Simple Direct Propositional Encoding of Cooperative Path Finding Simplified Yet More

Pavel Surynek

Faculty of Mathematics and Physics Charles University in Prague Czech Republic

MICAI 2014, Tuxtla Gutiérrez, Mexico

MICAI 2014

initial and goal location Physical limitations

agents must not collide with each other

each agent needs to relocate itself

must avoid obstacles

Agents can **move only**

Abstraction

- environment undirected graph G=(V,E)
 - vertices V locations in the environment
 - edges E passable region between neighboring locations
- agents items placed in vertices
 - at most one agents per vertex
 - at least one vertex empty to allow movements

Cooperative Path-Finding (CPF)

abstraction

CPF Formally

- A **quadruple** (G, A, α^0 , α^+), where
 - G=(V,E) is an undirected graph
 - A = { $a_1, a_2, ..., a_\mu$ }, where $\mu < |V|$ is a set of agents
 - α^0 : A \rightarrow V is an **initial arrangement of agents**
 - uniquely invertible function
 - α^+ : A \rightarrow V is a **goal arrangement of agents**
 - uniquely invertible function
- Time is discrete time steps
- Moves/dynamicity
 - depends on the model
 - agent moves into unoccupied neighbor
 - no other agent is entering the same target
 - sometimes train-like movement is allowed
 - only the leader needs to enter unoccupied vertex

Solution to CPF

- **Solution** of (G, A, α^0 , α^+)
 - sequence of arrangements of agents
 - (i+1)-th arrangement obtained from i-th by legal moves
 - the first arrangement determined by α⁰
 - the last arrangement determined by α⁺
 - all the agents in their goal locations
- The length of solution sequence = makespan
 - optimal/sub-optimal makespan

Solution of an instance of cooperative path-finding on a graph with $A=\{1,2,3\}$

makespan=7		$[v_1, [v_2, [v_3, v_3]]$	v ₄ , v ₂ , v ₃ ,	v ₇ , v ₁ , v ₃ ,	v ₈ , v ₄ , v ₂ ,	v ₉ , v ₇ , v ₁ ,	v ₉ , v ₈ , v ₄ ,	v ₉] v ₈] v ₇]
Tim	e step:	1	2	3	4	5	6	7

Motivation for CPF

- Container rearrangement (agent = container)
- Heavy traffic

 (agent = automobile (in jam))
- Data transfer
 (agent = data packet)
- Ship avoidance (agent = ship)

CPF as **SAT**

SAT = propositional satisfiability

- a formula φ over 0/1 (false/true) variables
- Is there a valuation under which φ evaluates to 1/true?
 - NP-complete problem
- SAT solving and CPF
 - powerful SAT solvers
 - MiniSAT, clasp, glucose, glue-MiniSAT, crypto-MiniSAT, ...
 - intelligent search, learning, restarts, heuristics, ...
 - CPF \Rightarrow SAT
 - all the advanced techniques accessed almost for free
- Translation
 - given a CPF Σ=(G, A, α^0 , α^+) and a **makespan** η
 - construct a formula φ
 - satisfiable iff Σ has a solution of makespan η

Encoding of CPF

How to encode a question if there is a solution of makespan η?

- Build time expansion network
 - Represent arrangements of agents at steps 1,2...,η
 - step 1 ... α⁰
 - step η ... α⁺
 - Encode dynamicity of CPF (valid transitions)
 - consecutive arrangements must be obtainable by valid moves
- Encoding design issues
 - (i) suggest propositional variables
 - represent arrangement of agents in graph G over time steps 1,2...,η
 - (ii) introduce constraints (clauses)
 - remove non-arrangements (more than one agent in a vertex)
 - remove invalid transitions (agents collide)

DIRECT Encoding of CPF

X_{j,k}ⁱ

Α

The design of propositional variables

- recall what we need to model
 - **A** = { $a_1, a_2, ..., a_{\mu}$ }
 - a set of agents
 - $V = \{v_1, v_2, ..., v_n\}$
 - a set of vertices
 - time steps 1,2...,η
- Xⁱ_{j,k} ∈{true, false}
 - TRUE iff agent a_k appears in v_j at time step *i*
 - allow to represent invalid states
- The design of constraints
 - rule out invalid states (non-arrangements)
 - enforce valid transitions between time steps
 - many binary clauses
 - at most one agent is placed in a vertex at each time step
 - support unit propagation

V

time

Auxiliary Variables

- Auxiliary variables allow to build the CNF formula in a hierarchical manner
 - relocation of agent a_k
 - at time step i
 - from vertex v_i to vertex v_l
 - target v_i
 - must be empty at time step i
 - source *v_i*
 - must be empty at time step i+1
- relocation in terms of clauses

emptiness constraints are the same for all the agents

SIMPLIFIED Encoding

Repeating sub-formulae can be replaced with auxiliary variable

$$X_{j,k}^{i} \wedge X_{l,k}^{i} \Rightarrow (\Lambda_{h=1}^{\mu} \neg X_{j,h}^{i}) \wedge (\Lambda_{h=1}^{\mu} \neg X_{l,h}^{i+1})$$

independent of independent of relocated agent a_k relocated agent a_k

- develops into 2µ ternary clauses
- Introduce auxiliary propositional variable E_iⁱ∈{true, false}
 - TRUE iff vertex v_i is empty at time step i
 - replace original constraint with $X_{j,k}^{i} \wedge X_{l,k}^{i} \Rightarrow E_{j}^{i} \wedge E_{l}^{i+1}$
 - develops into 2 ternary clauses
- Introduce the meaning of auxiliary variables
 - $E_{j}^{i} \Rightarrow (\Lambda_{h=1}^{\mu} \neg X_{j,h}^{i})$
 - develops into μ binary clauses
- Fewer clauses but more decision variables

Encoding Size Evaluation

Comparison with previous encodings

INVERSE [Surynek, PRICAI 2012]

- based on bit-vectors
- comparison with domain independent encodings from SATPlan [Kautz, Selman, 1999] and SASE encoding [Huang, Chen, Zhang, 2010]
- ALL-DIFFERENT [Surynek, ICTAI 2012]
 - based on bit-vectors and the all-different constraint
- DIRECT
 - only the decision variables (no auxiliary ones)

Grid 8×8 INVERSE ALL-DIFFERENT DIRECT SIMPLIFIED |Agents| #Variables 8 358.7 3.748 1489.3 5.325 814.4 28.539 1 628.8 2.078 Ratio 1 31 327.9 2.616 7 930.4 3.057 23 241.9 2.149 3 384.6 2.550 #Clauses Length 10 019.5 5.532 4.420 7834.5 4.440 3 257.6 35.589 4 072.0 16 time steps 4 55 437.0 2.641 34 781.9 3.103 115 934.3 2.272 17 997.8 2.374 7.820 10.853 67 088.3 11 680.3 3.231 13 030.4 64.506 13 844.8 16 91 344.5 3.127 216 745.4 3.147 840 540.6 2.505 150 259.2 2.180 12 510.7 9.765 230 753.0 2.802 26 060.8 105.084 26 875.2 19.002 32 510 672.1 122 170.3 3.733 646 616.2 3.168 2 738 584.7 2.621 2.111

Setup: 4-connected grid, random initial arrangement and goal, 10% obstacles

Pavel Surynek

MICAI 2014

Runtime Evaluation

Comparison with previous encodings + A*-based
 ID+OD [Standley, IJCAI 2011]

same setup as in the size evaluation

Grid 8×8	1	2	4	8	12	16	20	24
Agents								
Makespan	6.4	6.1	8.1	10.5	9.8	11.0	11.9	12.7

 SIMPLIFIED encoding performs as best for higher number agents

Conclusions and Observations

CPF as SAT

- Advantages
 - search techniques
 - advanced search techniques from SAT solvers accessed
 - modularity
 - exchangeable modules SAT solver, encoding
- Disadvantages
 - energy extensive solutions
 - agents move too much

SIMPLIFIED Encoding

- space efficient
 - small number of variables and clauses
- time efficient
 - can be solved faster than previous encodings
 - SAT-based approach with SIMPLIFIED encoding outperforms A*-based approach