109, John Wiley and Sons, 1994.

7. Huang, R., Chen, Y., Zhang, W. A Novel Transition Based Encoding Scheme for Planning

as Satisfiability. Proceedings AAAI 2010, AAAI Press, 2010.

8. Kautz, H., Selman, B. Unifying SAT-based and Graph-based Planning. Proceedings of the

16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 318-325,

Morgan Kaufmann, 1999.

9. Korf, R. E., Taylor, L. A. Finding Optimal Solutions to the 24-Puzzle. Proceedings of the

13th National Conference on Artificial In-telligence (AAAI 1996), pp. 1202-1207, AAAI

Press, 1996.

10. Ratner, D., Warmuth, M. K. Finding a Shortest Solution for the N × N Extension of the

15-PUZZLE Is Intractable. Proceedings of AAAI 1986, pp. 168-172, Morgan Kaufmann,

1986.

11. Régin, J-C. A Filtering Algorithm for Constraints of Difference in CSPs. Proceedings of

the 12th National Conference on Artificial In-telligence (AAAI 1994), pp. 362-367, AAAI

Press, 1994.

12. Ryan, M. R. K. Exploiting Subgraph Structure in Multi-Robot Path Planning. Journal of

Artificial Intelligence Research (JAIR), Volume 31, pp. 497-542, AAA Press, 2008.

13. Sharon, G., Stern, R., Goldenberg, M., Felner, A. The increasing cost tree search for

optimal multi-agent pathfinding. Artificial Intelligence, Volume 195, pp. 470-495, Else-

vier, 2013.

14. Silver, D. Cooperative Pathfinding. Proceedings of the 1st Artificial Intelligence and

Interactive Digital Entertainment Conference (AIIDE 2005), pp. 117-122, AAAI Press,

2005.

15. Standley, T. S., Korf, R. E. Complete Algorithms for Cooperative Pathfinding Problems.

Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI

2011), 668-673, IJCAI/AAAI Press, 2011.

16. Surynek, P. Towards Optimal Cooperative Path Planning in Hard Setups through

Satisfiability Solving. Proceedings of 12th Pacific Rim International Conference on Artifi-

cial Intelligence (PRICAI 2012), LNCS 7458, pp. 564-576, Springer, 2012.

17. Surynek, P. On Propositional Encodings of Cooperative Path-Finding. Proceedings of the

24th International Conference on Tools with Artificial Intelligence (ICTAI 2012), pp. 524-

531, IEEE Press, 2012.

18. de Wilde, B., ter Mors, A., Witteveen, C. Push and rotate: cooperative multi-agent path

planning. Proceedings of International conference on Autonomous Agents and Multi-

Agent Systems (AAMAS 2013), pp. 87-94, IFAAMAS, 2013.

http://labri.fr/perso/lsimon/glucose/

