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Cooperative Path-Finding (CPF) 

Pavel Surynek 

 Agents can move only 
 each agent needs to relocate itself  
 initial and goal location 

 Physical limitations 
 agents must not collide with each other 
 must avoid obstacles 

 Abstraction 
 environment – undirected graph G=(V,E) 

• vertices V – locations in the environment 
• edges E – passable region between neighboring locations 

 agents – items placed in vertices 
• at most one agents per vertex 
• at least one vertex empty to allow movements 
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CPF Formally 

Pavel Surynek 

 A quadruple (G, A, α0, α+), where 
 G=(V,E) is an undirected graph 
 A = {a1,a2,...,aμ}, where μ<|V| is a set of agents 
 α0: A V is an initial arrangement of agents 

• uniquely invertible function 

 α+: A V is a goal arrangement of agents 
• uniquely invertible function 

 Time is discrete – time steps 
 Moves/dynamicity 

 depends on the model 
 agent moves into unoccupied neighbor 

• no other agent is entering the same target 

 sometimes train-like movement is allowed 
• only the leader needs to enter unoccupied vertex 
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Solution to CPF 

Pavel Surynek 

 Solution of (G, A, α0, α+) 
 sequence of arrangements of agents 
 (i+1)-th arrangement obtained from i-th by legal moves 
 the first arrangement determined by α0 

 the last arrangement determined by α+ 
• all the agents in their goal locations 

• The length of solution sequence = makespan 
 optimal/sub-optimal makespan 
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Time step: 

Solution of an instance of cooperative 

path-finding on a graph with A={1,2,3} 
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Motivation for CPF 

Pavel Surynek 

 Container rearrangement 
(agent = container) 
 

 Heavy traffic 
(agent = automobile (in jam)) 
 

 Data transfer 
(agent = data packet) 
 

 Ship avoidance 
(agent = ship)  
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CPF as SAT 

Pavel Surynek 

 SAT = propositional satisfiability 
 a formula φ over 0/1 (false/true) variables 
 Is there a valuation under which φ evaluates to 1/true? 

• NP-complete problem 

 SAT solving and CPF 
 powerful SAT solvers 

• MiniSAT, clasp, glucose, glue-MiniSAT, crypto-MiniSAT, … 
• intelligent search, learning, restarts, heuristics, … 

 CPF  SAT 
• all the advanced techniques accessed almost for free 

 Translation 
 given a CPF Σ=(G, A, α0, α+) and a makespan η 
 construct a formula φ 

• satisfiable iff Σ has a solution of makespan η 
 

(x ∨¬y) ∧ (¬x ∨ y) 
Satisfied for x = 1, y = 1 
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Encoding of CPF 

Pavel Surynek 

 How to encode a question if there is a solution of makespan η? 
 Build time expansion network 

 Represent arrangements of agents at steps 1,2…,η 
 step 1 … α0 
 step η … α+ 

 Encode dynamicity of CPF (valid transitions) 
 consecutive arrangements must be obtainable by 

valid moves 
 Encoding design issues 

 (i) suggest propositional variables 
 represent arrangement of agents in graph G over time steps 1,2…,η 

 (ii) introduce constraints (clauses) 
 remove non-arrangements (more than one agent in a vertex) 
 remove invalid transitions (agents collide) 
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DIRECT Encoding of CPF 

Pavel Surynek 

 The design of propositional variables 
 recall what we need to model 

 A = {a1, a2, …, aμ} 
 a set of agents 

 V={v1, v2, ..., vn} 
 a set of vertices 

 time steps 1,2…,η 

 Xj,k
i {true, false} 

• TRUE iff agent ak appears in vj at time step i 
• allow to represent invalid states 

 The design of constraints 
 rule out invalid states (non-arrangements) 
 enforce valid transitions between time steps 

 many binary clauses 
 at most one agent is placed in a vertex at each time step 
 support unit propagation 
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Auxiliary Variables 

Pavel Surynek 

 Auxiliary variables allow to build the CNF formula in a 
hierarchical manner 
 relocation of agent ak 

 at time step i 
 from vertex vj to vertex vl 

 target vl 
 must be empty at time step i 

 source vj  
 must be empty at time step i+1 

 relocation in terms of clauses 

 Xj,k
i ∧ Xl,k

i ⇒ (⋀h=1
μ Xj,h

i) ∧ (⋀h=1
μ Xl,h

i+1) 
 
 
 

 emptiness constraints are the same for all the agents 
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SIMPLIFIED Encoding 

Pavel Surynek 

 Repeating sub-formulae can be replaced with auxiliary variable 

 Xj,k
i ∧ Xl,k

i ⇒ (⋀h=1
μ Xj,h

i) ∧ (⋀h=1
μ Xl,h

i+1) 
 
 
 
 develops into 2μ ternary clauses 

 Introduce auxiliary propositional variable Ej
i{true, false} 

 TRUE iff vertex vj is empty at time step i 

 replace original constraint with Xj,k
i ∧ Xl,k

i ⇒ Ej
i ∧ El

i+1 

 develops into 2 ternary clauses 

 Introduce the meaning of auxiliary variables 
 Ej

i ⇒ (⋀h=1
μ Xj,h

i) 

 develops into μ binary clauses 

 Fewer clauses but more decision variables 
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Encoding Size Evaluation 

Pavel Surynek 

 Comparison with previous encodings 
 INVERSE [Surynek, PRICAI 2012] 

 based on bit-vectors 
 comparison with domain independent encodings from SATPlan [Kautz, Selman, 1999] 

and SASE encoding [Huang, Chen, Zhang, 2010] 

 ALL-DIFFERENT [Surynek, ICTAI 2012] 
 based on bit-vectors and the all-different constraint 

 DIRECT 
 only the decision variables (no auxiliary ones) 
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Setup: 4-connected grid, random initial arrangement and goal, 10% obstacles 

16 time steps 

Grid 8⨯8 
INVERSE ALL-DIFFERENT DIRECT SIMPLIFIED |Agents| 

1 
#Variables 

#Clauses 

Ratio 
Length 

8 358.7 
31 327.9 

3.748 
2.616 

1 489.3 
7 930.4 

5.325 
3.057 

814.4 
23 241.9 

28.539 
2.149 

1 628.8 
3 384.6 

2.078 
2.550 

4 
10 019.5 
55 437.0 

5.532 
2.641 

7 834.5 
34 781.9 

4.440 
3.103 

3 257.6 
115 934.3 

35.589 
2.272 

4 072.0 
17 997.8 

4.420 
2.374 

16 
11 680.3 
91 344.5 

7.820 
3.127 

67 088.3 
216 745.4 

3.231 
3.147 

13 030.4 
840 540.6 

64.506 
2.505 

13 844.8 
150 259.2 

10.853 
2.180 

32 
12 510.7 

122 170.3 

9.765 
3.733 

230 753.0 
646 616.2 

2.802 
3.168 

26 060.8 
2 738 584.7 

105.084 
2.621 

26 875.2 
510 672.1 

19.002 
2.111 



Runtime Evaluation 

Pavel Surynek 

 Comparison with previous encodings + A*-based 
ID+OD [Standley, IJCAI 2011] 
 same setup as in the size evaluation 

|agents| 
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Grid 8⨯8 
1 2 4 8 12 16 20 24 

|Agents| 

Makespan 6.4 6.1 8.1 10.5 9.8 11.0 11.9 12.7 
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Runtime | Grid 8⨯8 | 10% obstacles 

INVERSE 

ALL-DIFFERENT 

OD+ID 

DIRECT 

SIMPLIFIED 

 SIMPLIFIED encoding 
performs as best for 
higher number agents 



Conclusions and Observations 

Pavel Surynek 

 CPF as SAT 
 Advantages 

 search techniques 
 advanced search techniques from SAT solvers accessed 

 modularity 
 exchangeable modules – SAT solver, encoding 

 Disadvantages 
 energy extensive solutions 

 agents move too much 

 SIMPLIFIED Encoding 
 space efficient 

 small number of variables and clauses 

 time efficient 
 can be solved faster than previous encodings 
 SAT-based approach with SIMPLIFIED encoding outperforms 

A*-based approach 
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