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Abstract. This paper addresses makespan optimal solving of cooperative path-

finding problem (CPF) by translating it to propositional satisfiability (SAT). A 

novel very simple SAT encoding of CPF is proposed and compared with exist-

ing elaborate encodings. The conducted experimental evaluation shown that the 

simple design of the encoding allows solving it faster than existing encodings 

for CPF in cases with higher density of agents. 
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1 Introduction and Context1 

The problem of cooperative path-finding (CPF) [12, 14] represents an abstraction for 

variety of problems where the task is to relocate some physical agents, robots, or 

other objects so that they do not collide with each other. Each agent is given its initial 

position in a certain environment and its task is to reach a given goal position. The 

centralized planning mechanism finds a spatial-temporal path for each agent through 

which the agent can relocate to its goal. The difficulty in CPF comes from possible 

interactions among relocated agents, which is imposed by the requirement that they 

must not collide with each other. The more agents appear in the instance the more 

complex interaction arises and consequently the instance is harder to solve. 

 There are many motivations for introducing CPF. Classical multi-robot relocation 

problems where agents are represented by actual mobile robots can be viewed as CPF. 

The indifference between agents in terms of their properties allows abstraction where 

the environment is modeled as an undirected graph and agents as items placed in 

vertices of this graph [14]. 

 Contemporary approaches to solving CPF include polynomial time sub-optimal 

algorithms [18] as well as methods that generate optimal solutions in certain sense 

[15, 16]. This work focuses on generating makespan optimal solutions to CPF where 

the makespan is the maximum of arrive times over all the agents. 

 Related makespan optimal methods for CPF currently include methods employing 

translation of CPF to propositional satisfiability (SAT) [16, 17], methods based on 
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conflict resolution between paths for individual agents [13], and classical A* based 

methods equipped with powerful heuristics [15]. The first mentioned approach excels 

in relatively small environments with high density of agents while latter two ap-

proaches are better in large environments with few agents. 
 This work tries to contribute to SAT-based methods. Particularly, it is inspired by 
[16] and [17] where quite complex and elaborate propositional encodings called IN-

VERSE and ALL-DIFFERENT were proposed. The question here has been what would 
happen if a straightforward design of the encoding is adopted. 

2 Cooperative Path Planning and Related Questions 

An arbitrary undirected graph         can be used to model the environment 

where agents are moving. Let   be a finite set of agents. Then, an arrangement of 

agents in vertices of graph   will be fully described by a location function      ; 

the interpretation is that an agent     is located in a vertex     . A generalized 

inverse of   denoted as            . 

Definition 1 (COOPERATIVE PATH FINDING). An instance of cooperative path-finding 

problem is a quadruple                  
   where location functions    and 

   define the initial and the goal arrangement of a set of agents   in   respectively. □ 

 An arrangement    at the  -th time step can be transformed by a transition action 

which instantaneously moves agents in the non-colliding way to form a new arrange-

ment     . The resulting arrangement      must satisfy validity conditions: 

(i)        either               or                   holds 

  (agents move along edges or not move at all), 

(ii)                           
              

  (agents move to vacant vertices only), and 

(iii)                                

 (no two agents enter the same target/unique invertibility of 

 resulting arrangement). 

 

Figure 1. Cooperative path-finding (CPF) on a 4-connected grid. The task is to relocate three 

agents   ,   , and    to their goal vertices so that they do not collide with each other. A solu-

tion    of makespan 4 is shown. 

Definition 2 (SOLUTION, MAKESPAN). A solution of a makespan   to a cooperative 

path finding instance            
   is a sequence of arrangements    
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                where       and      is a result of valid transformation of    

for every            . □ 

 The task in CPF is to transform    using above valid transitions to   . An illustra-

tion of CPF and its solution is depicted in Figure 1. A notation      will be also used to 

denote the makespan. If it is a question whether there exists a solution of   of the 

makespan at most a given bound   we are speaking about a bounded CPF (bCPF). It 

is known that bCPF is   -complete and finding makespan optimal solution to CPF is 

  -hard [10]. 

3 A Simple SAT Encoding of the Bounded Variant of CPF 

Let us describe a simple encoding called DIRECT of bCPF                     
with makespan bound   where                and                with 

     . Arrangements of agents over the graph at all the time steps from   to   will 

be represented (that is, the graph will be expanded over time). The encoding will use a 

propositional variable for each vertex, agent, and a time step which will be assigned 

    , if and only if the given agent appears in a given vertex at given time step. 

Definition 3 (DIRECT ENCODING). A DIRECT encoding of a given bCPF      
               with makespan bound   consists of propositional variables     

  for 

every           ,          ,          . The interpretation is that     
  is 

assigned      if and only if    appears in    at time step  . The following con-

straints modeling validity conditions on consecutive arrangements are introduced: 

 (a)       
       

  
             for every            , 

        
  

           and             

  (an agent is placed in exactly one vertex at each time step) 

 (b)       
       

  
            for every            , 

             and             
  (at most one agent is placed in each vertex at each time step) 

(c)     
      

         
   

             for every              ,  

       
        

       
 

                        , and             

  (an agent relocates to some of its neighbors or makes no move) 

(d)     
      

          
  

          
    

    

   for every              ,               such that           

     and             
  (target vertex of a move must be vacant and the source vertex will be vacant 

   after the move is performed). □ 

Observe that a conjunctive normal form (CNF) [2] of the formula has been ob-

tained; it will be denoted as          . 

SAT-Based Optimal CPF Solving 

The suggested DIRECT encoding is intended for makespan optimal CPF solving. As it 

is possible to solve bCPF with given makespan bound   by translating it to SAT, an 
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optimal makespan and corresponding solution can be obtained using multiple queries 

to a SAT solver with encoded bCPF. Various strategies exist for getting the optimal 

makespan. The simplest one and very efficient one at the same time is to try sequen-

tially makespan bounds         until   equal to the optimal makespan is encoun-

tered. The sequential increasing strategy is also used in domain independent planners 

such as SATPLAN [8], SASE [7] and others. Before a makespan optimal solution is 

searched, the solvability of the CPF instance should be checked by some of fast sub-

optimal polynomial time solving algorithms such as PUSH-AND-ROTATE [18]. 

4 Experimental Evaluation 

The proposed DIRECT encoding has been competitively evaluated with respect to 

other existing two propositional encodings of bCPF called INVERSE [16] and ALL-

DIFFERENT [17]. Various static characteristics of encodings such as its size and 

runtime behavior were compared. The SAT-based solving has been compared with 

another state-of-the-art method developed around A* algorithm called OD+ID [15]. 

Table 1. Static characteristics of encodings over 8⨯8 grid. INVERSE, ALL-DIFFERENT, and 
DIRECT encodings are compared. bCPF instances are generated over the 4-connected grid of 
size 8⨯8 with     of cells occupied by obstacles. Makespan bound   is always 16. The num-
ber of variables and clauses, the ratio of the number of clauses and the number of variables, and 
the average clause length are listed for different sizes of the of agents  . DIRECT encoding is 
biggest in terms of the length of formula but has smallest clauses in average and is most con-
strained out of all the encodings. 

Grid 8⨯8 
INVERSE ALL-DIFFERENT DIRECT 

|Agents| 

1 
#Variables 

#Clauses 
Ratio 

Length 
8 358.7 

31 327.9 
3.748 
2.616 

1 489.3 
7 930.4 

5.325 
3.057 

814.4 
23 241.9 

28.539 
2.149 

4 
10 019.5 
55 437.0 

5.532 
2.641 

7 834.5 
34 781.9 

4.440 
3.103 

3 257.6 
115 934.3 

35.589 
2.272 

16 
11 680.3 
91 344.5 

7.820 
3.127 

67 088.3 
216 745.4 

3.231 
3.147 

13 030.4 
840 540.6 

64.506 
2.505 

32 
12 510.7 

122 170.3 
9.765 
3.733 

230 753.0 
646 616.2 

2.802 
3.168 

26 060.8 
2 738 584.7 

105.084 
2.621 

 The experimental setup uses random CPF instances over 4-connected grids with 

randomly placed obstacles. This is a standard benchmark for evaluating CPF solving 

methods suggested in [14]. Initial locations and goals of agents were distributed ran-

domly over the grid. Grids of sizes 6⨯6, 8⨯8, and 12⨯12 were used in experiments; 

    were occupied by obstacles. All CPF the instances were solvable. Glucose 

version 3.0 [1] SAT solver has been used in the experimental evaluation.  All the 

source codes used to conduct experiments are posted on website to allow full repro-

ducibility of presented results: http://ktiml.mff.cuni.cz/~surynek/research/pricai2014. 

Static Evaluation of Encodings 

There are several static characteristics of propositional formulae in CNF that are cor-

related with performance of their solving by most SAT solvers. The size of the formu-
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la in terms of the number of variables and the number of clauses determines the time 

needed to find a solution significantly. 

  Static characteristics of the DIRECT encoding are compared with other two propo-

sitional encodings over the 8⨯8 grid – INVERSE and ALL-DIFFERENT – in Table 1. 

Results for various numbers of agents are shown. The winner according to each char-

acteristic is shown in bold (short clauses, high constrainedness, small formula are 

preferred). It can be observed that the smallest encoding in terms of the number of 

variables and clauses is the INVERSE one while the biggest one is the DIRECT encoding 

with ALL-DIFFERENT encoding standing in the middle. However in terms of the clause 

to variable ratio and the size of clauses, the DIRECT encoding seems to be the best as it 

has highest number of shortest clauses. 

Runtime Evaluation of Encodings 

The speed of SAT-based optimal CPF solving with the three discussed encodings has 

been evaluated. Again, 4-connected grids of various sizes were used in experiments. 

The runtime1 needed for finding an optimal solution has been measured for the num-

ber of agents ranging from 1 to half of the number of vertices in the graph. The 

timeout of 1 minute has been used (since the increasing number of agents makes the 

CPF instance more difficult, the timeout has been reached before the limit of the 

number of agents in the largest grid). For each number of agents,    random instances 

of bCPF have been generated and solved. 

 
 

Grid 8⨯8 
1 2 4 8 12 16 20 24 32 

|A| 

Makespan 5.6 5.3 8.0 9.7 10.8 11.0 11.5 11.5 10.4 

Figure 2. Runtime of SAT-based CPF solving – grid 8⨯8. Glucose 3.0 is used as an exter-

nal solver in SAT-based solving. For each number of agents,    random instances were solved 

and the average runtime is reported. The DIRECT encoding can be solved the fastest for the 

higher occupancy with agents and it is the only encoding for which all the instances have been 

solved in a given timeout of 1 minute. The average optimal makespan for selected numbers of 

agents is shown in the table in the bottom. Note that OD+ID is fastest for sparsely populated 

graphs but its increases runtime quickly with higher number of agents. 

                                                           
1 All the runtime measurements were done on an 4-core CPU Xeon 2.0GHz with 12GB 

RAM under Linux kernel 3.5.0-48. 
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 Evaluation of SAT-based CPF solving would be incomplete if it is not compared 

with other state-of-the-art solving methods. Therefore A*-based method OD+ID [7] is 

included into competitive comparison.  

 Runtime results for the 8⨯8 grid are shown in Figure 2. Also average optimal 

makespans are shown. In case of grids of size 6⨯6 and 8⨯8, the SAT-based solving 

with the DIRECT encoding is the best option if the occupancy of the graph with agents 

is     . That is, the DIRECT encoding is a better option for more difficult instances 

on these two grids. The closest competitor to the DIRECT encoding is the ALL-

DIFFERENT encoding which is a better option for less occupied graphs. In very sparse-

ly occupied graphs, OD+ID method is the best as lot of independence among agents 

can be found. However, OD+ID degrades dramatically if there is higher concentration 

of agents in the graph since agents become more interdependent and independence 

heuristics no longer work. 

 The INVERSE encoding was always the worst option out of all the tested methods. 

We consider that the reason for its weak performance is that relatively long clauses 

appear in it. On the other hand, short clauses of the DIRECT encoding and their abun-

dance promoting unit propagation are the main reasons for the good performance of 

this encoding. We observed that solving of formulae of the DIRECT encoding by the 

SAT solver is relatively fast while large portion of the time is consumed by generat-

ing the formula (the formula is generated into file, which is subsequently read by the 

SAT solver). Hence, there is still room to increase the speed of SAT-based solving if 

the solving process is better engineered. 

6   Discussion, Conclusions, and Future Works 

A new propositional encoding of the makespan bounded cooperative path-finding 

problem (bCPF) has been proposed. The idea of the work was to design very simple 

encoding with no elaborate technique behind and to check how it stands with respect 

to existing relatively elaborate encodings for the problem. The new encoding has been 

called DIRECT as it encodes the bCPF problem in the most straightforward way we 

were able to imagine. 

 The DIRECT encoding has been used within the SAT-based framework for solving 

CPF (unbounded version) optimally. The comparison with existing two encodings 

INVERSE [16] and ALL-DIFFERENT [17] as well as with A* search based method 

OD+ID [15] on random CPF instances over 4-connected grids has been done and 

showed surprising results. The DIRECT encoding despite its relatively naive design 

performed better than the ALL-DIFFERENT encoding on instances with occupancy by 

agents      and almost always better than the INVERSE encoding. 

 Generally, the SAT-based approach turned out to be better whatever encoding has 

been used than the A* based OD+ID whenever occupancy with agents has been higher 

than trivial. This can be explained by the fact that OD+ID‘s heuristic cannot detect 

independence among agents. Note also that this method can be regarded as all-in-one 

while in the SAT-based approach the SAT solver itself is external. It is unrealistic to 

implement equivalent number of propagation, learning, and heuristic techniques in the 

all-in-one solution as they are in SAT solvers, which we can access through encoding 

the problem in this formalism in a relatively simple way. 
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