
Simple Direct Propositional Encoding of
Cooperative Path Finding

Simplified Yet More

Pavel Surynek

Faculty of Mathematics and Physics
Charles University in Prague

Czech Republic

 MICAI 2014, Tuxtla Gutiérrez, Mexico

Cooperative Path-Finding (CPF)

Pavel Surynek

 Agents can move only
 each agent needs to relocate itself
 initial and goal location

 Physical limitations
 agents must not collide with each other
 must avoid obstacles

 Abstraction
 environment – undirected graph G=(V,E)

• vertices V – locations in the environment
• edges E – passable region between neighboring locations

 agents – items placed in vertices
• at most one agents per vertex
• at least one vertex empty to allow movements

A

B

abstraction

MICAI 2014

CPF Formally

Pavel Surynek

 A quadruple (G, A, α0, α+), where
 G=(V,E) is an undirected graph
 A = {a1,a2,...,aμ}, where μ<|V| is a set of agents
 α0: A V is an initial arrangement of agents

• uniquely invertible function

 α+: A V is a goal arrangement of agents
• uniquely invertible function

 Time is discrete – time steps
 Moves/dynamicity

 depends on the model
 agent moves into unoccupied neighbor

• no other agent is entering the same target

 sometimes train-like movement is allowed
• only the leader needs to enter unoccupied vertex

1 2 3

all moves at once

MICAI 2014

Solution to CPF

Pavel Surynek

 Solution of (G, A, α0, α+)
 sequence of arrangements of agents
 (i+1)-th arrangement obtained from i-th by legal moves
 the first arrangement determined by α0

 the last arrangement determined by α+
• all the agents in their goal locations

• The length of solution sequence = makespan
 optimal/sub-optimal makespan

v1

v2

v3

v5

v4

v8

v7
1

2

3

α0 α+

v6 v9

v1

v2

v3

v5

v4

v8

v7

2

3

v6 v9
1

 [v1, v4, v7, v8, v9, v9, v9]

 [v2, v2, v1, v4, v7, v8, v8]

 [v3, v3, v3, v2, v1, v4, v7]

makespan=7

1 2 3 4 5 6 7

Time step:

Solution of an instance of cooperative

path-finding on a graph with A={1,2,3}

MICAI 2014

Motivation for CPF

Pavel Surynek

 Container rearrangement
(agent = container)

 Heavy traffic
(agent = automobile (in jam))

 Data transfer
(agent = data packet)

 Ship avoidance
(agent = ship)

MICAI 2014

CPF as SAT

Pavel Surynek

 SAT = propositional satisfiability
 a formula φ over 0/1 (false/true) variables
 Is there a valuation under which φ evaluates to 1/true?

• NP-complete problem

 SAT solving and CPF
 powerful SAT solvers

• MiniSAT, clasp, glucose, glue-MiniSAT, crypto-MiniSAT, …
• intelligent search, learning, restarts, heuristics, …

 CPF SAT
• all the advanced techniques accessed almost for free

 Translation
 given a CPF Σ=(G, A, α0, α+) and a makespan η
 construct a formula φ

• satisfiable iff Σ has a solution of makespan η

(x ∨¬y) ∧ (¬x ∨ y)
Satisfied for x = 1, y = 1

MICAI 2014

Encoding of CPF

Pavel Surynek

 How to encode a question if there is a solution of makespan η?
 Build time expansion network

 Represent arrangements of agents at steps 1,2…,η
 step 1 … α0
 step η … α+

 Encode dynamicity of CPF (valid transitions)
 consecutive arrangements must be obtainable by

valid moves
 Encoding design issues

 (i) suggest propositional variables
 represent arrangement of agents in graph G over time steps 1,2…,η

 (ii) introduce constraints (clauses)
 remove non-arrangements (more than one agent in a vertex)
 remove invalid transitions (agents collide)

MICAI 2014

Xj,k
i

time

V

A

DIRECT Encoding of CPF

Pavel Surynek

 The design of propositional variables
 recall what we need to model

 A = {a1, a2, …, aμ}
 a set of agents

 V={v1, v2, ..., vn}
 a set of vertices

 time steps 1,2…,η

 Xj,k
i {true, false}

• TRUE iff agent ak appears in vj at time step i
• allow to represent invalid states

 The design of constraints
 rule out invalid states (non-arrangements)
 enforce valid transitions between time steps

 many binary clauses
 at most one agent is placed in a vertex at each time step
 support unit propagation

MICAI 2014

Auxiliary Variables

Pavel Surynek

 Auxiliary variables allow to build the CNF formula in a
hierarchical manner
 relocation of agent ak

 at time step i
 from vertex vj to vertex vl

 target vl
 must be empty at time step i

 source vj
 must be empty at time step i+1

 relocation in terms of clauses

 Xj,k
i ∧ Xl,k

i ⇒ (⋀h=1
μ Xj,h

i) ∧ (⋀h=1
μ Xl,h

i+1)

 emptiness constraints are the same for all the agents

MICAI 2014

vj

vl

ak

step i

vj

vl
ak

step i+1

relocation

occurred

target vj

is empty at i

source vl

is empty at i+1

SIMPLIFIED Encoding

Pavel Surynek

 Repeating sub-formulae can be replaced with auxiliary variable

 Xj,k
i ∧ Xl,k

i ⇒ (⋀h=1
μ Xj,h

i) ∧ (⋀h=1
μ Xl,h

i+1)

 develops into 2μ ternary clauses

 Introduce auxiliary propositional variable Ej
i{true, false}

 TRUE iff vertex vj is empty at time step i

 replace original constraint with Xj,k
i ∧ Xl,k

i ⇒ Ej
i ∧ El

i+1

 develops into 2 ternary clauses

 Introduce the meaning of auxiliary variables
 Ej

i ⇒ (⋀h=1
μ Xj,h

i)

 develops into μ binary clauses

 Fewer clauses but more decision variables

MICAI 2014

independent of

relocated agent ak

independent of

relocated agent ak

Encoding Size Evaluation

Pavel Surynek

 Comparison with previous encodings
 INVERSE [Surynek, PRICAI 2012]

 based on bit-vectors
 comparison with domain independent encodings from SATPlan [Kautz, Selman, 1999]

and SASE encoding [Huang, Chen, Zhang, 2010]

 ALL-DIFFERENT [Surynek, ICTAI 2012]
 based on bit-vectors and the all-different constraint

 DIRECT
 only the decision variables (no auxiliary ones)

MICAI 2014

Setup: 4-connected grid, random initial arrangement and goal, 10% obstacles

16 time steps

Grid 8⨯8
INVERSE ALL-DIFFERENT DIRECT SIMPLIFIED |Agents|

1
#Variables

#Clauses

Ratio
Length

8 358.7
31 327.9

3.748
2.616

1 489.3
7 930.4

5.325
3.057

814.4
23 241.9

28.539
2.149

1 628.8
3 384.6

2.078
2.550

4
10 019.5
55 437.0

5.532
2.641

7 834.5
34 781.9

4.440
3.103

3 257.6
115 934.3

35.589
2.272

4 072.0
17 997.8

4.420
2.374

16
11 680.3
91 344.5

7.820
3.127

67 088.3
216 745.4

3.231
3.147

13 030.4
840 540.6

64.506
2.505

13 844.8
150 259.2

10.853
2.180

32
12 510.7

122 170.3

9.765
3.733

230 753.0
646 616.2

2.802
3.168

26 060.8
2 738 584.7

105.084
2.621

26 875.2
510 672.1

19.002
2.111

Runtime Evaluation

Pavel Surynek

 Comparison with previous encodings + A*-based
ID+OD [Standley, IJCAI 2011]
 same setup as in the size evaluation

|agents|

MICAI 2014

Grid 8⨯8
1 2 4 8 12 16 20 24

|Agents|

Makespan 6.4 6.1 8.1 10.5 9.8 11.0 11.9 12.7

0.001

0.01

0.1

1

10

100

1000

1 2 4 6 8 10 12 14 16 18 20 22 24

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Runtime | Grid 8⨯8 | 10% obstacles

INVERSE

ALL-DIFFERENT

OD+ID

DIRECT

SIMPLIFIED

 SIMPLIFIED encoding
performs as best for
higher number agents

Conclusions and Observations

Pavel Surynek

 CPF as SAT
 Advantages

 search techniques
 advanced search techniques from SAT solvers accessed

 modularity
 exchangeable modules – SAT solver, encoding

 Disadvantages
 energy extensive solutions

 agents move too much

 SIMPLIFIED Encoding
 space efficient

 small number of variables and clauses

 time efficient
 can be solved faster than previous encodings
 SAT-based approach with SIMPLIFIED encoding outperforms

A*-based approach

MICAI 2014

