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Abstract. This paper deals with solving cooperative path finding (CPF) problems in a makespan-

optimal way. A feasible solution to the CPF problem lies in the moving of mobile agents where each 

agent has unique initial and goal positions. The abstraction adopted in CPF assumes that agents are 

discrete units that move over an undirected graph by traversing its edges. We focus specifically on 

makespan-optimal solutions to the CPF problem where the task is to generate solutions that are as 

short as possible in terms of the total number of time steps required for all agents to reach their goal 

positions. 

 We demonstrate that reducing CPF to propositional satisfiability (SAT) represents a viable way to 

obtain makespan-optimal solutions. Several ways of encoding CPFs into propositional formulae are 

proposed and evaluated both theoretically and experimentally. Encodings based on the log and direct 

representations of decision variables are compared. The evaluation indicates that SAT-based solutions 

to CPF outperform the makespan-optimal versions of such search-based CPF solvers such as OD+ID, 

CBS, and ICTS in highly constrained scenarios (i.e., environments that are densely occupied by agents 

and where interactions among the agents are frequent). Moreover, the experiments clearly show that 

CPF encodings based on the direct representation of variables can be solved faster, although they are 

less space-efficient than log encodings. 

Keywords: cooperative path-finding (CPF), propositional satisfiability (SAT), time-expanded graphs, 

makespan-optimality, multi-robot path planning, multi-agent pathfinding, pebble motion on graphs, 

operator decomposition/independence detection – OD+ID, conflict-based search – CBS, increasing 

cost tree search – ICTS.1 

1. Introduction 

Cooperative path-finding - CPF [32, 52, 54] (also known as multi-agent path-finding - 

MAPF [50, 51, 69, 70] or multi-robot path planning - MRPP [43, 44] or pebble motion on 

graphs - PMG [32, 40]) is an abstraction of many real-life tasks, in which the goal is to 

move certain objects that spatially interact with each other. In the context of CPF, we speak 

about mobile agents (or robots) that can be moved in a certain environment. Each agent 

starts at a given initial position in the environment and is assigned a unique goal position 

which it has to reach. 

A feasible solution to the CPF problem is a spatial-temporal path for each agent. The 

agents move from their given initial positions to their goal positions by following their 

paths without colliding with each other. 

The applications of CPF range from unit navigation in computer games [53] to item 

repositioning in automated storage systems (see KIVA robots [31]). Further interesting 

applications can be found in traffic control, for example in collision avoidance at sea [30]. 

 
1 Submitted to Annals on Mathematics and Artificial Intelligence on April 15, 2016. Reviews received on June 

26, 2016. Major revision submitted on October 28, 2016. Reviews received on March 21, 2017. Minor revision 

submitted on May 20, 2017. 
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Similar challenges extend to aviation, as the presence of drones necessitates cooperation 

between them [34]. 

 A graph-theoretical abstraction where the environment in which the agents move is 

modeled as an undirected graph is often adopted [43, 48]. In this abstraction, agents are 

represented as discrete units placed in the vertices of the graph. Several constraints are 

assumed in the abstract model, so that it reflects the physical properties of the agents and 

the environment. We classify these constraints into static and dynamic: 

• Static constraints represent spatial occupancies caused by the presence of agents. 

These constraints are usually modeled based on the requirement that no more than 

one agent can be present in each vertex. 

• Dynamic constraints impose restrictions on the ways the agents can move and 

define what is considered as a collision. We adopt a model commonly used in 

literature [44, 50], in which an agent can instantaneously move to the neighboring 

vertex, if the target vertex is unoccupied and no other agent is trying to enter the 

same target vertex at the same time. 

 There are other types of dynamic constraints in CPF including chain-like relocations 

[57], during which only the leading agent of a chain of agents moves into an unoccupied 

vertex and all other agents in the chain follow it, entering the vertices that are simultane-

ously vacated by the agents that precede them. Some models also allow the rotations of 

agents over cycles with at least 3 vertices with no free vertex inside the cycle [72] (swap-

ping the agents over edges is usually forbidden, as such a transition corresponds to a head-

on collision). 

It is important to note that methods presented in this paper are fully applicable across 

various versions of static and dynamic constraints. 

1.1. Introducing the Objective Function 

In this paper, we are interested in solutions with makespans as short as possible [52, 58]. 

Makespan refers to the number of time steps required for all agents to reach their goal 

positions. In other words, makespan is the number of time steps elapsed until the last agent 

reaches its goal vertex. 

 By introducing the makespan-objective function to CPF we have also created a signif-

icant challenge to solving this problem. From the theoretical point of view, finding 

makespan-optimal solutions to CPF is known to be a complex problem. Namely, the prob-

lem is NP-hard (the decision version is NP-complete) [40, 61, 72]. 

 Note that the so-called sum-of-costs [50, 51] is also studied as an objective function in 

the context of CPF. The sum-of-costs corresponds to the total number of moves carried out 

by the agents. In practice, the sum-of-costs can be understood as the amount of energy 

consumed by the agents. Hence, sum-of-costs-optimal solutions are energy-saving, 

whereas makespan-optimal solutions are time-saving. 
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These two objective functions are correlated but distinct – there are CPF instances 

where none of the makespan-optimal solutions is sum-of-costs-optimal and vice versa. This 

naturally reflects the real-life situations where we can save time at the cost of expending 

more energy. 

In this paper, we also focus specifically on CPF instances with high agent densities and 

frequent spatial interactions between the agents. These high-density scenarios are widely 

applicable in connection with makespan-optimality in practical domains such as navigating 

cars automatically through intersections (agents represented by cars), navigating robots in 

automated production/storage facilities (agents represented by robots), or the evacuation 

of people from danger (agents are represented by the evacuating people). In these cases, 

makespan-optimality is particularly desirable because it translates into the quickest possi-

ble clearance of an intersection, the fastest production lines in manufacturing, and the most 

efficient evacuation, respectively. 

1.2. Contribution 

The main contribution of this paper lies in the evaluation of makespan-optimal CPF solving 

methods based on the reduction of CPF to propositional satisfiability (SAT) [12]. The main 

reason for the reduction of CPF to SAT is the ability to use modern off-the-shelf SAT 

solvers [3, 5, 8] to answer the resulting propositional formulae. The reduction to SAT en-

ables us to use the efficient propagation, heuristics, and learning techniques implemented 

in SAT solvers to solve CPF. Several encodings of CPF into propositional formulae are 

discussed. 

The fundamental approach common to the various encodings presented here is the use 

of the technique of time expansion for the underlying graph [29, 55]. Time expansion re-

sults in a time-expanded graph that consists of a copy of the underlying graph for each time 

step. This structure enables us to represent all possible configurations of agents in vertices 

in all time steps. In an analogical approach common in SAT-based domain independent 

planning, states in all time steps are representable as a graph-like structure. This approach 

was introduced in the GRAPHPLAN planner [15] and then modified in the SATPLAN [29] 

planner and its successors [7, 25, 42, 67] for SAT-based planning.  

We aim to evaluate various encodings theoretically in terms of size and experimentally 

as part of a makespan-optimal CPF solver. We compare our SAT-based solver with search-

based techniques for solving CPF in a makespan-optimal way such as operator decompo-

sition/independence detection method (OD+ID) [52], conflict-based search (CBS) [51], and 

increasing cost tree search (ICTS) [50]. 

Multiple hand-tailored encodings for solving CPF makespan-optimally are available. 

They differ mainly in the way the placement of the agents – which are the major decision 

variables – in the time-expanded graph is represented. Two distinct representations are 

used in propositional encodings – log and direct encodings: 
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• Log representation (log encoding) uses a vector of ⌈log2 𝑛⌉ bits/propositional 

variables to represent an 𝑛-state variable [9, 26, 37]. The representation is based 

on the same idea as the binary representation of numbers in a computer memory. 

• Direct representation (direct encoding) [9, 62, 66] uses a vector of 𝑛 bits/prop-

ositional variables to represent an 𝑛-state variable. In contrast to log encoding, 

where, in principle, any valuation of propositional variables corresponds to the 

valuation of the relevant 𝑛-state variable1, only those valuations that have exactly 

one propositional variable in the vector set to 𝑇𝑅𝑈𝐸 are valid in the direct encod-

ing. This requires the use of additional constraints to ensure that invalid valuations 

are excluded. 

Both representations have their pros and cons. The log representation is more space-

efficient than the direct representation. The direct representation, on the other hand, pro-

vides better support for constraint propagation in the SAT solver [38]. 

Several representative encodings of CPF will be described and analyzed in the next 

section – two encodings that are based purely on log representation, one encoding based 

on mixed representation (some variables are log variables, some are direct), and one based 

purely on directly represented variables. 

The rest of the paper is structured as follows. After a survey of the literature on CPF 

we will describe in detail the concept of the time-expanded graph. Next, we will introduce 

in detail the encodings based on the concept of the time-expanded graph. A theoretical 

analysis with a focus on the size of the encodings will follow. Finally, we will provide an 

experimental evaluation and comparison of the encodings and will compare them with se-

lected search-based approaches. 

2. Related Work 

While this paper is primarily focused on solving CPF problems and comparing various 

dedicated CPF solvers, we cannot omit a related stream of work dealing with propositional 

encodings from the modeling point of view. 

These publications look at the ways to translate a problem formulated as the satisfaction 

of a conjunction of constraints – a constraint satisfaction problem (CSP) [22] – into 

propositional formulae. 

CSP-to-SAT reformulations must be approached from the perspective of the needs of 

the existing CPF solution techniques. For this reason, we will first survey the related work 

on dedicated CPF solvers. Next, we will discuss publications dealing with CSP-to-SAT 

encodings and analyze those with respect to CPF needs. 

 
1 If 𝑛 is not a power of 2, then some valuations of propositional variables are not used. 
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2.1. Survey of Related Work in Cooperative Path Finding 

There are several dedicated alternatives to solving CPF by reducing it to SAT: 

(i) Search-based methods related to A*. Some of these methods are based on the A* 

algorithm and include both optimal and suboptimal cases. A*-based algorithms compute 

all configurations of agents that can be obtained by putting together the valid moves of all 

agents while at the same time pruning out unpromising configurations. A prominent 

example of these algorithms is operator decomposition/independence detection (OD+ID) 

[52], which improves on the standard A* by ordering the agents, reducing the branching 

factor and enabling better search space pruning. Additionally, independence detection 

divides the set of agents into independent groups that can be dealt with separately, thus 

further decreasing the size of the composite search space by reducing its dimensionality. 

Another example of A*-based methods is Silver’s suboptimal WHCA* algorithm [48], 

in which the cooperation between agents is integrated via a conflict avoidance table that 

keeps track of the agents’ trajectories over time. Yet another example is M* [65], which 

changes the dimensionality of the composite search space dynamically. 

(ii) Search-based methods over a transformed search space. Algorithms operating with 

a different view of the search space include sum-of-costs optimal conflict-based search 

(CBS) [51] and increasing cost tree search (ICTS) [50]. CBS searches for a consistent path 

for each agent. The consistency is defined with respect to the conflict avoidance constraint. 

If a collision between two agents occurs in a certain vertex and a certain time step, a new 

disjunctive constraint forbidding one or the other agent from showing up in the particular 

vertex/time is introduced and the search branches into two new directions. 

The ICTS algorithm operates very similarly to the SAT-based optimal CPF solution 

methods. ICTS performs a top-level search, testing all possible distributions of a given cost 

among the individual agents. Once each agent has been assigned its costs, a low-level 

search will attempt to find non-conflicting paths for the agents within the individual cost 

limits. The search for the individual paths occurs in a multi-value decision diagram similar 

to a time-expanded graph – the vertices of the underlying graph are copied in every time 

step, while the vertices unreachable within the cost limits are omitted to reduce the size of 

the search space. If the search for non-conflicting paths fails, the total cost is incremented 

and the process is repeated. 

(iii) Polynomial-time complete algorithms. Fast polynomial time methods are a very 

important category of algorithms that generate makespan-suboptimal solutions to the CPF 

problem. As well as the PUSH-AND-SWAP [33], PUSH-AND-ROTATE [69, 70], and BIBOX 

algorithms [57], this category includes algorithms originally designed for graph pebbling 

(PMG) [32, 71]. Although these algorithms have the common drawback of producing 

solutions that are very far from the optimum, they are complete and scalable with the size 

of the input instance. The completeness ensures that these algorithms can produce an 

answer even if the input instance has no solution. 
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Thanks to their completeness, these algorithms can be used to check whether or not a 

given instance is solvable before an incomplete method assuming a solvable input is 

applied. This is also the case of the present SAT-based approach, which cannot, by design, 

detect whether the input instance is unsolvable. 

(iv) Other algorithms. Trajectory conflict resolution methods are often used in a 

continuous space [20, 21]. The main advantage of these methods is their scalability in 

dealing with distributed variants. On the other hand, there’s usually no guarantee of the 

completeness and optimality of the solutions. 

2.2. Survey of Related Work in Modeling Paradigms 

Literature on SAT encodings has focused on the translation of CSP into propositional 

formulae [38, 39, 62, 63] in conjunctive normal form (CNF) [12] (conjunction of clauses 

where a clause is a disjunction of literals – positive or negative Boolean variables). One 

of the key differentiating features of the existing encodings is the way they model finite 

domain variables [9, 26, 66]. The choice of variable encodings further determines the way 

the problem-specific constraints are expressed as clauses. It is important to note that in 

CPFs, we need to encode very specific constraints that are imposed by static and dynamic 

constraints. 

 Various design approaches to encoding problems in SAT have been proposed. In [39] 

Petke analyzes several characteristics that a good SAT-encoding design should have: 

(a) Compactness. The encoding should be as small as possible. The two common 

measures of the size of a formula in CNF are the total number of propositional 

variables and the number of clauses. The number of propositional variables determines 

the size of the search space. However, the total number of propositional variables does 

not often correspond to the true dimensionality of the formula, as the values of some 

variables may be directly deduced from other valuations. 

(b) High solution density. Solution density is calculated as the total number of solutions 

divided by 2𝑁 where 𝑁 is the total number of propositional variables in the formula. 

In [18] some evidence is given that with an increasing solution density, the search 

algorithm might find the solution to such a formula more easily. It is usually difficult 

to achieve a high solution density without an in-depth understanding of the problem 

being encoded. 

(c) Suitability for deductions. One of the very powerful techniques implemented in SAT 

solvers is Boolean constraint propagation, particularly unit propagation [12] (once all 

but one of the literals in a clause are set to 𝐹𝐴𝐿𝑆𝐸, the last remaining literal must be 

set to 𝑇𝑅𝑈𝐸 to satisfy the clause). In an encoding that lends itself to unit propagation, 

many variables may be assigned by deduction only, i.e., without a search [24]. It can 

be intuitively observed that having short clauses in a formula increases the probability 

of deductions.  
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The direct representation of 𝑛-state finite domain variables in CPF, that is, having a 

propositional variable for each of 𝑛 states, has the advantage of supporting (c) deductions, 

but is less advantageous when it comes to (a) compactness and (b) solution density. Note 

that the static and dynamic constraints in CPF are rather symbolic implications such as “if 

agent 𝑎𝑖 is in vertex 𝑣 in time step 𝑡, then it is either in 𝑣 or the neighbors of 𝑣 in 𝑡 + 1” 

and trivial arithmetic constraints like at-most-one/at-least-one – “at most one agent is in 

vertex 𝑣 in time step 𝑡”. These simple constraints can be expressed in short clauses 

involving directly represented variables [62]. On the other hand, many possible 

assignments to propositional variables form invalid patterns that need to be excluded by 

additional constraints to ensure assignment consistency (exactly one propositional variable 

in the vector encoding a given finite domain variable can be set to 𝑇𝑅𝑈𝐸). Therefore, the 

number of clauses is large and the solution density is low. 

A log encoding is more compact because it uses only ⌈log2 𝑛⌉ propositional variables 

to represent an 𝑛-state finite domain variable via a binary encoding. Moreover, there is no 

need to introduce any consistency constraints since all assignments to the vector of ⌈log2 𝑛⌉ 

propositional variables form a valid pattern. Hence, log encodings should have the 

advantage of (a) compactness and (b) solution density. However, that cannot be positively 

said of CPF because constraints such as the aforementioned implication need to select a 

concrete pattern of assignment to the vector of ⌈log2 𝑛⌉ propositional variables in order to 

check whether the LHS of a given implication holds. Such pattern matching requires 

complex encodings of the log representation where the individual bits are queried. 

Sometimes a log encoding also requires the introduction of fresh auxiliary propositional 

variables and this may compromise the compactness of the encoding [16]. 

 There are several other encodings apart from direct and log encodings that can be used 

to translate a CSP to SAT. Order encoding  is an important representative [19, 38, 49, 62] 

that attempts to preserve the deduction-related advantages of the direct encoding, but offers 

better support for the representation of linear arithmetic constraints. It uses 𝑛 propositional 

variables for representing relations 𝑥 ≤ 𝑖 for 𝑖 ∈ {1,2, … 𝑛}. Again, consistency constraints 

need to be encoded, but linear relations are represented easily. As there are no linear 

relations in CPF, an order encoding would be very similar to a direct encoding when 

applied to CPF. 

2.3. Reduction of CPF to ASP, CSP, and IP 

The applicability of various other formalisms in a compilation-based approach to CPF has 

been demonstrated in literature. The reductions of CPF to answer set programming (ASP) 

[23] show that the various static and dynamic constraints in CPF can be represented 

declaratively.  Integer programming (IP) was used as a target formalism for CPF reduction 

in [72]. IP models provide important insights into the relationship between CPF and multi-

commodity flows – a version of a time-expanded graph is proposed, in which a multi-

commodity flow directly corresponds to a CPF solution. 
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We conducted our own preliminary study of the usability of CSP and IP in solving CPF 

problems [28]1. Our CSP model of CPF extensively uses global all-different constraints 

[41] to express static CPF constraints. We implemented a CSP-based solver on top of the 

GECODE system [45, 46]. In addition, we implemented an integer programming model of 

CPF on top of GUROBI [13, 14] that exactly corresponded to the INVERSE SAT encoding 

that will be discussed later. 

The findings of these experiments with CSP and IP models indicate that the scalability 

of both the CSP and IP models is limited. Despite the use of powerful global constraints, 

the CPS only performed better than IP and SAT on very small CPF instances. With an 

increasing number of agents in an instance the performance of the CSP model rapidly de-

clined. The IP model delivered better performance than CSP and did not exhibit any rapid 

decline in performance; however, it was ultimately outperformed by the SAT approach on 

larger instances. 

3. Background 

In this section we will introduce some basic definitions relating to CPF. The environment 

in which agents move is represented by an undirected graph. Let 𝐺 = (𝑉, 𝐸) be such a 

graph where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} is a finite set of vertices and 𝐸 ⊆ (𝑉
2

) is a set of edges. 

A configuration (arrangement) of agents in an environment is modeled by assigning 

the vertices of the graph to the agents. Let 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝜇} be a finite set of agents. 

Then, a configuration of agents in the vertices of graph 𝐺 is fully described by the position 

function 𝛼: 𝐴 ⟶ 𝑉 which means that agent 𝑎 ∈ 𝐴 is located in vertex 𝛼(𝑎). 

The standard static constraints in CPF can be easily expressed using  𝛼: having at most 

one agent in a vertex – when translated into a position function – means that 𝛼 is a uniquely 

invertible function. The generalized inverse of 𝛼 denoted as 𝛼−1: 𝑉 ⟶ 𝐴 ∪ {⊥} will return 

the agent located in a given vertex or ⊥ if the vertex is empty. 

 

Definition 1 (COOPERATIVE PATHFINDING). An instance of the cooperative pathfinding 

problem (CPF) is a quadruple Σ = [𝐺 = (𝑉, 𝐸), 𝐴, 𝛼0, 𝛼+] where the position functions 𝛼0 

and 𝛼+ define the initial and goal configurations, respectively, of a set of agents 𝐴 in 𝐺. □ 
 

 Dynamic constraints are expressed in discrete time steps. Configuration 𝛼𝑖 in time step 

𝑖 can be instantaneously transformed by the agents’ movements to configuration 𝛼𝑖+1 in 

time step 𝑖 + 1, provided that the following constraints are satisfied: 

•  ∀𝑎 ∈ 𝐴  either 𝛼𝑖(𝑎) = 𝛼𝑖+1(𝑎) or {𝛼𝑖(𝑎), 𝛼𝑖+1(𝑎)} ∈ 𝐸 holds 

 (agents move only by traversing the edges of the graph or do not move at all), 

•  ∀𝑎 ∈ 𝐴  𝛼𝑖(𝑎) ≠ 𝛼𝑖+1(𝑎) ⇒ 𝛼𝑖
−1(𝛼𝑖+1(𝑎)) =⊥ 

 (the target vertex of an agent’s move must be empty), and 

 
1 The implementation was carried out by a student supervised by the author as a part of his bachelor thesis. 

(1) 

(2) 
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•  ∀𝑎, 𝑏 ∈ 𝐴  𝑎 ≠ 𝑏 ⇒ 𝛼𝑖+1(𝑎) ≠ 𝛼𝑖+1(𝑏) 

 (no two agents can enter the same target vertex or else they would collide). 

It is important to note that constraint (3), together with the assumption that 𝛼𝑖 is uniquely 

invertible, ensures that 𝛼𝑖+1 is uniquely invertible as well. 

The task in CPF is to transform 𝛼0 using the aforementioned valid transitions into 𝛼+. 

An illustration of CPF and valid transitions is given in Figure 1. 

 

 
Figure 1. An example of the cooperative path-finding problem (CPF). Three agents 𝑎1, 𝑎2, and 𝑎3 

need to move from their initial positions represented by 𝛼0 to their goal positions represented by 𝛼+. 

A solution with a makespan of 4 is shown. 

 

Definition 2 (SOLUTION, MAKESPAN). A solution with a makespan 𝜂 to a CPF instance 

Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] is a sequence of configurations of agents 𝑠 = [𝛼0, 𝛼1, 𝛼2, … , 𝛼𝜂] where 

𝛼𝜂 = 𝛼+ and 𝛼𝑖+1 is the result of a valid transition from 𝛼𝑖 for every 𝑖 = 1,2, … , 𝜂 − 1. □ 

 

 The number |𝑠| = 𝜂 is the makespan of solution 𝑠. An often asked question is whether 

there is a solution of Σ with a given makespan 𝜂 ∈ ℕ. This problem is referred to as the 

(makespan) decision variant of CPF. The decision variant of CPF is known to be 

NP-complete [40]. For this reason, finding a makespan-optimal solution to CPF presents a 

significant challenge. 

 Let 𝜉0(𝑎𝑖) be the length of the shortest path connecting 𝛼0(𝑎𝑖) to 𝛼+(𝑎𝑖). Next, let 

𝜂0 = max𝑖=1
𝜇

𝜉0(𝑎𝑖) denote the length of the longest of the shortest paths. Note that 𝜂0 is 

the lower bound for the makespan, as even in the best-case scenario each agent 𝑎𝑖 needs to 

travel the distance 𝜉0(𝑎𝑖). 

4. Solving CPF Optimally via Propositional Satisfiability 

The question we address is how to obtain makespan-optimal solutions to CPF problems. 

We suggest using propositional satisfiability (SAT) [12] as the key technique and integrat-

ing off-the-shelf SAT solver [3] into the CPF solving process. Considering that the decision 

variant of CPF is NP-complete, SAT represents a formalism of just the power we need. 

A propositional formula 𝐹(Σ, 𝜂) satisfiable if and only if a given CPF Σ with makespan 

𝜂 is solvable can be constructed – 𝐹(Σ, 𝜂) encodes the decision variant of CPF Σ. If we are 

able to construct such a formula 𝐹(Σ, 𝜂), we will be able obtain the optimal makespan for 
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CPF Σ by submitting multiple queries 𝐹(Σ, 𝜂) with different makespan bounds 𝜂 to the 

SAT solver. 

There are various strategies for optimizing queries aimed at obtaining optimal 

makespans. Many have been developed for the maximum satisfiability SAT variant [35]. 

During our preliminary experimentation, we discovered that the most efficient 

optimization strategy was simply to test sequentially for makespans 𝜂 = 𝜂0, 𝜂0 + 1, … until 

the 𝜂 equal to the optimal makespan was reached. This strategy will hereinafter be referred 

to as the incremental strategy. This strategy is made possible by the monotonicity of the 

satisfiability of 𝐹(Σ, 𝜂) with respect to parameter 𝜂 (the function is non-decreasing in 𝜂). 

The use of this type of queries is justified by the non-uniform cost of the queries with 

respect to parameter 𝜂. The query runtime is exponential in the size of 𝐹(Σ, 𝜂), while the 

length of the formula is linear in 𝜂. Hence, the total runtime of all queries 𝜂 = 𝜂0, 𝜂0 +
1, … , 𝜂∗ − 1 is comparable to the runtime of a query about 𝜂 = 𝜂∗ and the use of the 

incremental strategy is thus justified. The incremental strategy is also implemented into 

such domain-independent planners as SATPLAN [29], SASE [25] and others [42]. The 

pseudo-code of a makespan-optimal SAT-based MAPF solution based on the incremental 

strategy is given as Algorithm 1. 

 An important property of the propositional encoding 𝐹(Σ, 𝜂) is that a solution to CPF 

Σ of makespan 𝜂 can be unambiguously extracted from the satisfying valuation of 𝐹(Σ, 𝜂) 

(otherwise, an equivalence between the solvability of CPF Σ and 𝐹(Σ, 𝜂) could be trivially 

established by setting 𝐹(Σ, 𝜂) ≡ 𝑇𝑅𝑈𝐸 if Σ is solvable in 𝜂 time steps and 𝐹(Σ, 𝜂) ≡
𝐹𝐴𝐿𝑆𝐸 in all other cases). 

 
 
Algorithm 1. SAT-based optimal CPF solving – incremental strategy. The algorithm finds the 

shortest possible makespan 𝜂 provided that CPF Σ = (𝐺, 𝐴, 𝛼0, 𝛼+) is solvable. Questions as to 

whether CPF Σ has a solution are constructed with respect to increases in makespan and submitted 

to the SAT solver. 

 input:   Σ – a CPF instance 

 output: a pair consisting of the optimal makespan and the corresponding optimal solution 
 

function Find-Optimal-Solution-Sequentially (Σ = (G, 𝐴, 𝛼0, 𝛼+)): pair 

1: if Σ is solvable then 

2:  𝜂 ← 𝜂
0
 

3:  loop 

4:   𝐹(Σ, 𝜂) ←Encode-CPF-as-SAT (𝛴, 𝜂) 

5:   if Solve-SAT (𝐹(Σ, 𝜂)) then 

6:    𝑠 ← Extract-Solution-from-Valuation(𝐹(Σ, 𝜂)) 

7:    return (𝜂, 𝑠ሬ⃑ ) 

8:   𝜂 ← 𝜂 + 1 

9: else   

10:  return (∞, ∅) 

 
 Prior to using a SAT-based optimization we can use one of the fast polynomial time 

algorithms described in [32, 57, 70] to check if the instance in line 1 is solvable. 
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 One of the important advantages of solving CPF as SAT is that there are many powerful 

SAT solvers [2, 3] that use various techniques such as intelligent search space pruning and 

learning. Considering that a SAT solver has been included as a module in the proposed 

framework, any progress in solving SAT directly translates into progress in solving CPF. 

However, the design of CPF-to-SAT encodings has a significant impact on the efficiency 

of SAT solution techniques in solving CPF problems. 

This paper focuses on SAT encodings; querying strategies are out of the scope of this 

work. Nevertheless, let us mention that an in-depth study of querying strategies is given in 

[42]. There is great potential in querying strategies, as these can substantially speed up the 

planning process, especially when they are combined with parallel processing. 

4.1. Time-expanded graphs 

The trajectory of an agent over 𝐺 in time may not necessarily be a simple path. Generally, 

a single vertex may be visited multiple times. For this reason, we use a graph that is derived 

from 𝐺 by expanding it in time. The trajectory of each agent over 𝐺 will correspond to a 

simple path that touches each vertex at most once in the expanded version of 𝐺. A detailed 

description of the expanded graph is given in the following definition and illustrated in 

Figure 3. 

 

Definition 3 (TIME-EXPANDED GRAPH - 

ExpT(𝐺, 𝜂)). Let 𝐺 = (𝑉, 𝐸) be an undirected 

graph and 𝜂 ∈ ℕ. A time-expanded graph 

with 𝜂 + 1 time layers (indexed from 0 to 𝜂) 

associated with 𝐺 is a directed graph 

ExpT(𝐺, 𝜂) = (𝑉×{0,1, … , 𝜂}, 𝐸′) where 

𝐸′ = {([𝑢, 𝑡], [𝑣, 𝑡 + 1]) | {𝑢, 𝑣} ∈ 𝐸; 𝑡 =
0,1, … , 𝜂 − 1} ∪ {([𝑣, 𝑡], [𝑣, 𝑡 + 1])|  𝑣 ∈

𝑉; 𝑡 = 0,1, … , 𝜂 − 1}. □ 

 
The notation 𝑢𝑡 will sometimes be used 

instead of [𝑢, 𝑡] in figures. The directed edges 

that connect the vertices corresponding to the 

distinct vertices in 𝐺 are called regular – 

these will correspond to an agent’s 

movement; the remaining edges correspond 

to wait actions. 

The search for a solution with a makespan 

bound 𝜂 can be understood as a search for a 

collection of non-overlapping vertex-disjoint paths in the corresponding time-expanded 

graph consisting of 𝜂 layers ExpT(𝐺, 𝜂). Non-overlapping vertex-disjoint paths must have 

a disjoint set of the endpoints of regular edges in the consecutive time layers of ExpT(𝐺, 𝜂), 

as described in the following definition. 

 

v2 v3 v4 v5 v1 

G=(V,E) 

ExpT (G, η) : t-th and (t+1)-th layer 

t 

t+1 

v1
t v2

t v3
t v4

t v5
t 

v1
t+1 v2

t+1 v4
t+1 v5

t+1 v3
t+1 

{v1, v5} ∩ {v2, v4} = ∅ 

} 
Figure 2. An illustration of non-overlapping 

vertex-disjoint paths. Parts of three non-over-

lapping paths between time layers 𝑡 and 𝑡 + 1 

of ExpT(𝐺, 𝜂) are shown. 
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Definition 4 (NON-OVERLAPPING VERTEX-DISJOINT PATHS IN ExpT(𝐺, 𝜂)). A set of paths 

Π = {𝜋1, 𝜋2, … , 𝜋𝜇} in ExpT(𝐺, 𝜂) where 𝜋𝑖 connects [𝑥𝑖 , 0] with [𝑦𝑖 , 𝜂] for 𝑥𝑖 , 𝑦𝑖 ∈ 𝑉 and 

𝑖 = 1,2, … , 𝜇 form non-overlapping vertex-disjoint paths if and only if 𝜋𝑖 ∩ 𝜋𝑗 = ∅ and 

{𝜋𝑖[𝑡, 2] | 𝜋𝑖[𝑡, 2] ≠ 𝜋𝑖[𝑡 + 1,2] ∧ 𝑖 = 1,2, … , 𝜇} ∩ {𝜋𝑗[𝑡 + 1,2] | 𝜋𝑗[𝑡, 2] ≠ 𝜋𝑗[𝑡 + 1,2] ∧

𝑖 = 1,2, … , 𝜇} = ∅1 for 𝑡 = 0,1, …,  𝜂 − 1 for any two 𝑖, 𝑗 ∈ {1,2, … , 𝜇} with 𝑖 ≠ 𝑗. □ 
 

 Non-overlapping vertex-disjoint paths crossing between two consecutive time layers of 

ExpT(𝐺, 𝜂) are shown in Figure 2. The correspondence between the existence of a CPF 

solution and non-overlapping vertex-disjoint paths is established in the next proposition. 

 

Proposition 1 (NON-OVERLAPPING VERTEX-DISJOINT PATHS IN EXPT). A solution with 

makespan 𝜂 ∈ ℕ of a CPF Σ = (𝐺, 𝐴, 𝛼0, 𝛼+) with 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝜇} exists if and only if 

there is a set Π = {𝜋1, 𝜋2, … , 𝜋𝜇} of non-overlapping vertex-disjoint paths in ExpT(𝐺, 𝜂) 

so that 𝜋𝑖 connects [𝛼0(𝑎𝑖),0] with [𝛼+(𝑎𝑖), 𝜂] for 𝑖 = 1,2, … , 𝜇.  

 
Figure 3. An example of CPF and the related time-expanded graph. The time-expanded graph 

ExpT(𝐺, 4) consisting of 5 time layers is built for a given CPF Σ. A 5-step solution to Σ can be 

represented as a search for a set of non-overlapping vertex-disjoint paths connecting the initial 

positions of the agents in layer 0 to their goal positions in the last layer of ExpT(𝐺, 4).  

 

Proof. Assume that a given CPF Σ  has a solution 𝑠 = [𝛼0, 𝛼1, 𝛼2, … , 𝛼𝜂] with makespan 

𝜂. Then vertex-disjoint paths 𝜋1, 𝜋2, … , 𝜋𝜇 in ExpT(𝐺, 𝜂) can be constructed from 𝑠. Path 

𝜋𝑖 will correspond to the trajectory of agent 𝑎𝑖; that is, 𝜋𝑖 = ([𝛼0(𝑎𝑖),0], [𝛼1(𝑎𝑖),1], …, 

 
1 The notation  𝜋𝑖[𝑡, 2] refers to the second component of the 𝑡-th element of  𝜋𝑖. 

CPF Σ=(G=(V,E), {a1,a2}, α0, α+) 
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[𝛼𝜂(𝑎𝑖), 𝜂]). The path thus constructed is a correct path in ExpT(𝐺, 𝜂), since 

{𝛼𝑡(𝑎𝑖), 𝛼𝑡+1(𝑎𝑖)} ∈ 𝐸 or 𝛼𝑡(𝑎𝑖) = 𝛼𝑙+1(𝑎𝑖) for 𝑡 = 0,1, … , 𝜂 − 1; that is, ([𝛼𝑡(𝑎𝑖), 𝑡], 
[𝛼𝑡+1(𝑎𝑖), 𝑡 + 1]) ∈ 𝐸′ which holds by construction of  ExpT(𝐺, 𝜂). Obviously 𝜋𝑖 connects 

[𝛼0(𝑎𝑖),0] with  [𝛼+(𝑎𝑖) = 𝛼𝜂(𝑎𝑖), 𝜂] in ExpT(𝐺, 𝜂). 

It only remains to check that no two constructed paths intersect and that these paths are 

non-overlapping. Condition (3) together with the unique invertibility of 𝛼0 ensures that no 

two paths share a vertex, or else the agents would collide. Conditions (1) and (2) together 

ensure that the endpoints of the edges of the paths overlap between consecutive time layers 

only if there are non-regular edges – that is, edges that continue towards the same vertex 

in the next time layer. 

Let us discuss the opposite implication. Assume that there are non-overlapping vertex-

disjoint paths 𝜋1, 𝜋2, … , 𝜋𝜇  in ExpT(𝐺, 𝜂). We will construct a solution to CPF Σ with 

makespan 𝜂. Let 𝜋𝑖 = ([𝑢0, 0], [𝑢1, 1], [𝑢2, 2], …, [𝑢𝜂, 𝜂]), 𝑢𝑡 ∈ 𝑉 for 𝑡 = 0,1, … , 𝜂. The 

trajectory of agent 𝑎𝑖 is as follows: 𝛼0(𝑎𝑖) = 𝑢0, 𝛼1(𝑎𝑖) = 𝑢1, 𝛼2(𝑎𝑖) = 𝑢2, …, 𝛼𝜂(𝑎𝑖) =

𝑢𝜂. 

We can now verify that conditions (1) – (3) plus the unique invertibility of 𝛼𝑡 are 

satisfied by this construction. The paths are vertex-disjoint, therefore agents do not collide 

when they follow these paths – condition (3) is satisfied and the unique invertibility of 𝛼𝑡 

is ensured. As paths do not overlap, agents either wait in a vertex or move into a vertex that 

was unoccupied in the previous time step. That satisfies (1) and (2).  

5. Propositional Encodings of CPF 

Time-expanded graphs represent a conceptual step towards the design of a propositional 

formula that is satisfiable if and only if a CPF has a solution with a given makespan. 

Moreover, we need to be able to derive CPF solutions from a satisfying valuation of a 

formula. A time-expanded graph can be used as a basis for such a formula, as it can capture 

all configurations of agents in 𝐺 in all time steps up until the final step. 

We will describe several propositional encodings, starting with those based on the log 

representation of finite domain state variables, i.e., INVERSE [54]  and ALL-DIFFERENT [55] 

encodings. We will then proceed to discuss directly encoded variables in an encoding 

called MATCHING [58] (a mixture of direct and log encoded variables). Next, we will look 

at a purely direct encoding called DIRECT/SIMPLIFIED [59, 60]. In contrast to the original 

papers in which these encodings were proposed we introduce the encodings using a unified 

notation. 

5.1. INVERSE Propositional Encoding 

Let degG(𝑣) denote the degree of vertex 𝑣 in 𝐺; that is, degG(𝑣) is the number of edges 

from 𝐸 incident with 𝑣. It is further assumed that the neighbors of each vertex 𝑣 in 𝐺 are 

ordered. The sequential number of each neighbor 𝑢 of 𝑣 is determined by the assignment  

𝜎𝑣: {𝑢|{𝑣, 𝑢} ∈ 𝐸} ⟶ {1,2, … , degG(𝑣)}. In other words, 𝑢 is the 𝜎𝑣(𝑢)-th neighbor of 𝑣. 
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An inverse 𝜎𝑣
−1 is naturally defined. That is, 𝜎𝑣

−1(𝑖) returns the 𝑖-th neighbor of 𝑣 for 𝑖 ∈
{1,2, … , degG(𝑣)}. 

 The following definition introduces the INVERSE encoding over finite domain state 

variables which will be further refined into bit-vectors using a log representation. 

 

Definition 5 (INVESE ENCODING – 𝐹𝐼𝑁𝑉(𝜂, Σ)). Assume CPF Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] with 𝐺 =
(𝑉, 𝐸). An INVERSE encoding for CPF Σ consists of the following finite domain variables: 

• 𝒜𝑣
𝑡 ∈ {0,1, … , 𝜇} for every 𝑣 ∈ 𝑉 and time step 𝑡 ∈ {0,1, … , 𝜂} to model agent 

occurrences in vertices and 

• 𝒯𝑣
𝑡 ∈ {0,1, … , 2 ∙ degG(𝑣)} for every 𝑣 ∈ 𝑉 and 𝑡 ∈ {0,1, … , 𝜂 − 1} to represent the 

agents’ movement between vertices. 

The constraints of the INVERSE encoding are as follows: 

• 𝒯𝑣
𝑡 = 0 ⇒ 𝒜𝑣

𝑡+1 = 𝒜𝑣
𝑡    for every 𝑣 ∈ 𝑉 and 𝑡 ∈ {0,1, … , 𝜂 − 1} 

  (if no movement occurs in 𝑣 then 𝑣 retains the same agent in time step 𝑡 + 1) 

• 0 < 𝒯𝑣
𝑡 ≤ deg𝐺(𝑣) ⇒ 𝒜𝑢

𝑡 = 0 ∧ 𝒜𝑢
𝑡+1 = 𝒜𝑣

𝑡  ∧ 𝒯𝑢
𝑡 = 𝜎𝑢(𝑣) + deg𝐺 (𝑢), 

for every 𝑣 ∈ 𝑉 and 𝑡 ∈ {0,1, … , 𝜂 − 1}, where 𝑢 = 𝑜𝑣
−1(𝒯𝑣

𝑡) 

  (an agent leaves 𝑣 for its 𝒯𝑣
𝑡-th neighbor 𝑢) 

• deg𝐺 (𝑣) < 𝒯𝑣
𝑡 ≤ 2 ⋅ deg𝐺(𝑣) ⇒ 𝒯𝑢

𝑡 = 𝜎𝑢(𝑣), 

for every 𝑣 ∈ 𝑉 and 𝑡 ∈ {0,1, … , 𝜂 − 1}, where 𝑢 = 𝜎𝑣
−1(𝒯𝑣

𝑡 − deg𝐺(𝑣))  

  (an agent arrives in 𝑣 from its (𝒯𝑣
𝑡 − deg𝐺(𝑣))-th neighbor 𝑢). □ 

 

 Initial and goal configurations will be expressed using the following constraints: 

• 𝒜𝑢
0 = 𝑖  for 𝑢 ∈ 𝑉 if there is 𝑖 ∈ {1,2, … , 𝜇} 

     such that 𝛼0(𝑎𝑖) = 𝑢 

•  𝒜𝑢
0 = 0  for 𝑢 ∈ 𝑉 if (∀𝑎 ∈ 𝐴)𝛼0(𝑎) ≠ 𝑢 

• 𝒜𝑢
𝜂

= 𝑖  for 𝑢 ∈ 𝑉 if there is 𝑖 ∈ {1,2, … , 𝜇} 

     such that 𝛼+(𝑎𝑖) = 𝑢 

• 𝒜𝑢
𝜂

= 0  for 𝑢 ∈ 𝑉 if (∀𝑎 ∈ 𝐴)𝛼+(𝑎) ≠ 𝑢 

 

The resulting propositional formula in CNF where 𝒜𝑣
𝑡  and 𝒯𝑣

𝑡 variables are replaced 

with bit vectors with a binary encoding and where constraints are replaced accordingly will 

be denoted as 𝐹𝐼𝑁𝑉(𝜂, Σ). 

 The meaning of 𝒜𝑣
𝑡  variables corresponds to an inverse position function in time step 

𝑡. Specifically, 𝒜𝑣
𝑡 = 𝑗 iff 𝛼𝑡

−1(𝑣) = 𝑎𝑗 and 𝒜𝑣
𝑡 = 0 iff 𝛼𝑡

−1(𝑣) =⊥. Variables 𝒯𝑣
𝑡 

represent the agents’ movements between vertices. A zero value is reserved for no 

movement. One half of the remaining positive values from 1 to degG(𝑣) represent outgoing 

movements from 𝑣 to any neighbor indicated by 𝒯𝑣
𝑙; the other half of the positive values 

represent incoming movements to 𝑣 from any of its neighbors indicated by 𝒯𝑣
𝑙 − degG(𝑣). 

 Variables 𝒜𝑣
𝑡  are modeled by a vector of ⌈log2(𝜇 + 1)⌉ propositional variables where 

individual (propositional) bits will be accessed by a bit index 𝕚 ∈ {0,1, … , ⌈log2(𝜇 + 1)⌉ −

(5) 

(6) 

} Goal positions 
(10) 

(7) 

(9) 

} Initial positions 
(8) 

(4) 
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1}; the notation 𝒜𝑣
𝑡 [𝕚] stands for 𝕚-th bit of 𝒜𝑣

𝑡 . Similarly, the variables 𝒯𝑣
𝑡 are modeled by 

vectors of ⌈log2(2 ⋅ deg𝐺(𝑣) + 1)⌉ propositional variables. Note that the topology of 

typical environments only exhibits a local interconnection, that is, deg𝐺(𝑣) is usually a 

small value. This means that deg𝐺(𝑣) ≪ 𝜇 and deg𝐺(𝑣) ≪ 𝑛. If the number of states of 

the represented finite domain variable is different from a power of 2, then extra states are 

forbidden. 

 We need to distinguish between all 2 ⋅ degG(𝑣) + 1 states of the 𝒯𝑣
𝑡 variables to be able 

to posit constrains like “if 𝒯𝑣
𝑡 equals to 5“ assuming that degG(𝑣) = 2 “an agent will arrive 

in 𝑣 from 𝑣’s 5 − degG(𝑣) = 3rd neighbor in time step 𝑡 + 1”. On the other hand, dealing 

with 𝒜𝑣
𝑡  variables is easier, as we only have to model the equality between them and the 

equality to zero and we do not need to distinguish between so many cases. 

Let 𝕓: ℕ0×ℕ0 → {0,1} be a binary representation of positive integers where 𝕓(𝑥, 𝕚) 

represents the value of the 𝕚-th bit in a binary encoding of 𝑥; that is 𝑥 = ∑ 𝕓(𝑥, 𝕚) ⋅ 2𝕚𝑏−1
𝕚=0 . 

The equality of variable 𝒯𝑣
𝑡 to constant 𝑐 ∈ {0,1, …, 2 ⋅ deg𝐺(𝑣)} will be expressed as the 

following conjunction: 

 

 

 

 

 

 

 

 The equality between variables 𝒜𝑣
𝑡  and 𝒜𝑢

𝑡+1 is expressed as the equalities between 

bits at corresponding positions in the following conjunction of equivalences: 

 

  

 

 

 The elementary constructions above are put together to represent constraints (4) – (6) 

using Tseitin’s encoding [63], which introduces auxiliary propositional variables; in this 

context any other than auxiliary variables will be called visible. The following auxiliary 

propositional variables are introduced: 𝑎𝑣,𝑡
zero for representing an empty vertex 𝑣 in time 

step 𝑡, 𝑎𝑢,𝑣,𝑡
=  for representing equality between 𝒜𝑣

𝑡  and 𝒜𝑢
𝑡+1, and 𝑎𝑣,𝑡,𝑐

tran for representing 

equality 𝒯𝑣
𝑡 = 𝑐. The connection of auxiliary variables to their exact meaning with respect 

to the main 𝒜𝑣
𝑡  and 𝒯𝑣

𝑡 variables is ensured by the following constraints: 

 

 

  

 

 

 Considering that the 𝒜𝑣
𝑡  variables appear only on the right-hand side of the implications 

in constraints (4) – (6) of the INVERSE encoding, it is enough to connect their auxiliary 

variables by implications. On the other hand, the 𝒯𝑣
𝑡 variables appear on both sides of the 

(12) 

con=(𝒯𝑣
𝑡, 𝑐) = ⋀ lit(𝒯𝑣

𝑡, 𝑐, 𝕚)

⌈log2(2⋅deg𝐺(𝑣)+1)⌉−1

𝕚=0

 

  

where lit(𝒯𝑣
𝑡, 𝑐, 𝕚) = ൜

𝒯𝑣
𝑡[𝕚]

𝒯𝑣
𝑡[𝕚]

 
iff 𝕓(𝑐, 𝕚) = 1 

 iff 𝕓(𝑐, 𝕚) = 0 

 

var=(𝒜𝑣
𝑡 , 𝒜𝑢

𝑡+1) = ⋀ (𝒜𝑣
𝑡 [𝕚] ∨ 𝒜𝑢

𝑡+1[𝕚]) ∧ (𝒜𝑣
𝑡 [𝕚] ∨ 𝒜𝑢

𝑡+1[𝕚])

⌈log2(𝜇+1)⌉−1

𝕚=0

 

 

(11) 

(13) 𝑎𝑣,𝑡
zero ⇒ con=(𝒜𝑣

𝑡 , 0) 

𝑎𝑢,𝑣,𝑡
= ⇒ var=(𝒜𝑣

𝑡 , 𝒜𝑢
𝑡+1) 

𝑎𝑣,𝑡,𝑐
tran ⇔ con=(𝒯𝑣

𝑡, 𝑐) 

 

(14) 

(15) 
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implications in (4) – (6) and therefore need to be connected to their auxiliary variables by 

equivalences. 

 Having introduced the auxiliary variables above, the INVERSE encoding constraints on 

top of them can be expressed as follows: 

 

• 𝑎𝑣,𝑡,0
tran ⇒ 𝑎𝑣,𝑣,𝑡

=   

  for every 𝑣 ∈ 𝑉 and 𝑡 ∈ {0,1, … , 𝜂 − 1} 

• 𝑎𝑣,𝑡,𝑐
tran ⇒ 𝑎𝑢,𝑡

zero ∧ 𝑎𝑢,𝑣,𝑡
= ∧ 𝑎𝑢,𝑡,𝜎𝑢(𝑣)+deg𝐺(𝑢)

tran  

  for each 0 < 𝑐 ≤ deg𝐺(𝑣), 𝑣 ∈ 𝑉 and 𝑡 ∈ {0,1, … , 𝜂 − 1}, 

  where 𝑢 = 𝑜𝑣
−1(𝑐) 

• 𝑎𝑣,𝑡,𝑐
tran ⇒ 𝑎𝑢,𝑡,𝜎𝑢(𝑣)

tran  

for each deg𝐺(𝑣) < 𝑐 ≤ 2 ⋅ deg𝐺(𝑣), 𝑣 ∈ 𝑉 and 𝑡 ∈ {0,1, … , 𝜂 − 1}, 

  where 𝑢 = 𝜎𝑣
−1(𝒯𝑣

𝑡 − deg𝐺(𝑣))  

 The space complexity of the INVERSE encoding is summarized in the following 

proposition. Only the regular time layers are counted; the asymptotical space requirements 

of the initial and final time layers are dominated by the rest. 

 

Proposition 2 (INVERSE ENCODING SIZE). The number of visible propositional variables 

in 𝐹𝐼𝑁𝑉(𝜂, 𝛴) is 𝒪(𝜂 ∙ (|𝑉| ∙ ⌈log2(𝜇)⌉ + ∑ ⌈log2(deg𝐺 (𝑣))⌉𝑣∈𝑉 )) and there are 𝒪(𝜂 ∙

(|𝑉| + |𝐸|)) auxiliary variables; that is, 𝒪(𝜂 ∙ (|𝑉| ∙ ⌈log2(𝜇)⌉ + ∑ ⌈log2(deg𝐺(𝑣))⌉𝑣∈𝑉 +

|𝐸|)) propositional variables in total. The total number of clauses is 𝒪(𝜂 ∙

(|𝑉| ∙ ⌈log2(𝜇)⌉ + |𝐸| ∙ ⌈log2(𝜇)⌉ + ∑ deg𝐺(𝑣)𝑣∈𝑉 ∙ (⌈log2(deg𝐺(𝑣))⌉))).  

 

Proof. To obtain the result we need to add up all variables and clauses. The visible 

variables, that is, the propositional variables representing 𝒜𝑣
𝑡  and 𝒯𝑣

𝑡 add up (𝜂 + 1) ∙ |𝑉| ∙
⌈log2(𝜇 + 1)⌉ and 𝜂 ∙ ∑ ⌈log2(2 ⋅ deg𝐺(𝑣) + 1)⌉𝑣∈𝑉 , respectively. The number of auxiliary 

variables 𝑎𝑣,𝑡
zero is (𝜂 + 1) ∙ |𝑉|; the number of  𝑎𝑢,𝑣,𝑡

=  variables is (𝜂 + 1) ∙ |𝐸|; and the 

number of 𝑎𝑣,𝑡,𝑐
tran variables is 2 ∙ 𝜂 ∙ ∑ deg𝐺(𝑣)𝑣∈𝑉  which is 4∙ 𝜂 ∙ |𝐸|. Hence, the total 

number of propositional variables is (𝜂 + 1) ∙ (|𝑉| ∙ ⌈log2(𝜇 + 1)⌉ + |𝑉| + |𝐸|) + 𝜂 ∙
(∑ ⌈log2(2 ⋅ deg𝐺 (𝑣) + 1)⌉𝑣∈𝑉 + 4 ∙ |𝐸|) which is asymptotically 𝒪(𝜂 ∙ (|𝑉| ∙ ⌈log2(𝜇)⌉ +

∑ ⌈log2(deg𝐺(𝑣))⌉𝑣∈𝑉 + |𝐸|)). 

 Let us calculate the number of clauses. A single constraint (13) develops into 

⌈log2(𝜇 + 1)⌉ binary clauses; a single constraint (14) develops into 2 ∙ ⌈log2(𝜇 + 1)⌉ 
ternary clauses; and a single constraint (15) develops into ⌈log2(2 ⋅ deg𝐺(𝑣) + 1)⌉ binary 

clauses and one clause of arity ⌈log2(2 ⋅ deg𝐺(𝑣) + 1)⌉ + 1. There are as many as 𝜂 ∙ |𝑉| 
constraints (13); 𝜂 ∙ |𝐸| constraints (14); and 𝜂 ∙ ∑ deg𝐺(𝑣)𝑣∈𝑉  constraints (15) which in 

total gives 𝜂 ∙ ((|𝑉| + 2 ∙ |𝐸|) ∙ ⌈log2(𝜇 + 1)⌉ + ∑ deg𝐺(𝑣)𝑣∈𝑉 ∙ (⌈log2(2 ⋅ deg𝐺(𝑣) +
1)⌉ + 1)) clauses (binary, ternary, and one multi-arity). 

 Constraints (16) count for 𝜂 ∙ |𝑉| binary clauses, constraints (17) together with (18) 

count for 4 ∙ 𝜂 ∙ ∑ deg𝐺 (𝑣)𝑣∈𝑉  binary clauses which is clearly dominated by the already 

calculated number of clauses. Hence, we have 𝜂 ∙ (|𝑉| ∙ ⌈log2(𝜇)⌉ + |𝐸| ∙ ⌈log2(𝜇)⌉ +
∑ deg𝐺(𝑣)𝑣∈𝑉 ∙ (⌈log2(deg𝐺(𝑣))⌉)) clauses.  

(16) 

(17) 

(18) 
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Proposition 3 (PATHS AND 𝐹𝐼𝑁𝑉(𝜂, Σ) SATISFACTION). A set Π = {𝜋1, 𝜋2, … , 𝜋𝜇} of non-

overlapping vertex-disjoint paths in ExpT(𝐺, 𝜂) where 𝜋𝑖 connects [𝛼0(𝑎𝑖),0] with 

[𝛼+(𝑎𝑖), 𝜂] for 𝑖 = 1,2, … , 𝜇 exists if and only if 𝐹𝐼𝑁𝑉(𝜂, Σ) is satisfiable. Moreover, paths 

𝜋1, 𝜋2, … , 𝜋𝜇 can be unambiguously constructed from a satisfying valuation of 𝐹𝐼𝑁𝑉(𝜂, Σ) 

and vice versa.  
 

Proof. For sake of simplicity, we will show the proposition using finite domain variables 

rather than bit-vectors. The equivalence between bit vectors and finite domain variables 

can be seen directly in the translation of the finite domain constraints into equivalent 

constraints on bit vectors. 

 Assume a set of vertex-disjoint paths Π = {𝜋1, 𝜋2, … , 𝜋𝜇}, where 𝜋𝑖 connects 

[𝛼0(𝑎𝑖),0] with [𝛼+(𝑎𝑖), 𝜂]. Let 𝜋𝑖 = ([𝑢0, 0], [𝑢1, 1], [𝑢2, 2], …,  [𝑢𝜂, 𝜂]), 𝑢𝑡 ∈ 𝑉 for 𝑡 =

0,1, … , 𝜂 where 𝑢0 = 𝛼0(𝑎𝑖) and 𝑢𝜂 = 𝛼+(𝑎𝑖). We can set 𝒜𝑢0
0 = 𝑖, 𝒜𝑢1

1 = 𝑖, …, 𝒜𝑢𝜂

𝜂
=

𝑖. Transition variables are set based on the  edges traversed; that is, 𝒯𝑢0
0 = 𝜎𝑢0

(𝑢1), 𝒯𝑢1
0 =

𝜎𝑢1
(𝑢0) + deg𝐺 (𝑢1), 𝒯𝑢1

1 = 𝜎𝑢1
(𝑢2), 𝒯𝑢2

1 = 𝜎𝑢2
(𝑢1) + deg𝐺(𝑢2), …, 𝒯𝑢𝑡

𝑡 = 𝜎𝑢𝑡
(𝑢𝑡+1), 

𝒯𝑢𝑡+1
𝑡 = 𝜎𝑢𝑡+1

(𝑢𝑡) + deg𝐺(𝑢𝑡+1), …, 𝒯𝑢𝜂−1

𝜂−1
= 𝜎𝑢𝜂−1

(𝑢𝜂), 𝒯𝑢𝜂

𝜂−1
= 𝜎𝑢𝜂

(𝑢𝜂−1) + deg𝐺(𝑢𝜂). 

Other paths in Π are processed in the same way. Note that there is no conflict in setting the 

variables; that is, each variable is set at most once by the assignment. This is because the 

paths are vertex-disjoint. The variables 𝒜𝑣
𝑡  and 𝒯𝑣

𝑡 which have not yet been set are set to 

0. Checking that constraints (4) – (6) and (7) – (10) are satisfied is not difficult. 

 Conversely, if there is a satisfying valuation of 𝐹𝐼𝑁𝑉(𝜂, Σ), we are able to reconstruct 

the vertex-disjoint paths from it. Let 𝜋𝑖 = ([𝑢0, 0], [𝑢1, 1], [𝑢2, 2], …,  [𝑢𝜂, 𝜂]) where 

𝑢0 = 𝛼0(𝑎𝑖), and 𝑢𝑡+1 = 𝜎𝑢𝑡
−1(𝒯𝑢𝑡

𝑡 ) for every 𝑡 = 0,1, … , 𝜂 − 1 (it also holds that 𝑢𝑡 =

𝜎𝑢𝑡+1
−1 (𝒯𝑢𝑡+1

𝑡+1) − degG (𝑢𝑡+1)). The transition state variables 𝒯𝑣
𝑡 that take exactly one value 

ensure that each vertex in each time step has to determine whether it is connected to a 

neighbor or accepting a connection from a neighbor (or is connected to itself). This ensures 

that no selected paths intersect because otherwise a vertex would accept connections from 

at least two sources or extend connections to at least two neighbors. Both of those cases 

are forbidden. A value of the 𝒜𝑣
𝑡  variable is only propagated to the next time layer via a 

connection of the corresponding transition state variable 𝒯𝑣
𝑡. The fact that agents are 

propagated to their goal positions means that the transition state variables have established 

paths leading from the agents’ initial to their goal positions.  

 
 The following theorem can be directly obtained by applying Proposition 1 and 

Proposition 3 which together justify the approach to solving CPF via a translation into 

SAT. 

 
Theorem 1 (SOLUTION OF Σ AND 𝐹𝐼𝑁𝑉(𝜂, Σ) SATISFACTION). A solution of CPF Σ =
(𝐺, 𝐴, 𝛼0, 𝛼+) with 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝜇} exists if and only if there is 𝜂 ∈ ℕ, for which the 

formula 𝐹𝐼𝑁𝑉(𝜂, Σ) is satisfiable.  
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5.2. ALL-DIFFERENT Propositional Encoding 

The choice of a position function rather than its inverse to represent agent configurations 

in individual time steps has led to another encoding called ALL-DIFFERENT – the name 

derives from the necessity to explicitly express the requirement that each vertex be 

occupied by no more than one agent, which is modeled by pair-wise differences between 

the variables representing the configuration. Again, it is easier to express the encoding 

using finite domain state variables prior to transforming it to a propositional formula. 

 

Definition 6 (ALL-DIFFERENT ENCODING – 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ)). Assume that a CPF Σ =
[𝐺, 𝐴, 𝛼0, 𝛼+] with 𝐺 = (𝑉, 𝐸) is given. An ALL-DIFFERENT encoding for CPF Σ consists of 

finite domain variables ℒ𝑎
𝑡 ∈ {1, … , 𝑛} for every 𝑎 ∈ 𝐴 and each time step 𝑡 ∈ {0,1, … , 𝜂} 

to model the positions of agents in time. The constraints are as follows: 

• ℒ𝑎
𝑡 = 𝑗 ⇒ ℒ𝑎

𝑡+1 = 𝑗 ∨ ⋁ ℒ𝑎
𝑡+1 = 𝒿𝒿∈{1,…,𝑛}|{𝑣𝑗,𝑣𝒿}∈𝐸  

for every 𝑎 ∈ 𝐴, 𝑗 ∈ {1,2, … , 𝑛} and 𝑡 ∈ {0,1, … , 𝜂 − 1} 

  (agent 𝑎 only moves along the edges or remains in a vertex) 

• ⋀ ℒ𝑎
𝑡+1 ≠ ℒ𝑏

𝑡
𝑏∈𝐴|𝑏≠𝑎     for every 𝑎 ∈ 𝐴 and 𝑡 ∈ {0,1, … , 𝜂 − 1} 

  (the target vertex for agent 𝑎 must be empty) 

• AllDifferent(ℒ𝑎1
𝑡 , ℒ𝑎2

𝑡 , … , ℒ𝑎𝜇
𝑡 ) for every 𝑡 ∈ {0,1, … , 𝜂} 

(each vertex can be occupied by at most one agent in each time step). □ 

  

 The initial and goal configurations will be expressed using the following constraints: 

• ℒ𝑎
0 = 𝑗   for 𝑎 ∈ 𝐴 with 𝛼0(𝑎) = 𝑣𝑗  

• ℒ𝑎
𝜂

= 𝑗   for 𝑎 ∈ 𝐴 with 𝛼+(𝑎) = 𝑣𝑗 

 

 Again, the finite domain state variables ℒ𝑎
𝑡  are represented as bit vectors (vectors of 

propositional variables) using a log encoding. That is, ⌈log2 |𝑉|⌉ propositional variables 

are introduced for each ℒ𝑎
𝑡  variable. The resulting formula in CNF will be denoted as 

𝐹𝐷𝐼𝐹𝐹(𝜂, Σ). 

 The AllDifferent(ℒ𝑎1
𝑡 , ℒ𝑎2

𝑡 , … , ℒ𝑎𝜇
𝑡 ) constraint requires that all variables involved be 

assigned different values; that is, ⋀ ℒ𝑎𝑗
𝑡 ≠ ℒ𝑎𝑘

𝑡
𝑗,𝑘∈{1,2,…,𝜇}|𝑗<𝑘 . The differences between the 

finite domain state variables are encoded using the scheme given in [1]. The scheme is used 

to encode constraints (20) and (21). The inequalities between variables ℒ𝑎𝑗
𝑡  and ℒ𝑎𝑘

𝑡  are 

expressed by the following clauses. Auxiliary variables 𝑑𝑗,𝑘
𝑡  representing the difference 

between individual bits are introduced. 

 

 

 

 

 

 

(19) 

(23) 

} Initial positions (22) 

(20) 

(21) 

} Goal positions 

(24) 

⋀ (𝑑𝑗,𝑘
𝑡 ∨ ℒ𝑎𝑗

𝑡 [𝕚] ∨ ℒ𝑎𝑘
𝑡 [𝕚]) ∧ (𝑑𝑗,𝑘

𝑡 ∨ ℒ𝑎𝑗
𝑡 [𝕚] ∨ ℒ𝑎𝑘

𝑡 [𝕚])

⌈log2𝑛⌉−1

𝕚=0

 

 

var≠ (ℒ𝑎𝑗
𝑡 , ℒ𝑎𝑘

𝑡 ) = ⋁ 𝑑𝑗,𝑘
𝑡

⌈log2𝑛⌉−1

𝕚=0

 

 
 

where 
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 Conditional equality disjunction (19) is encoded using auxiliary propositional variables 

to represent the equalities between bit vectors. For each 𝑗 ∈ {1,2, … , 𝑛} (that is, for each 

vertex), agent 𝑎 ∈ 𝐴, and time layer 𝑡 ∈ {0,1, … , 𝜂}, an auxiliary variable 𝑒𝑎,𝑗
𝑡  which stands 

for equality ℒ𝑎
𝑡 = 𝑗 is introduced. The link between auxiliary variables 𝑒𝑎,𝑗

𝑡  and actual 

equalities is established by the following constraint: 

 

 

 Then, moving along the edges – constraints (19) – can be encoded as a single clause 

using auxiliary variables: 

 

 

 

 Again, the space consumption of the ALL-DIFFERENT encoding will be calculated for 

regular time layers only. 

 

Proposition 4 (ALL-DIFFERENT ENCODING SIZE). The number of visible propositional 

variables in 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ) is 𝒪(𝜂 ∙ 𝜇 ∙ ⌈log2|𝑉|⌉) and there are 𝒪(𝜂 ∙ 𝜇 ∙ |𝑉|) auxiliary 

variables; that is, the number of variables is 𝒪(𝜂 ∙ 𝜇 ∙ |𝑉|). The number of clauses is 

𝒪 (𝜂 ∙ ⌈log2|𝑉|⌉ ∙ ((𝜇
2

) + 𝜇 ∙ |𝑉|)).  

 

Proof. Each variable ℒ𝑎
𝑡  is represented by ⌈log2|𝑉|⌉ propositional variables and the number 

of  ℒ𝑎
𝑡  variables is (𝜂 + 1) ∙ 𝜇. For each ℒ𝑎

𝑡  variable and its value, an auxiliary variable is 

introduced. As ℒ𝑎
𝑡  can take |𝑉| values, we conclude that there are (𝜂 + 1) ∙ 𝜇 ∙ (log2|𝑉| +

|𝑉|) variables, which is 𝒪(𝜂 ∙ 𝜇 ∙ |𝑉|). 

 A single time layer requires as many as (𝜇
2

) inequalities between all pairs of the ℒ𝑎
𝑡  

variables corresponding to the distinct agents in order to express the AllDifferent constraint 

given in (21). Each inequality is modeled by 2 ∙ ⌈log2|𝑉|⌉ ternary clauses plus one clause 

of arity ⌈log2|𝑉|⌉. This is (𝜂 + 1) ∙ (𝜇
2

) ∙ (2 ∙ ⌈log2|𝑉|⌉ + 1) clauses in total. 

 Next, we need as many as (𝜇
2

) inequalities between the ℒ𝑎
𝑡  variables from two 

successive time layers (constraint (20). This results in the addition of the same number of 

(𝜂 + 1) ∙ (𝜇
2

) ∙ (2 ∙ ⌈log2|𝑉|⌉ + 1) clauses. 

 The links between auxiliary variables 𝑒𝑎,𝑗
𝑡  and the actual equalities (25) they represent 

require ⌈log2|𝑉|⌉ binary clauses plus one clause of arity ⌈log2|𝑉|⌉ + 1, which is (𝜂 + 1) ∙
𝜇 ∙ |𝑉| ∙ (⌈log2|𝑉|⌉ + 1) in total. 

 Finally, the constraints requiring that agents only move along the edges (26) contribute 

𝜇 clauses of arity degG(𝑣𝑗) + 2 to each vertex 𝑣𝑗 in ExpT(𝐺, 𝜂) in any given time layer 

except the last one which is 𝜂 ∙ 𝜇 ∙ |𝑉| clauses in total. 

(25) 𝑒𝑎,𝑗
𝑡 ⇔ con=(ℒ𝑎

𝑡 , 𝑗) 

 

𝑒𝑎,𝑗
𝑡 ⇒ 𝑒𝑎,𝑗

𝑡+1 ∨ ⋁ 𝑒𝑎,𝒿
𝑡+1

𝒿∈{1,…,𝑛}|{𝑣𝑗,𝑣𝒿}∈𝐸
 

 

(26) 
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 In all, we have (𝜂 + 1) ∙ ((𝜇
2

) ∙ (2 ∙ ⌈log2|𝑉|⌉ + 1) + 𝜇 ∙ |𝑉| ∙ (⌈log2|𝑉|⌉ + 1)) + 𝜂 ∙

𝜇 ∙ |𝑉| clauses in a 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ)  encoding, which is 𝒪 (𝜂 ∙ ⌈log2|𝑉|⌉ ∙ ((𝜇
2

) + 𝜇 ∙ |𝑉|)).  

 

Proposition 5 (PATHS AND 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ) SATISFACTION). A set Π = {𝜋1, 𝜋2, … , 𝜋𝜇} of non-

overlapping vertex-disjoint paths in ExpT(𝐺, 𝜂) where 𝜋𝑖 connects [𝛼0(𝑎𝑖),0] with 

[𝛼+(𝑎𝑖), 𝜂] for 𝑖 = 1,2, … , 𝜇 exists if and only if 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ) is satisfiable. Moreover, paths 

𝜋1, 𝜋2, … , 𝜋𝜇 can be unambiguously constructed from a satisfying valuation of 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ) 

and vice versa.  
 

Proof. For simplicity’s sake, we will operate at the level of finite domain state variables. 

Assume that non-overlapping vertex-disjoint paths 𝜋1, 𝜋2, … , 𝜋𝜇 exist in ExpT(𝐺, 𝜂). A 

satisfying valuation of 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ) can be directly constructed from these paths. Let 𝜋𝑖 =
([𝑢0, 0], [𝑢1, 1], [𝑢2, 2], …,  [𝑢𝜂, 𝜂]), 𝑢𝑡 ∈ 𝑉 for 𝑡 = 0,1, … , 𝜂 where 𝑢0 = 𝛼0(𝑎𝑖) and 𝑢𝜂 =

𝛼+(𝑎𝑖). Then, the finite domain state variables will be set as follows: ℒ𝑎𝑖
0 = 𝑢0, ℒ𝑎𝑖

1 = 𝑢1, 

…, ℒ𝑎𝑖

𝜂
= 𝑢𝜂 for every 𝑖 = 1,2, … , 𝜇. The assumptions that paths were vertex-disjoint and 

were non-overlapping ensure that constraints (20) and (21), respectively, are satisfied. Any 

consecutive vertices within paths are connected by the directed edges that correspond to 

the edges in 𝐺. Hence, constraints (19) are satisfied. 

 Assume, on the other hand, that we have a satisfying valuation of 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ). We can 

immediately set 𝜋𝑖 = ([ℒ𝑎𝑖
0 , 0], [ℒ𝑎𝑖

1 , 1], [ℒ𝑎𝑖
2 , 2], …,  [ℒ𝑎𝑖

𝜂
, 𝜂]) for every 𝑖 = 1,2, … , 𝜇. The 

satisfaction of constraints (19) ensures that any constructed sequences of vertices are paths 

in ExpT(𝐺, 𝜂). In addition, paths 𝜋𝑖 are non-overlapping and vertex-disjoint due to 

constraints (20) and (21), respectively.  
 

 The approach to solving CPF by way of satisfying 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ) is justified by the 

following theorem which combines Proposition 1 and Proposition 5. From 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ), 

non-overlapping vertex-disjoint paths corresponding to the solution to the CPF problem 

can be obtained. 
 
Theorem 2 (SOLUTION OF Σ AND 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ) SATISFACTION). A solution of CPF Σ =
(𝐺, 𝐴, 𝛼0, 𝛼+) exists if and only if there is 𝜂 ∈ ℕ, for which the formula 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ) 

satisfiable.  

5.3. MATCHING Propositional Encoding 

We have observed that vertex-disjoint non-overlapping paths in a time-expanded graph 

resemble single-commodity flow [1] in a time-expanded graphs, in which vertices and edges 

are assigned unit capacities. Intuition tells us that the edges included in paths should be 

saturated by one unit of flow. Such a setting would convey the commodity from all initial 

to all goal vertices. 

However, a correspondence between paths of the required properties and flow is present 

in one direction only. The flow reflects well the requirement that paths should be vertex-
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disjoint, but it cannot simulate the non-overlapping between the paths or the correct linkage 

between the initial and goal vertices for the same agent (the flow can, however, connect 

the initial and goal vertices for two distinct agents because it treats them as anonymous 

commodity units). 

 

 
Figure 4. The correspondence between agent movement and flow in a bipartite graph. The 

movement between time steps 𝑡 and 𝑡 + 1 and the corresponding flow is shown in a bipartite graph 

consisting of 𝑡-th and (𝑡 + 1)-th time step where vertices and edges are assigned unit capacities. A 

valid movement induces a flow, in which saturated edges are non-overlapping; that is, {𝐴, 𝐸} ∩
{𝐵, 𝐶} = ∅ (upper part). On the other hand, a standard network flow does not necessarily produce 

non-overlapping edges, which may result in invalid agent movement (lower part). 

  

The design of the MATCHING encoding will be based on intuitive insights concerning 

single commodity flows. It will be divided into two parts – the first part called the FLOW 

part will check for the existence of a flow that generates non-overlapping vertex-disjoint 

paths. This part can be understood as an encoding of a CPF problem with relaxed 

constraints, in which the agents are anonymous. When dealing with anonymous agents, we 

are looking at moving a group of agents to a set of goal vertices, but are not interested in 

having control over which agent arrives in which goal vertex (the paths generated may 

connect the initial and goal vertices of different agents). As we will see later, the 

propositional encoding of this part will be based on a direct representation. 
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The second part, called the MAPPING part, maps different agents to paths marked out 

by the flow. This part of the encoding eventually strengthens requirements imposed by the 

MATCHING part. 

The proposed design is based on the assumption that a SAT solver should be able to 

quickly check for the existence of non-overlapping flows, which is a prerequisite of the 

existence of a true solution. 

 

Definition 7 (MATCHING ENCODING – 𝐹𝑀𝐴𝑇𝐶𝐻
𝐹𝐿𝑂𝑊 (𝜂, Σ)). The FLOW part of the MATCHING 

encoding of CPF Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] with 𝐺 = (𝑉, 𝐸) consists of a propositional variable 

for each vertex and edge in the time-expanded graph used to model network flows. In other 

words, a propositional variable ℳ𝑣
𝑡 is introduced for every 𝑡 = 0,1, … , 𝜂 and 𝑣 ∈ 𝑉 and 

propositional variables ℰ𝑢,𝑣
𝑡  and ℰ𝑢

𝑡  are introduced for every 𝑡 = 0,1, … , 𝜂 and {𝑢, 𝑣} ∈ 𝐸 

and 𝑢 ∈ 𝑉, respectively. The constraints ensure that variables set to 𝑇𝑅𝑈𝐸 form a non-

overlapping flow: 

• ℰ𝑢,𝑣
𝑡 ⇒ ℳ𝑢

𝑡 ∧ ℳ𝑣
𝑡+1     for every {𝑢, 𝑣} ∈ 𝐸 

          and 𝑡 ∈ {0,1, … , 𝜂 − 1}, 

ℰ𝑢
𝑡 ⇒ ℳ𝑢

𝑡 ∧ ℳ𝑢
𝑡+1     for every 𝑢 ∈ 𝑉 and  𝑡 ∈ {0,1, … , 𝜂 − 1} 

(if an edge is included in a flow, then its endpoints are included as well) 

• ℰ𝑢
𝑡 + ∑ ℰ𝑢,𝑣

𝑡
𝑣|{𝑢,𝑣}∈𝐸 ≤ 1   for every 𝑢 ∈ 𝑉 and 𝑡 ∈ {0,1, … , 𝜂 − 1}, 

 ℰ𝑣
𝑡 + ∑ ℰ𝑢,𝑣

𝑡
𝑢|{𝑢,𝑣}∈𝐸 ≤ 1   for every 𝑣 ∈ 𝑉 and 𝑡 ∈ {0,1, … , 𝜂 − 1}, 

(there can be at most one incoming and one outgoing edge in a flow) 

• ℳ𝑢
𝑡 ⇒ ℰ𝑢

𝑡 ∨ ⋁ ℰ𝑢,𝑣
𝑡

𝑣|{𝑢,𝑣}∈𝐸   for every 𝑢 ∈ 𝑉 and 𝑡 ∈ {0,1, … , 𝜂 − 1}, 

ℳ𝑣
𝑡+1 ⇒ ℰ𝑢

𝑡 ∨ ⋁ ℰ𝑢,𝑣
𝑡

𝑢|{𝑢,𝑣}∈𝐸  for every 𝑣 ∈ 𝑉 and 𝑡 ∈ {0,1, … , 𝜂 − 1}, 

(if a vertex is included in a flow, then at least one outgoing and one 

incoming edge must be included as well) 

• ℰ𝑢,𝑣
𝑡 ⇒ ℳ𝑣

𝑡      for every {𝑢, 𝑣} ∈ 𝐸 

          and 𝑡 ∈ {0,1, … , 𝜂 − 1}, 

(the source and target vertices of regular moves must be disjoint). □ 

 

 The second part of the encoding, in which the distinct agents manifest themselves 

individually, is introduced in the following definition. 

 

Definition 8 (MATCHING ENCODING – 𝐹𝑀𝐴𝑇𝐶𝐻
𝑀𝐴𝑃 (𝜂, Σ)). The MAPPING part of the MATCHING 

encoding of a given CPF Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] with 𝐺 = (𝑉, 𝐸) consists of a finite domain 

variable 𝒜𝑣
𝑡 ∈ {0,1, … , 𝜇} for each vertex 𝑣 ∈ 𝑉 and layer 𝑡 = 0,1, … , 𝜂 to model the 

appearance of an agent in a vertex. The constraints connect the MAPPING part to the FLOW 

part, so that the actual distinct agents follow the paths indicated by the flow: 

• ℰ𝑢,𝑣
𝑡 ⇒ 𝒜𝑢

𝑡 = 𝒜𝑣
𝑡+1     for every {𝑢, 𝑣} ∈ 𝐸         

          and 𝑡 ∈ {0,1, … , 𝜂 − 1}, 

(if an edge is saturated by the flow, then the same agent appears at its both ends) 

 

(27) 

(28) 

(29) 

(30) 

(31) 
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• 𝒜𝑢
𝑡 ≠ 0 ⇒ ℳ𝑢

𝑡      for every 𝑢 ∈ 𝑉 

          and  𝑡 ∈ {0,1, … , 𝜂} 

(if an agent appears in a vertex, then the vertex is saturated by the flow) □ 

 

As in the previous encodings, 𝒜𝑣
𝑡  variables with 𝜇 + 1 states are represented by 

⌈log2(𝜇 + 1)⌉ propositional variables using a binary encoding. The initial and goal 

configurations will be expressed using the following constraints: 

• 𝒜𝑢
0 = 𝑖 ∧ ℳ𝑢

0   for 𝑢 ∈ 𝑉 if there is 𝑖 ∈ {1,2, … , 𝜇} 

       such that 𝛼0(𝑎𝑖) = 𝑢 

•  𝒜𝑢
0 = 0 ∧ ℳ𝑢

0  for 𝑢 ∈ 𝑉 if (∀𝑎 ∈ 𝐴)𝛼0(𝑎) ≠ 𝑢 

• 𝒜𝑢
𝜂

= 𝑖 ∧ ℳ𝑢
𝜂
   for 𝑢 ∈ 𝑉 if there is 𝑖 ∈ {1,2, … , 𝜇} 

       such that 𝛼+(𝑎𝑖) = 𝑢 

• 𝒜𝑢
𝜂

= 0 ∧ ℳ𝑢
𝜂
  for 𝑢 ∈ 𝑉 if (∀𝑎 ∈ 𝐴)𝛼+(𝑎) ≠ 𝑢 

 

 

 
 

Figure 5. Non-overlapping vertex-disjoint paths in a time-expanded graph and correspondence with 

single commodity flow. The edges and vertices in a time-expanded graph are assumed to have unit 

capacities. A correct flow can be reconstructed from vertex-disjoint non-overlapping paths (upper 

right part). On the other hand, a flow does not necessarily correspond to paths of the required 

properties (the middle right part shows the connection between the initial and goal vertices of 

different agents and the lower right part shows the overlapping paths between time steps 1 and 2). 
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(32) 

} Goal positions 

(36) 

(35) 

(34) 

} Initial positions 

(33) 
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 The resulting formula denoted as 𝐹𝑀𝐴𝑇𝐶𝐻(𝜂, Σ) in CNF is a conjunction of the FLOW 

part, MAPPING part, and the constraints on the initial/goal position. To obtain CNF, the at-

most-one constraints (28) need to be rewritten as clauses. That is, for example ℰ𝑢
𝑡 +

∑ ℰ𝑢,𝑣
𝑡

𝑣|{𝑢,𝑣}∈𝐸 ≤ 1 can be rewritten as a conjunction of clauses that forbids all pairs of the 

variables involved to be set to 𝑇𝑅𝑈𝐸: 

 

 

 

 

 

 

 Note that more sophisticated encodings of the at-most-one constraint that are more scal-

able with the number of variables constrained are available [36, 47]. However, this basic 

encoding is very powerful when the number of variables constrained is small because it 

greatly supports unit propagation thanks to binary clauses. Moreover, the number of vari-

ables here depends on deg𝐺(𝑣), which is low in typical locally interconnected (planar) 

graphs used in CPF applications. 

The log encoded variables 𝒜𝑣
𝑡  are not involved in any complex relation – only the 

conditional equality between these variables is introduced, while all other modeling issues 

concerning static and dynamic CPF constraints occur in the FLOW part of the encoding. 

 The conditional equality between 𝒜𝑢
𝑡  and 𝒜𝑣

𝑡+1 in (31) can be expressed as follows: 

 

 

 

 Constraint (32) can be rewritten as follows: 

 

 

 

 

Proposition 6 (MATCHING ENCODING SIZE). The number of propositional variables in 

𝐹𝑀𝐴𝑇𝐶𝐻(𝜂, Σ) is 𝒪(𝜂 ∙ (|𝐸| + |𝑉| ∙ ⌈log2(𝜇)⌉)). The number of clauses is 𝒪 (𝜂 ∙

((|𝑉| + |𝐸|) ∙ ⌈log2(𝜇)⌉ + ∑ (degG(𝑣)

2
)𝑣∈𝑉 )).  

 

Proof. The FLOW part of the MATCHING encoding has a propositional variable ℳ𝑣
𝑡 for each 

vertex 𝑣 ∈ 𝑉 and time layer 𝑡 ∈ {0,1, … , 𝜂} and ℰ𝑢,𝑣
𝑡  for each edge {𝑢, 𝑣} ∈ 𝐸 and time 

layer, which makes (𝜂 + 1) ∙ (|𝑉| + |𝐸|) propositional variables in total. Further, we have 

a vector of ⌈log2(𝜇 + 1)⌉ propositional variables representing 𝒜𝑣
𝑡  for each vertex and time 

layer in the MAPPING part. This makes another (𝜂 + 1) ∙ |𝑉| ∙ ⌈log2(𝜇 + 1)⌉ variables in 

total. In all, there are (𝜂 + 1) ∙ (|𝐸| + |𝑉| + |𝑉| ∙ ⌈log2(𝜇 + 1)⌉) variables, which is 

𝒪(𝜂 ∙ (|𝐸| + |𝑉| ∙ ⌈log2(𝜇)⌉)). 

⋀ ℰ𝑢,𝑣
𝑡 ∨ ℰ𝑢,𝑤

𝑡

𝑣,𝑤|{𝑢,𝑣}∈𝐸∧{𝑢,𝑤}∈𝐸∧𝑣≠𝑤
 

⋀ ℰ𝑢,𝑣
𝑡 ∨ ℰ𝑢

𝑡

𝑣|{𝑢,𝑣}∈𝐸
 

 

(37) 

ℰ𝑢,𝑣
𝑡 ⇒ var=(𝒜𝑢

𝑡 , 𝒜𝑣
𝑡+1) (38) 

⋀ 𝒜𝑢
𝑡 [𝕚] ∨ ℳ𝑢

𝑡
⌈log2(𝜇+1)⌉−1

𝕚=0
 

 

(39) 
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 Constraints (27) develop into 𝜂 ∙ (|𝑉| + |𝐸|) ternary clauses. Constraints (28) develop 

into 2 ∙ 𝜂 ∙ ∑ (degG(𝑣)+1
2

)𝑣∈𝑉  binary clauses as indicated by (31). Constraints (29) introduce 

two clauses of a length of degG(𝑣) + 1 for each vertex and time layer; that is, 2 ∙ 𝜂 ∙ |𝑉| 

clauses are added. Finally, constraints (30) add a binary clause for each vertex and time 

layer, which is, again, dominated by the previous expressions. The conditional equality 

between the two bit vectors in (8) develops into 2 ∙ ⌈log2(𝜇 + 1)⌉ ternary clauses, while 

the equality is introduced for each edge and time layer; that is, 2 ∙ 𝜂 ∙ |𝐸| ∙ ⌈log2(𝜇 + 1)⌉ 
ternary clauses are added. One can observe that the expression (32) represents (𝜂 + 1) ∙
|𝐸| ∙ ⌈log2(𝜇 + 1)⌉ binary clauses. In all, there are 𝜂 ∙ (3 ∙ |𝑉| + |𝐸| + 2 ∙

∑ (degG(𝑣)+1
2

)𝑣∈𝑉 + 2 ∙ |𝐸| ∙ ⌈log2(𝜇 + 1)⌉) + (𝜂 + 1) ∙ |𝐸| ∙ ⌈log2(𝜇 + 1)⌉ clauses, which 

is 𝒪 (𝜂 ∙ ((|𝑉| + |𝐸|) ∙ ⌈log2(𝜇)⌉ + ∑ (degG(𝑣)

2
)𝑣∈𝑉 )).  

 

Proposition 7 (PATHS AND 𝐹𝑀𝐴𝑇𝐶𝐻(𝜂, Σ) SATISFACTION). A set Π = {𝜋1, 𝜋2, … , 𝜋𝜇} of 

non-overlapping vertex-disjoint paths in ExpT(𝐺, 𝜂) where 𝜋𝑖 connects [𝛼0(𝑎𝑖),0] with 

[𝛼+(𝑎𝑖), 𝜂] for 𝑖 = 1,2, … , 𝜇 exists if and only if 𝐹𝑀𝐴𝑇𝐶𝐻(𝜂, Σ) is satisfiable. Moreover, the 

paths 𝜋1, 𝜋2, … , 𝜋𝜇 can be unambiguously constructed from a satisfying valuation of 

𝐹𝑀𝐴𝑇𝐶𝐻(𝜂, Σ) and vice versa.  
 

Proof. We will operate at the level of finite domain state variables 𝒜𝑣
𝑡  as opposed to bit 

vectors to simplify the proof. 

 Assume that there are non-overlapping vertex-disjoint paths 𝜋1, 𝜋2, … , 𝜋𝜇  where 𝜋𝑖 

connects [𝛼0(𝑎𝑖),0] with [𝛼+(𝑎𝑖), 𝜂] in ExpT(𝐺, 𝜂). Let 𝜋𝑖 = ([𝑢0, 0], [𝑢1, 1], [𝑢2, 2], …,  
[𝑢𝜂, 𝜂]), with 𝑢𝑡 ∈ 𝑉 for 𝑡 = 0,1, … , 𝜂 where 𝑢0 = 𝛼0(𝑎𝑖) and 𝑢𝜂 = 𝛼+(𝑎𝑖). A satisfying 

valuation of 𝐹𝑀𝐴𝑇𝐶𝐻(𝜂, Σ) can be constructed by setting 𝒜𝑢0
0 = 𝑖, 𝒜𝑢1

1 = 𝑖, …, 𝒜𝑢𝜂

𝜂
= 𝑖. 

Next, the variables ℳ𝑢0
0 , ℳ𝑢1

1 , …, ℳ𝑢𝜂

𝜂
 representing flow are set to 𝑇𝑅𝑈𝐸 and ℰ𝑢0,𝑢1

0 , 

ℰ𝑢1,𝑢2
1 , …, ℰ𝑢𝜂−1,𝑢𝜂

𝜂−1
 are set to 𝑇𝑅𝑈𝐸 as well (the convention that ℰ𝑢𝑙,𝑢𝑙+1

𝑡 ≡ ℰ𝑢𝑙
𝑡  if 𝑢𝑡 = 𝑢𝑡+1 

is used here). Now, all constraints are satisfied. 

The connection between the FLOW and MAPPING parts is satisfied by the construction, 

so we just need to check the constraints in the FLOW part of the encoding. The propagation 

of the flow from the edges to vertices is also ensured by the construction. 

The fact that the original paths are vertex-disjoint ensures the validity of constraints 

(27) and (28), which together ensure the inclusion of exactly one incoming and one 

outgoing edge by setting the ℰ𝑢,𝑣
𝑡  variables for each vertex saturated by the flow, as 

indicated by the ℳ𝑣
𝑡 variable set to 𝑇𝑅𝑈𝐸. 

Finally, the fact that the paths are non-overlapping directly translates into the 

satisfaction of constraints (30). The constraints on the initial and goal positions are trivially 

satisfied. All in all, 𝐹𝑀𝐴𝑇𝐶𝐻(𝜂, Σ) is satisfied by the constructed valuation of its variables. 

 Let us now test the opposite implication. Assume that 𝐹𝑀𝐴𝑇𝐶𝐻(𝜂, Σ) is satisfiable. Let 

𝜋𝑖 = ([𝑢0, 0], [𝑢1, 1], [𝑢2, 2], …,  [𝑢𝜂 , 𝜂]) such that 𝑢0 = 𝛼0(𝑎𝑖) and ℰ𝑢𝑙,𝑢𝑙+1
𝑙 is 𝑇𝑅𝑈𝐸 for 

each 𝑡 = 0,1, … , 𝜂 − 1. This is feasible thanks to constraints (27) - (29) which propagate 

the flow from the initial positions in the first time layer to the final layer. We will verify 
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that the paths constructed this way have the required properties – they are vertex-disjoint, 

non-overlapping and connect the initial and goal positions of the agents. 

The FLOW part of the encoding ensures that the constructed paths are vertex-disjoint 

and non-overlapping. We just need to add the non-overlapping property to the already 

checked flow propagation. The non-overlapping property is indeed established by 

constraints (30). 

However, the FLOW part does not ensure that 𝑢𝜂 = 𝛼+(𝑎𝑖); the satisfaction of the FLOW 

part alone may result in a path connecting the initial and goal positions of two distinct 

agents. This is corrected by the constraints included in the MAPPING part of the encoding. 

These constraints propagate agent 𝑎𝑖 along the edges {𝑢𝑡 , 𝑢𝑡+1} and eventually make it 

show up in 𝑢𝜂 and the goal constraints (35) and (36) ensure that agent 𝑎𝑖 arrives in the 

correct vertex.  
 

 By combining Proposition 7, which has just been proven, with a correspondence 

between non-overlapping vertex-disjoint paths in ExpT(𝐺, 𝜂) we can immediately obtain 

the following theorem. 

 

Theorem 3 (SOLUTION OF Σ AND 𝐹𝑀𝐴𝑇𝐶𝐻(𝜂, Σ) SATISFACTION). A solution of a CPF Σ =
(𝐺, 𝐴, 𝛼0, 𝛼+) exists if and only if there is 𝜂 ∈ ℕ, for which the formula 𝐹𝑀𝐴𝑇𝐶𝐻(𝜂, Σ) is 

satisfiable.  

5.4. DIRECT/SIMPLIFIED Propositional Encoding 

The previous CPF encodings used a log representation of an agent’s presence in a vertex 

in one form or another. We will now introduce a CPF encoding based purely on the direct 

representation of state variables. We will use a single propositional variable to encode the 

presence of an agent in a vertex in a specific time-step. The resulting CPF encoding will 

be called DIRECT [59]. 

 

Definition 9 (DIRECT ENCODING – 𝐹𝐷𝐼𝑅(𝜂, Σ)). Assume a CPF Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] with 𝐺 =
(𝑉, 𝐸). A DIRECT encoding for CPF Σ consists of propositional variables 𝒳𝑎,𝑣

𝑡  for every 

𝑎 ∈ 𝐴, 𝑣 ∈ 𝑉, and time step 𝑡 ∈ {0,1, … , 𝜂} to model the appearance of agents in vertices 

over time. 𝒳𝑎,𝑣
𝑡  is assigned 𝑇𝑅𝑈𝐸 if and only if agent 𝑎 shows up in vertex 𝑣 in time step 

𝑡. The following constrains ensure the satisfaction of static and dynamic constraints: 

• ⋀ 𝒳𝑎,𝑢
𝑡 ∨ 𝒳𝑎,𝑣

𝑡
𝑢,𝑣∈𝑉,𝑢≠𝑣     for every 𝑡 ∈ {0,1, … , 𝜂} 

⋁ 𝒳𝑎,𝑣
𝑡

𝑣∈𝑉          and 𝑎 ∈ 𝐴 

  (an agent is placed in exactly one vertex in each time step) 

• ⋀ 𝒳𝑎,𝑣
𝑡 ∨ 𝒳𝑏,𝑣

𝑡
𝑎,𝑏∈A,𝑎≠𝑏     for every 𝑡 ∈ {0,1, … , 𝜂} 

            and 𝑣 ∈ 𝑉 

 (at most one agent is placed in each vertex in each time step) 

 

 

(40) 

(41) 
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• 𝒳𝑎,𝑣
𝑡 ⇒ 𝒳𝑎,𝑣

𝑡+1 ∨ ⋁ 𝒳𝑎,𝑢
𝑡+1

𝑢∈𝑉,{𝑣,𝑢}∈𝐸   for every 𝑡 ∈ {0,1, … , 𝜂 − 1},  

𝒳𝑎,𝑣
𝑡+1 ⇒ 𝒳𝑎,𝑣

𝑡 ∨ ⋁ 𝒳𝑎,𝑢
𝑡

𝑢∈𝑉,{𝑣,𝑢}∈𝐸   𝑣 ∈ 𝑉, and 𝑎 ∈ 𝐴 

(an agent moves to a neighboring position or does not move) 

• 𝒳𝑎,𝑣
𝑡 ∧ 𝒳𝑎,𝑢

𝑡+1 ⇒ ⋀ 𝒳𝑏,𝑢
𝑡

𝑏∈𝐴 ∧ ⋀ 𝒳𝑏,𝑣
𝑡+1

𝑏∈𝐴  

          for every 𝑡 ∈ {0,1, … , 𝜂 − 1}, 𝑢, 𝑣 ∈ 𝑉 

          such that {𝑢, 𝑣} ∈ 𝐸 and 𝑎 ∈ 𝐴 

 (the target vertex of a move must be vacant and the source vertex 

 must be vacant after the move is performed). □ 
 

 The initial and goal configurations will be expressed using the following constraints: 

• 𝒳𝑎,𝑣
0     for 𝑣 ∈ 𝑉 if there is 𝑎 ∈ 𝐴 

      such that 𝛼0(𝑎) = 𝑣 

• 𝒳𝑎,𝑣
0     otherwise 

• 𝒳𝑎,𝑣
𝜂

    for 𝑣 ∈ 𝑉 if there is 𝑎 ∈ 𝐴 

      such that 𝛼+(𝑎) = 𝑣 

• 𝒳𝑎,𝑣
𝜂

    otherwise 

The resulting DIRECT encoding formula in CNF will be denoted as 𝐹𝐷𝐼𝑅(𝜂, Σ). We can 

observe the repetitive evacuation of the target and source vertices before and after a move 

(constraint (43), as the right hand-side of the implication is independent of agent 𝑎. 

Therefore, the encoding can be enhanced by introducing auxiliary variables ℰ𝑢
𝑡  for each 

vertex 𝑢 ∈ 𝑉 and time step 𝑡 ∈ {0,1, … , 𝜂}. These represent the evacuation of vertex 𝑢 in 

time step 𝑡. The semantics of the ℰ𝑢
𝑡  variables is represented by the following constraint: 

• ℰ𝑢
𝑡 ⇒ ⋀ 𝒳𝑎,𝑢

𝑡
𝑎∈𝐴     for every 𝑡 ∈ {0,1, … , 𝜂} and 𝑢 ∈ 𝑉 

 (in an empty vertex no agent can appear at a given time) 

 

 The repetitive part in constraint (43) can now be replaced as follows by a version with 

auxiliary variables: 

 

• 𝒳𝑎,𝑣
𝑡 ∧ 𝒳𝑎,𝑢

𝑡+1 ⇒ ℰ𝑢
𝑡 ∧ ℰ𝑣

𝑡+1   for every 𝑡 ∈ {0,1, … , 𝜂 − 1}, 𝑢, 𝑣 ∈ 𝑉 

        such that {𝑢, 𝑣} ∈ 𝐸 and 𝑎 ∈ 𝐴. 

 

 The resulting encoding with auxiliary variables is called SIMPLIFIED in [60] and the 

corresponding CNF formula will be denoted as 𝐹𝑆𝐼𝑀(𝜂, Σ). 

 

Proposition 8 (DIRECT/SIMPLIFIED ENCODING SIZE). The number of propositional 

variables in 𝐹𝐷𝐼𝑅(𝜂, Σ) is 𝒪(𝜂 ∙ 𝜇 ∙ |𝑉|). The number of clauses is 𝒪(𝜂 ∙ (𝜇 ∙ |𝑉|2 + 𝜇2 ∙

|𝑉| + 𝜇2 ∙ |𝐸|)). 𝐹𝑆𝐼𝑀(𝜂, Σ) contains additional 𝒪(𝜂 ∙ |𝑉|) propositional variables, while 

the total number of clauses is only 𝒪(𝜂 ∙ (𝜇 ∙ |𝑉|2 + 𝜇2 ∙ |𝑉| + 𝜇 ∙ |𝐸|)).  

 

Proof. By adding up the index scopes, we establish that there are exactly (𝜂 + 1) ∙ 𝜇 ∙ |𝑉| 
variables 𝒳𝑎,𝑣

𝑡  and 𝜂 ∙ |𝑉| ℰ𝑢
𝑡  variables. 

(42) 

(43) 

} Goal positions 

(45) 

} Initial positions 

(44) 

(46) 

(47) 

(48) 

(49) 
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 Each time layer and agent adds (|V|

2
) binary clauses and one |𝑉|-ary clause within 

constraints (40). Thus, we have altogether (𝜂 + 1) ∙ 𝜇 ∙ (|V|

2
) binary clauses and (𝜂 + 1) ∙ 𝜇 

|𝑉|-ary clauses resulting from rewriting constraints (40) as clauses. A similar calculation 

can be done for constraints (41); we have (𝜇
2

) binary clauses for each time layer and vertex; 

that is, (𝜂 + 1) ∙ |𝑉| ∙ (𝜇
2

) binary clauses in total. 

 There are two (degG(𝑣) + 2)-ary clauses for each vertex 𝑣 in each time step except the 

last one and for each agent resulting from constraints (42), which altogether means 𝜂 ∙ 𝜇 

(degG(𝑣) + 2)-ary clauses for each vertex 𝑣 ∈ 𝑉. That is, we have 𝜂 ∙ 𝜇 ∙ |𝑉| clauses in 

total. 

 Each implication in constraint (43) develops into 2 ∙ 𝜇 ternary clauses. There are |𝐸| 
such groups of clauses for every agent and time step except the last one. Thus, 2 ∙ 𝜂 ∙ 𝜇2 ∙
|𝐸| ternary clauses in total are needed to express constraints (43). 

 In all, the total number of clauses in 𝐹𝐷𝐼𝑅(𝜂, Σ) is (𝜂 + 1) ∙ (𝜇 ∙ ((|V|

2
) + 1) + |𝑉| ∙

(𝜇
2

)) + 2 ∙ 𝜂 ∙ 𝜇 ∙ (|𝑉| + 𝜇 ∙ |𝐸|), which is 𝒪(𝜂 ∙ (𝜇 ∙ |𝑉|2 + 𝜇2 ∙ |𝑉| + 𝜇2 ∙ |𝐸|)). 

 Constraints (49) develop into fewer clauses compared to the original constraints (43) 

which they replace because of the shorter right-hand side of the implication in 𝐹𝑆𝐼𝑀(𝜂, Σ). 

In particular, each implication from (49) develops into exactly 2 ternary clauses, which 

gives 2 ∙ 𝜂 ∙ 𝜇 ∙ |𝐸| ternary clauses in total. 

The connection of the auxiliary variables ℰ𝑢
𝑡  to their meaning requires 𝜇 binary clauses 

for each implication resulting from constraint (48). There are as many as (𝜂 + 1) ∙ |𝑉| such 

connections, which results in (𝜂 + 1) ∙ 𝜇 ∙ |𝑉| in total. Hence, the total number of clauses 

in 𝐹𝑆𝐼𝑀(𝜂, Σ) is (𝜂 + 1) ∙ (𝜇 ∙ ((|V|

2
) + 1) + |𝑉| ∙ (𝜇

2
)) + 𝜂 ∙ 𝜇 ∙ (|𝑉| + 2 ∙ |𝐸|), which is 

𝒪(𝜂 ∙ (𝜇 ∙ |𝑉|2 + 𝜇2 ∙ |𝑉| + 𝜇 ∙ |𝐸|)).  

 
Proposition 9 (PATHS AND 𝐹𝐷𝐼𝑅(𝜂, Σ)/𝐹𝑆𝐼𝑀(𝜂, Σ) SATISFACTION). A set Π =
{𝜋1, 𝜋2, … , 𝜋𝜇} of non-overlapping vertex-disjoint paths in ExpT(𝐺, 𝜂) where 𝜋𝑖 connects 

[𝛼0(𝑎𝑖),0] to [𝛼+(𝑎𝑖), 𝜂] for 𝑖 = 1,2, … , 𝜇 exists if and only if 𝐹𝐷𝐼𝑅(𝜂, Σ) is satisfiable. 

Moreover, paths 𝜋1, 𝜋2, … , 𝜋𝜇 can be unambiguously constructed from a satisfying 

valuation of 𝐹𝐷𝐼𝑅(𝜂, Σ) and vice versa. The same holds for 𝐹𝑆𝐼𝑀(𝜂, Σ).  
 

Proof. Assume that there are non-overlapping vertex-disjoint paths 𝜋1, 𝜋2, … , 𝜋𝜇 where 𝜋𝑖 

connects [𝛼0(𝑎𝑖),0] with [𝛼+(𝑎𝑖), 𝜂] in ExpT(𝐺, 𝜂). We will construct a satisfying 

valuation of 𝐹𝐷𝐼𝑅(𝜂, Σ) from 𝜋1, 𝜋2, … , 𝜋𝜇. 

 Let 𝜋𝑖 = ([𝑢0, 0], [𝑢1, 1], [𝑢2, 2], …,  [𝑢𝜂, 𝜂]), with 𝑢𝑡 ∈ 𝑉 for 𝑡 = 0,1, … , 𝜂 where 

𝑢0 = 𝛼0(𝑎𝑖) and 𝑢𝜂 = 𝛼+(𝑎𝑖), then the variables 𝒳𝑎𝑖,𝑢0
0 , 𝒳𝑎𝑖,𝑢1

1 , ..., 𝒳𝑎𝑖,𝑢𝜂

𝜂
 will be set to 

𝑇𝑅𝑈𝐸. The 𝒳𝑎,𝑣
𝑡  variables will set this way for every 𝑖 = 1,2, … , 𝜇. 

 We can verify that all constraints resulting from the DIRECT encoding hold. Constraints 

(40) hold because each directed path 𝜋𝑖 intersects the time layer in exactly one vertex. 

Constraints (41) hold because the directed paths are vertex-disjoint. Because the paths 

extend from one time layer to the next, constraints (42) hold as well. Finally, because the 

paths are non-overlapping, constraints (43) hold as well. 
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 A satisfying valuation of 𝐹𝑆𝐼𝑀(𝜂, Σ) requires that truth values also be assigned to the ℰ𝑢
𝑡  

variables. The truth values of ℰ𝑢
𝑡  are directly derived from the assignment of truth values 

to 𝒳𝑎,𝑣
𝑡  through constraints (48). The satisfaction of constraints (47) is ensured by the 

satisfaction of constraints (43) and the transitivity of the implication through the auxiliary 

ℰ𝑢
𝑡 . The existence of the paths connecting the agents’ initial and goal positions is ensured 

by the satisfaction of constraints (44)-(47), which ensure that the initial and final time 

layers correspond to the agents’ initial and goal configurations. 

 If, on the other hand, we have a satisfying valuation of 𝐹𝐷𝐼𝑅(𝜂, Σ), then non-overlapping 

vertex-disjoint paths can be constructed from it. Paths 𝜋1, 𝜋2, … , 𝜋𝜇 will be constructed 

according to the truth values of the variables 𝒳𝑎,𝑣
𝑡 . Let 𝜋𝑖 = ([𝑢0, 0], [𝑢1, 1], [𝑢2, 2], …,  

[𝑢𝜂, 𝜂]) where 𝒳𝑎𝑖,𝑢0
0 , 𝒳𝑎𝑖,𝑢1

1 , ..., 𝒳𝑎𝑖,𝑢𝜂

𝜂
 are 𝑇𝑅𝑈𝐸. A single path is correctly defined 

because for each time step 𝑡 ∈ {0,1, … , 𝜂} and agent 𝑎𝑖 ∈ 𝐴 there is exactly one 𝒳𝑎𝑖,𝑣
𝑡  with 

𝑣 ∈ 𝑉 set to 𝑇𝑅𝑈𝐸, as ensured by constraints (40). Any successive vertices of the path are 

connected by arcs in ExpT(𝐺, 𝜂), as ensured by constraints (42). If we consider all paths 

together, then constraints (41) ensure that the paths never intersect because two distinct 

agents cannot share a vertex. Finally, the non-overlapping property is ensured by 

constraints (43) because whenever a regular traversal between two successive time layers 

is made, no other agent can enter the affected vertices.  
 

 Again, note that non-overlapping vertex-disjoint paths correspond to CPF solutions 

(Proposition 1). This, together with the proposition just proven, gives us the following 

theorem. 

 

Theorem 4 (SOLUTION OF Σ AND 𝐹𝐷𝐼𝑅(𝜂, Σ)/ 𝐹𝑆𝐼𝑀(𝜂, Σ) SATISFACTION). A solution of CPF 

Σ = (𝐺, 𝐴, 𝛼0, 𝛼+) exists if and only if there is 𝜂 ∈ ℕ, for which the formula 𝐹𝐷𝐼𝑅(𝜂, Σ) is 

satisfiable. The same holds for the simplified formula 𝐹𝑆𝐼𝑀(𝜂, Σ).  

5.5. Summary of the Space Complexity of Propositional Encodings 

The theoretical study of the size of encodings has been fine-grained. It is therefore not 

immediately clear how the individual encodings compare with each other. For this reason, 

several specific cases of CPFs with very sparse/dense graphs or sparse/dense agent 

populations are studied to provide a more complete picture. 

A dense/sparse graph will be defined using an asymptotic comparison between the 

degree of vertices and the total number of vertices. Similarly, sparse/dense agent 

populations will be defined using an asymptotic comparison between the number of agents 

and the total number of vertices. 

 The following 4 scenarios will be distinguished (2 cases for each of the 2 parameters): 

 

• Scenario (i) - dense graph/dense agent population: 

The number of agents 𝜇 and the size of the vertex neighborhood in 𝐺  

are asymptotically equal to the number of vertices 

     (that is, 𝜇 ∈ Θ(|𝑉|) and degG (𝑣) ∈ Θ(|𝑉|) for ∀𝑣 ∈ 𝑉). 
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  The assumptions are that the graph is densely occupied by agents and that it 

contains many edges. As an implication of the second assumption the number of 

edges in the graph is asymptotically quadratic in the number of vertices; that is, 

|𝐸| ∈ Θ(|𝑉|2). 

  The space complexities for this scenario in terms of the number of variables and 

clauses based upon the assumptions above are shown in Table 1. 

• Scenario (ii) - sparse graph/dense agent population:  

The number of agents 𝜇 is asymptotically equal to the number of 

vertices, while the size of the vertex neighborhood in 𝐺 is 

asymptotically constant 

(that is, 𝜇 ∈ Θ(|𝑉|) and degG (𝑣) ∈ Θ(1) for ∀𝑣 ∈ 𝑉). 

   
Table 1. Comparison of the size complexities of CPF encodings – Scenario (i) – dense graph/dense 

agent population. The number of agents 𝜇 in this scenario is asymptotically equal to the number of 

vertices in 𝐺 (that is, 𝜇 ∈ Θ(|𝑉|)) and the size of the vertex neighborhood in 𝐺 is also asymptotically 

equal to the number of vertices (that is, degG (𝑣) ∈ Θ(|𝑉|) for ∀𝑣 ∈ 𝑉). For an easier reference, fine-

grained complexity expressions are shown as well. 

 
 #Variables 

fine-grained/scenario (i) 

#Clauses 

fine-grained/scenario (i) 

INVERSE 

 𝐹𝐼𝑁𝑉(𝜂, Σ) 
𝒪(𝜂 ∙ (|𝑉| ∙ ⌈log2(𝜇)⌉ +

∑ ⌈log2(deg𝐺(𝑣))⌉𝑣∈𝑉 + |𝐸|))  

𝒪(𝜂 ∙ (|𝑉| ∙ ⌈log2(𝜇)⌉ + |𝐸| ∙ ⌈log2(𝜇)⌉ +

∑ deg𝐺(𝑣)𝑣∈𝑉 ∙ (⌈log2(deg𝐺(𝑣))⌉)))  

𝒪(𝜂 ∙ |𝑉|2) 𝒪(𝜂 ∙ |𝑉|2 ∙ ⌈log2|𝑉|⌉) 

ALL-DIFFERENT 

 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ) 
𝒪(𝜂 ∙ 𝜇 ∙ |𝑉|) 𝒪 (𝜂 ∙ ⌈log2|𝑉|⌉ ∙ ((

𝜇

2
) + 𝜇 ∙ |𝑉|)) 

𝒪(𝜂 ∙ |𝑉|2) 𝒪(𝜂 ∙ |𝑉|2 ∙ ⌈log2|𝑉|⌉) 

MATCHING 

 𝐹𝑀𝐴𝑇𝐶𝐻(𝜂, Σ) 
𝒪(𝜂 ∙ (|𝐸| + |𝑉| ∙ ⌈log2(𝜇)⌉)) 𝒪 (𝜂 ∙ ((|𝑉| + |𝐸|) ∙ ⌈log2(𝜇)⌉ + ∑ (degG(𝑣)

2
)𝑣∈𝑉 ))  

𝒪(𝜂 ∙ |𝑉|2) 𝒪(𝜂 ∙ |𝑉|3)  

DIRECT 

 𝐹𝐷𝐼𝑅(𝜂, Σ) 
𝒪(𝜂 ∙ 𝜇 ∙ |𝑉|) 𝒪(𝜂 ∙ (𝜇 ∙ |𝑉|2 + 𝜇2 ∙ |𝑉| + 𝜇2 ∙ |𝐸|)) 

𝒪(𝜂 ∙ |𝑉|2) 𝒪(𝜂 ∙ |𝑉|4) 

SIMPLIFIED 

 𝐹𝑆𝐼𝑀(𝜂, Σ) 
𝒪(𝜂 ∙ 𝜇 ∙ |𝑉|) 𝒪(𝜂 ∙ (𝜇 ∙ |𝑉|2 + 𝜇2 ∙ |𝑉| + 𝜇 ∙ |𝐸|)) 

𝒪(𝜂 ∙ |𝑉|2) 𝒪(𝜂 ∙ |𝑉|3) 

 

The second assumption is that the graph is sparse and intuitively comparable to 

the planar graphs [68] commonly used in practice (for example, the grid graph 
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studied in the experimental evaluation section satisfies this property). The 

assumption also means that the number of edges is asymptotically equal to the 

number of vertices; that is, |𝐸| ∈ Θ(|𝑉|). 

The space complexities for this scenario are shown in Table 2. 

 

• Scenario (iii) - sparse graph/dense agent population: 

The number of agents 𝜇 is asymptotically constant, while the size of 

 the vertex neighborhood in 𝐺 is asymptotically equal to the number 

 of vertices 

     (that is, 𝜇 ∈ Θ(1) and degG (𝑣) ∈ Θ(|𝑉|) for ∀𝑣 ∈ 𝑉). 

  This scenario can be intuitively approached as a planar graph densely occupied 

by agents. The space complexities for this scenario are shown in Table 3. 

 

• Scenario (iv) - sparse graph/sparse agent population: 

The number of agents 𝜇 and the size of the vertex neighborhood in 𝐺 

are both asymptotically constant 

     (that is, 𝜇 ∈ Θ(1) and degG (𝑣) ∈ Θ(1) for ∀𝑣 ∈ 𝑉). 

  Again, this scenario can be intuitively approached as a planar graph with few 

agents inside. The space complexities for this scenario are shown in Table 4. 

 
Table 2. Comparison of the size complexities of CPF encodings – Scenario (ii) – sparse graph/dense 

agent population. The number of agents 𝜇 in this scenario is asymptotically equal to the number of 

vertices in 𝐺 (that is, 𝜇 ∈ Θ(|𝑉|)), while the size of the vertex neighborhood in 𝐺 is asymptotically 

constant (that is, degG (𝑣) ∈ Θ(1) for ∀𝑣 ∈ 𝑉). 

 

 #Variables 

scenario (ii) 

#Clauses 

scenario (ii) 

INVERSE 

 𝐹𝐼𝑁𝑉(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉| ∙ ⌈log2 |𝑉|⌉)  𝒪(𝜂 ∙ |𝑉| ∙ ⌈log2|𝑉|⌉) 

ALL-DIFFERENT 

 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|2) 𝒪(𝜂 ∙ |𝑉|2 ∙ ⌈log2|𝑉|⌉) 

MATCHING 

 𝐹𝑀𝐴𝑇𝐶𝐻(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉| ∙ ⌈log2|𝑉|⌉)  𝒪(𝜂 ∙ |𝑉| ∙ ⌈log2|𝑉|⌉) 

DIRECT 

 𝐹𝐷𝐼𝑅(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|2) 𝒪(𝜂 ∙ |𝑉|3) 

SIMPLIFIED 

 𝐹𝑆𝐼𝑀(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|2) 𝒪(𝜂 ∙ |𝑉|3) 

 

 

In this comparison of encodings, preference is given to encodings that produce the 

smallest number of variables or clauses. This is usually a realistic measure, as search space 
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often correlates with the number of (decision) variables when we are trying to solve a 

propositional formula satisfiability problem using standard search procedures [39]. 

Similarly, a small number of clauses mean shorter formulas that are easier to process. 

Nevertheless, the preference for short formulas should be considered a mere intuitive 

measure since sometimes many variables can be derived from the values of other variables; 

that is, they do not increase the size of the search space. Similarly, a larger number of 

clauses may improve unit propagation in the SAT solver. 

 Several conclusions can be made based on the asymptotic numbers of variables and 

clauses in the individual encodings presented in Table 1. 

In cases involving a large number of agents and dense graphs (corresponding to 

scenario (i)), INVERSE and ALL-DIFFERENT encodings excel in producing a small number 

of clauses. That was the primary design goal for these encodings, pursued through a log 

representation. 

 With a large number of agents and relatively sparse graphs (scenario (ii)), which is the 

most common case encountered in practice with planar graphs, the INVERSE and 

MATCHING encodings produce the smallest number of variables and clauses. 

Note that the DIRECT and SIMPLIFIED encodings do not produce the shortest formulae 

in any of the suggested scenarios. This is due to the nature of the direct representation of 

multi-value state variables in these encodings, in which a redundant number of 

propositional variables is used. This redundancy also necessitates additional constraints 

that are needed to exclude unused valuation patterns. 

 
Table 3. Comparison of the size complexities of CPF encodings – Scenario (iii) – dense 

graph/sparse agent population. The number of agents 𝜇 in this scenario is constant (that is, 𝜇 ∈
Θ(1)), while the size of the vertex neighborhood is asymptotically equal to the number of vertices in 

𝐺 (that is, degG (𝑣) ∈ Θ(|𝑉|) for ∀𝑣 ∈ 𝑉). 

 
 #Variables 

scenario (iii) 

#Clauses 

scenario (iii) 

INVERSE 

 𝐹𝐼𝑁𝑉(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|2) 𝒪(𝜂 ∙ |𝑉|2 ∙ ⌈log2|𝑉|⌉) 

ALL-DIFFERENT 

 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|) 𝒪(𝜂 ∙ |𝑉| ∙ ⌈log2|𝑉|⌉) 

MATCHING 

 𝐹𝑀𝐴𝑇𝐶𝐻(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|2) 𝒪(𝜂 ∙ |𝑉|3) 

DIRECT 

 𝐹𝐷𝐼𝑅(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|) 𝒪(𝜂 ∙ |𝑉|2) 

SIMPLIFIED 

 𝐹𝑆𝐼𝑀(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|) 𝒪(𝜂 ∙ |𝑉|2) 

 

The remaining two scenarios (scenarios (iii) and (iv)) can be considered as non-

cooperative since the number of agents is constant and there are only limited interactions 

between them. 
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When it comes to space efficiency, the ALL-DIFFERENT encoding excels in cases 

involving dense graphs (scenario (iii)), whereas the INVERSE and MATCHING encodings 

excel on sparse graphs (scenario (iv)). 
 

Table 4. Comparison of the size complexities of CPF encodings – Scenario (iv) – sparse 

graph/sparse agent population. In this scenario, both the number of agents 𝜇 and the size of the 

vertex neighborhood are asymptotically constant (that is, 𝜇 ∈ Θ(1) and degG (𝑣) ∈ Θ(1) for ∀𝑣 ∈
𝑉). 

 
 #Variables 

scenario (iv) 

#Clauses 

scenario (iv) 

INVERSE 

 𝐹𝐼𝑁𝑉(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|) 𝒪(𝜂 ∙ |𝑉|) 

ALL-DIFFERENT 

 𝐹𝐷𝐼𝐹𝐹(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|) 𝒪(𝜂 ∙ |𝑉| ∙ ⌈log2|𝑉|⌉) 

MATCHING 

 𝐹𝑀𝐴𝑇𝐶𝐻(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|) 𝒪(𝜂 ∙ |𝑉|) 

DIRECT 

 𝐹𝐷𝐼𝑅(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|) 𝒪(𝜂 ∙ |𝑉|2) 

SIMPLIFIED 

 𝐹𝑆𝐼𝑀(𝜂, Σ) 𝒪(𝜂 ∙ |𝑉|) 𝒪(𝜂 ∙ |𝑉|2) 

 

Note that most clauses correspond to the at-most-one constraint encoded by excluding 

all pairs that are fully binary and do not represent a practical performance burden. 

5.6. Knowledge Compilation – Distance Heuristics 

Encodings based on time-expanded graphs can be further enhanced with a so-called 

distance heuristic [56]. Intuitively speaking, a path indicating the trajectory of an agent 

cannot touch any vertices that are too far from the initial or goal vertices within the 

particular makespan limit 𝜂. 

An agent can never show up in vertices in the time layer, for which the distance from 

the agent’s initial position is greater than the duration of that time layer (which is equal to 

the position of the time layer in the time-expanded graph) or for which the distance from 

the goal vertex is greater than the time needed to reach the makespan limit 𝜂 (which is 

equal to the position of the time layer in the time-expanded graph when counted from the 

end). Excluding unreachable vertices from further consideration can reduce the search 

space. 

 Assume a time-expanded graph ExpT(𝐺, 𝜂) for CPF Σ = (𝐺, 𝐴, 𝛼0, 𝛼+); let dist𝐺(𝑢, 𝑣) 

denote the length of the shortest path connecting 𝑢 to 𝑣 in 𝐺; let dist𝐺(𝑢, 𝑣) = ∞ if there 

is no path connecting 𝑢 and 𝑣. Similarly, let distD
→(𝑢, 𝑣) denote the length of the shortest 

directed path connecting 𝑢 to 𝑣 in digraph 𝐷; let distD
→(𝑢, 𝑣) = ∞ if there is no path 

connecting 𝑢 to 𝑣 in 𝐷. 
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The following equivalence holds by the construction of a time-expanded graph 

ExpT(𝐺, 𝜂): distExpT(𝐺,𝜂)
→ ([𝑢, 𝑡1], [𝑣, 𝑡2]) < ∞ iff dist𝐺(𝑢, 𝑣) ≤ 𝑡2 − 𝑡1. Having defined 

this equivalence, we can now express the aforementioned intuitive distance reasoning in 𝐺 

over ExpT(𝐺, 𝜂). 

 

Proposition 10 (DISTANCE HEURISTIC). Any solution 𝑠 = [𝛼0, 𝛼1, 𝛼2, … , 𝛼𝜂] to Σ satisfies 

that distExpT(𝐺,𝜂)
→ ([𝛼0(𝑎𝑖), 0], [𝛼𝑡(𝑎𝑖), 𝑡]) < ∞ and distExpT(𝐺,𝜂)

→ ([𝛼𝑡(𝑎𝑖), 𝑡], [𝛼𝜂(𝑎𝑖), 𝜂]) 

< ∞ for every 𝑖 ∈ {1,2, … , 𝜇} and 𝑡 ∈ {0,1, … , 𝜂}.  
 

Proof. If distExpT(𝐺,𝜂)
→ ([𝛼0(𝑎𝑖), 0], [𝑣, 𝑡]) = ∞ or distExpT(𝐺,𝜂)

→ ([𝑣, 𝑡], [𝛼𝜂(𝑎𝑖), 𝜂]) = ∞ 

for any 𝑣 ∈ 𝑉 and 𝑡 ∈ {0,1, … , 𝜂}, then there is no directed path connecting [𝛼0(𝑎𝑖), 0] and 

[𝛼𝜂(𝑎𝑖), 𝜂] that passes through [𝑣, 𝑡]. A fortiori, there is no path connecting [𝛼0(𝑎𝑖), 0] and 

[𝛼𝜂(𝑎𝑖), 𝜂] that passes through [𝑣, 𝑡] and does not overlap with or intersect other paths. 

Hence, 𝛼𝑡(𝑎𝑖) ≠ 𝑣.  

 

 The proposition above can be used to design a heuristic. All vertices [𝑣𝑗 , 𝑡] with 𝑣𝑗 ∈ 𝑉 

and 𝑡 ∈ {0,1, … , 𝜂} in ExpT(𝐺, 𝜂), for which distExpT(𝐺,𝜂)
→ ([𝛼0(𝑎𝑖), 0], [𝑣𝑗 , 𝑡]) = ∞ or 

distExpT(𝐺,𝜂)
→ ([𝑣𝑗 , 𝑡], [𝛼𝜂(𝑎𝑖), 𝜂]) = ∞, can be excluded from the trajectories 

corresponding to agent 𝑎𝑖 (in the original graph this translates into the requirement that 

agent 𝑎𝑖 should not enter 𝑣𝑗 in time step 𝑡). In terms of encodings, this can be formulated 

as follows: 

 

 

 

  

 

 

 

The inequality between a bit vector and constant is encoded as a single clause that 

forbids the bit vector from taking that constant. That is, at least one bit must disagree with 

the binary representation of the constant. For example, the inequality 𝒜𝑣
𝑡 ≠ 𝑐 is encoded 

as follows: 

 

 

 

 

 

 The added inequalities are the logical consequence of the encoded propositional 

formula (that is, for example 𝐹𝐼𝑁𝑉(𝜂, Σ) ⇒ 𝒜𝑣𝑗
𝑡 ≠ 𝑖 is a valid formula). Thus, in theory, the 

SAT solver should be able to infer the unreachability of vertices in certain time steps. 

However, such inferences may be costly to make for the SAT solver. It is more efficient to 

inject into the SAT solver the outside knowledge of vertex unreachability gained by 

understanding the problem structure. 

𝒜𝑣𝑗
𝑡 ≠ 𝑖 

 

ℒ𝑎𝑖
𝑡 ≠ 𝑗 

 

𝒳𝑎𝑖,𝑣𝑗
𝑡  

 

in the INVERSE and MATCHING encoding 

 

in the ALL-DIFFERENT encoding 

 
in the DIRECT/SIMPLIFIED encoding 

 

(50) 

(51) 

con≠(𝒜𝑣
𝑡 , 𝑐) = ⋁ lit(𝒜𝑣

𝑡 , 𝑐, 𝕚)

⌈log2 𝜇⌉−1

𝕚=0

 

 

(53) 

(52) 
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6. Experimental Evaluation 

In the experimental evaluation section we focus on measuring the actual size of the 

proposed encodings as well as the runtime when encodings are used in makespan-optimal 

solving CPF in a makespan-optimal way using SAT. 

 The solution procedure presented as Algorithm 1 formed the core framework of our 

makespan-optimal CPF solution technique. In other words, we adopted the incremental 

strategy of querying the SAT solver. In this framework, the individual propositional 

encodings can be seen as exchangeable modules. 

All encodings we implemented use the 

built-in distance heuristic discussed in section 

5.6. 

The SAT-based CPF solution procedure 

was implemented in C++ along with 

procedures aimed at generating propositional 

formulae (the solution procedure and 

formulae generation were compiled into a 

single executable program). 

In our tests we used the glucose 3.0 

SAT solver [2, 3], which was ranked among 

the best SAT solvers in recent SAT 

Competitions [5, 6, 27] in the category of hard 

combinatorial problems, of which CPF can be 

considered a sub-class.  

The SAT solver was a separate module 

called externally by the CPF solution 

procedure. The solution procedure generated 

a formula and saved it to a file in the textual DIMACS format [5], which was then submitted 

as input to the SAT solver; the answer from the SAT solver was saved to another file which 

the procedure read and processed further. 

6.1. Benchmark Setup 

We followed the benchmark setup originally suggested by Silver in [48]. Four-connected 

grids of various sizes were used to model the environments in the test instances. The grid 

sizes ranged from 6⨯6 to 12⨯12, with 20% of randomly selected vertices occupied by 

obstacles (an obstacle was represented by a missing vertex in the grid – see Figure 6). 

The agents’ initial and goal configurations were random, obtained by placing the agents 

one by one onto the grid. The positions were randomly selected from the remaining 

unoccupied vertices. Only solvable instances were included in runtime tests (solvability 

was tested by a sub-optimal complete algorithm). 

Although rather small synthetic instances, the test cases were very computationally 

intensive when there were many agents. We predicted that this class of instances would 

lend themselves to the SAT-based approach particularly well. 

Figure 6. 4⨯4 four-connected grid with 3 ob-

stacles. The positions of obstacles in the grid 

are depicted, although they are actually not 

present in the graph. 

 

v2 v3 v4 v1 

G=(V,E) 

v5 v6 v7 
obstacle 

v9 v8 

v11 v12 v13 v10 

obstacles 
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We did not consider the SAT-based approach to be a universal strategy. In instances 

involving few agents and large underlying graphs, we did not expect to see any interesting 

results due to the long formulae generated. Tests involving large graphs were therefore 

omitted from the experimental evaluation. 

 To allow the full reproducibility of the presented results, all source codes and 

experimental data were published online on: http://ktiml.mff.cuni.cz/~surynek/research/ 

j-encoding-2015. 

6.2. Encoding Size Evaluation 

The size of propositional formulae was tested using 4-connected grids with an incremental 

number of agents. The number of agents ranged from 1 to one half of all vertices in the 

graph. 

 For each number of agents, 10 random CPF instances were generated and their 

characteristics measured. For each number of agents we generated formulae corresponding 

to all encodings presented. The number of time steps in time-expanded graphs was fixed 

and relative to the size of the instance – 12 for a 6⨯6 grid; 16 for a 8⨯8 grid; and 24 for a 

12⨯12 grid. 

The average number of propositional variables, average number of clauses, and 

average clause length were calculated for each encoding and number of agents from 10 

randomly generated instances. Selected results are shown in Table 5, Table 6, and Table 7 

– the preferred values for the individual characteristics are listed in bold. 

The number of variables and clauses directly correspond to the length of the formulae. 

Preference is given to shorter formulae, as these are expected to be easier to solve and 

process. 

 Average clause length is an important measure. Short clauses are preferred because 

they support unit propagation [12], which allows us to derive the values of other variables 

without searching. 

 
Table 5. Size comparison of the propositional encodings of CPF in a 6⨯6 grid. CPF instances are 

generated in a 6⨯6 4-connected grid with 20% of vertices occupied by obstacles. The number of 

time steps in time-expanded graph 𝜂 is 12. The number of variables and clauses, and the average 

clause length are listed for different sizes of a set of agents 𝐴. Short formulas and clauses (i.e, such 

that support unit propagation) are preferred – the best values achieved are shown in bold. DIRECT 

and SIMPLIFIED encodings excel in a number of measures on the 6⨯6 grid. 

 
Grid 6⨯6 

INVERSE ALL-DIFFERENT MATCHING DIRECT SIMPLIFIED 
|Agents| 

1 
#Variables 

#Clauses 
Clause 
length 

3 384.3 
12 494.3 

2.622 
701.4 

3 160.7 
2.979 

1 841.1 
10 300.6 

2.436 
342.0 

6 048.2 
2.261 

684.0 
1 499.6 

2.587 

2 
3 738.3 

17 012.0 
2.599 

1 723.5 
7 191.7 

2.980 
2 195.1 

13 497.1 
2.512 

684.0 
14 176.0 

2.353 
1 026.0 
3 441.4 

2.562 

4 
4 092.3 

22 110.2 
2.642 

4 127.5 
15 392.6 

3.026 
2 549.1 

17 274.1 
2.632 

1 368.0 
34 962.7 

2.427 
1 710.0 
7 956.1 

2.423 

8 
4 446.3 

28 225.0 
2.794 

12 066.7 
39 216.1 

3.060 
2 903.1 

22 067.7 
2.867 

2 736.0 
99 381.3 

2.543 
3 078.0 

21 436.3 
2.319 

16 
4 800.3 

36 527.1 
3.133 

38 791.0 
109 781.6 

3.104 
3 257.1 

29 048.6 
3.313 

5 472.0 
308 484.7 

2.633 
5 814.0 

64 314.8 
2.201 

 

http://ktiml.mff.cuni.cz/~surynek/research/j-encoding-2015
http://ktiml.mff.cuni.cz/~surynek/research/j-encoding-2015
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 The results indicate that DIRECT and SIMPLIFIED encodings have the best size 

characteristics with respect to the preference for small size in cases involving small 

numbers of agents in an instance. The same result can be observed all for all grid sizes. 

Because neighborhood connectivity in 4-connected grids can be considered constant; 

that is, degG (𝑣) ∈ Θ(1) for ∀𝑣 ∈ 𝑉, the cases where DIRECT and SIMPLIFIED encoding 

exhibit the best size characteristics roughly correspond to scenario (iv). 

 
Table 6. Size comparison of the propositional encodings of CPF over a 8⨯8 grid. The number of 

time layers in the corresponding time-expanded graph is 16. DIRECT and SIMPLIFIED encodings 

have fewer variables and clauses for smaller numbers of agents, whereas the MATCHING encoding 

performs better in these measures when there are many agents in an instance. 

 
Grid 8⨯8 

INVERSE ALL-DIFFERENT MATCHING DIRECT SIMPLIFIED 
|Agents| 

1 
#Variables 

#Clauses 
Clause 
length 

4 520.3 
25 881.1 

2.616 
1 489.3 
7 930.4 

3.057 
4 520.3 

25 881.1 
2.441 

814.4 
23 241.9 

2.149 
1 628.8 
3 384.6 

2.550 

4 
10 019.5 
55 437.0 

2.641 
7 834.5 

34 781.9 
3.103 

6 181.1 
43 171.0 

2.640 
3 257.6 

115 934.3 
2.272 

4 072.0 
17 997.8 

2.374 

8 
10 849.9 
70 725.9 

2.792 
21 875.4 
83 794.2 

3.113 
7 011.5 

55 050.3 
2.874 

6 515.2 
297 319.9 

2.390 
7 329.6 

49 381.3 
2.694 

16 
11 680.3 
91 344.5 

3.127 
67 088.3 

216 745.4 
3.147 

7 841.9 
72 259.3 

3.315 
13 030.4 

840 540.6 
2.505 

13 844.8 
150 259.2 

2.180 

32 
12 510.7 

122 170.3 
3.733 

230 753.0 
646 616.2 

3.168 
8 672.3 

99 675.5 
4.045 

26 060.8 
2 738 584.7 

2.621 
26 875.2 

510 672.1 
2.111 

 

However, theoretical asymptotic formula size estimations suggest different results – 

The performance of DIRECT and SIMPLIFIED encodings should be the same as that of the 

other encodings when it comes to the number of variables and worse than the other 

encodings when it comes to the number of variables. The experimental evaluation yielded 

a surprising result in this respect. 

If the number of agents is larger, the MATCHING encoding excels in size characteristics 

for all grid sizes. It produces the fewest propositional variables and the fewest number of 

clauses. Considering that this case roughly corresponds to scenario (ii), these observations 

correspond to theoretical asymptotic estimations which indicate that the MATCHING and 

INVERSE encodings should be the smallest (note that according to the experimental results 

the INVERSE encoding is the second smallest). 

  
Table 7. Size comparison of the propositional encodings of CPF in a 12⨯12 grid. The number of 

time layers in the time-expanded graph is 24. The MATCHING encoding is clearly the smallest for 

larger numbers of agents. 

 
Grid 12⨯12 

INVERSE ALL-DIFFERENT MATCHING DIRECT SIMPLIFIED 
|Agents| 

1 
#Variables 

#Clauses 
Clause 
length 

29 798.7 
116 302.8 

2.635 
4 973.9 

30 928.8 
3.031 

15 961.3 
94 603.2 

2.443 
2 767.2 

168 027.8 
2.073 

5 534.4 
11 587.0 

2.578 

8 
38 172.3 

257 739.9 
2.793 

55 602.1 
271 730.3 

3.088 
24 334.9 

197 835.9 
2.871 

22 137.6 
1 722 059.3 

2.230 
24 904.8 

167 026.1 
2.289 

16 
40 963.5 

330 249.1 
3.115 

153 047.5 
656 615.4 

2.999 
27 126.1 

257 974.6 
3.300 

44 275.2 
4 310 137.7 

2.343 
47 042.4 

542 862.4 
2.059 

32 
43 754.7 

439 680.0 
3.701 

475 135.0 
1 628 634.8 

3.148 
29 917.3 

354 306.4 
4.021 

88 550.4 
12 121 528.6 

2.475 
91 317.6 

1 730 745.7 
2.112 

64 
46 545.9 

620 942.7 
4.632 

1 626 205.9 
4 713 520.1 

3.183 
32 708.5 

522 834.3 
5.065 

177 100.8 
38 361 723.7 

2.594 
179 868.0 

6 297 660.9 
2.062 
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 The SIMPLIFIED encoding has the shortest average clause length. As the number of 

agents increase, the average clause length approaches 2 for all grid sizes (that is, most of 

the clauses in the SIMPLIFIED encoding are binary). 

 The aforementioned observations regarding the static characteristics of the encodings 

indicate that the MATCHING encoding and even more so the SIMPLIFIED encoding should 

perform better than the other encodings. 

6.3. Runtime Evaluation 

We re-implemented the A*-based operator decomposition/independence detection method 

OD+ID [52] in C++, adding an objective function for minimizing the makespan; the original 

version of OD+ID was designed to minimize the sum-of-costs. Analogical modifications of 

conflict-based search CBS [51] and increasing cost tree search ICTS [50] were developed. 

In this case, the existing implementations in C# were modified to optimize makespan as 

opposed to total cost. The makespan-optimal versions of OD+ID, CBS, and ICTS were 

compared with the SAT-based solution method with various encodings. 

 CBS and ICTS solvers are available in multiple-parameter configurations suitable for 

different scenarios. We adopted the best-known configurations that are used with grids 

containing obstacles. It is also important to note that these solvers are, by design, focused 

on solving CPF in a sum-of-costs-optimal way and the makespan-optimal modifications to 

some extent compromise their design. 

While techniques like MDD (multi-value decision diagram – a cost-optimal analogy to 

our distance heuristics) in ICTS significantly reduce the search space in the case of a sum-

of-costs objective, they are equally efficient in the makespan-optimal case. This is mostly 

due to the different nature of the makespan objective, which produces a larger search space 

(the optimal cost is the lower bound for cost in the makespan-optimal solution). 

Again, CPFs in 6⨯6, 8⨯8, and 12⨯12 4-connected grids with 20% of vertices occupied 

by randomly placed obstacles were used. The agents’ initial and goal configurations were 

generated randomly. We evaluated the runtime for an incremental number of agents in 

instances. For each number of agents, 10 random instances were generated and solved. All 

instances used for the evaluation were solvable. 
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Grid 6⨯6 
1 2 3 4 5 6 7 8 9 10 12 14 16 18 

|A| 

Makespan 4.2 4.9 5.2 5.6 6.5 7.0 7.0 7.4 7.1 6.9 7.9 8.6 8.2 9.1 

 
Figure 7. Runtime evaluation in a 6⨯6 4-connected grid with 20% of vertices occupied by obstacles. 

The search-based methods OD+ID, CBS, ICTS and the SAT-based method with INVERSE, ALL-

DIFFERENT, MATCHING, DIRECT, and SIMPLIFIED encodings are compared on random CPF 

instances in the grid. We show the average and median runtimes calculated from the runtimes 

achieved on 10 random instances; the average optimal makespans are also shown. The OD+ID, CBS, 

and ICTS methods do not scale with the number of agents, while the SAT-based method performs 

better with many agents. The SIMPLIFIED encoding yields particularly good results. When it comes 

to runtime, the best and the worst encoding differ by up to two orders of magnitude. 

 

 The timeout for solving a single CPF instance was set to 256 seconds (approximately 

4 minutes). The number of agents was gradually increased until all 10 random instances 

could be solved before the timeout was reached – in other words, each solution method 

(encoding) was characterized by the maximum number of agents, for which it was able to 

solve all 10 random instances within the timeout period. 

 The average and median runtimes were calculated from these 10 instances for all tested 

methods. In the case of the SAT-based CPF solving methods, the runtime was a sum of the 

runtime of the core CPF solution procedure (corresponding to Algorithm 1) and the 

runtimes of all runs of the SAT solver invoked by the core procedure. 

 The runtime results together with average optimal makespans are shown in Figure 7, 

Figure 8, and Figure 91 (note that all methods generate solutions with the same optimal 

makespan). 

 
1 All runtime measurements were performed using a computer with 4-core CPU Xeon 2.0GHz and 12GB RAM 

under Linux kernel 3.5.0-48. Although multiple cores were utilized to run the experiments in parallel, the indi-

vidual instances were solved in a single thread (that is, the core solution procedure and all its calls to the SAT 

solver were run in a single thread). 
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Figure 8. Runtime evaluation in a 8⨯8 4-connected grid with 20% of vertices occupied by obstacles. 

Again, the SAT-based method with the SIMPLIFIED encoding exhibited the best performance for 

larger numbers of agents. The performance of the MATCHING encoding is initially promising, but it 

quickly deteriorates when there are more than approximately 14 agents. 

 

 Although offering superior performance for smaller numbers of agents, OD+ID, CBS, 

and ICTS do not scale up, as their runtime increases quickly when more agents are 

introduced. It seems that whenever the interaction between the agents becomes more 

intense, these methods cannot fully utilize their independence detection and conflict 

resolution heuristics. The SAT-based solution method with all its encodings performs 

better and scales up with the number of agents. Namely, the SIMPLIFIED encoding delivers 

the best performance regardless of grid size, followed by the MATCHING, DIRECT, ALL-

DIFFERENT, and INVERSE encodings. 

It is important to note that the superior performance of the SIMPLIFIED encoding was 

predicted in the theoretical analysis of the encoding. In particular, we expected it to support 

unit propagation well. The competitive MATCHING encoding was also predicted to deliver 

good performance thanks to its small size in test instances. 

An interesting behavior of the MATCHING encoding can be observed. Its initial 

performance is as promising as that of the SIMPLIFIED encoding for a small number of 

agents; however, it quickly deteriorates and the encoding is eventually outperformed by 

the DIRECT encoding on 6⨯6 and 12⨯12 grids involving larger numbers of agents (in a 

8⨯8 grid, a deterioration in the performance of the MATCHING encoding can be observed 

as well, but is less significant – the DIRECT encoding reaches the timeout before it can 

overtake the MATCHING encoding). 

Instances of 6⨯6 grids with agent occupancy rates of up to 62% can be solved within 

the timeout period by using the SIMPLIFIED encoding. The maximum agent occupancy rates 
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in 8⨯8 and 12⨯12 grids are 46% and 28%, respectively, when using the SIMPLIFIED 

encoding. The OD+ID, CBS, and ICTS methods can solve instances characterized by agent 

occupancy rates of up to 24%, 13%, and 7% in 6⨯6, 8⨯8, 12⨯12 grids, respectively. 

Another general conclusion from the experimental evaluation above is that the log 

encoding used to encode the finite domain state variables in the INVERSE, ALL-DIFFERENT, 

and MATCHING encodings contributes to small size, but hurts the overall performance, as 

these encodings clearly performed worse than the DIRECT and SIMPLIFIED encodings which 

use a direct encoding. 

 

 
 

Grid 12⨯12 
1 2 3 4 6 8 10 12 16 18 20 24 28 32 

|A| 

Makespan 7.5 10.6 11.4 12.7 13.9 15.3 13.8 14.9 15.5 16.3 14.6 17.3 15.9 16.4 

 

Figure 9. Runtime evaluation in a 12⨯12 4-connected grid with 20% of vertices occupied by 

obstacles. The SIMPLIFIED encoding delivers the best performance again. Within the timeout period, 

the MATCHING encoding is able to solve instances with the second largest number of agents. 

  

 On the other hand, the simple design of the DIRECT and SIMPLIFIED encodings is not 

detrimental to solution performance. The simple design of the variables allowed us to 

model the constraints using short clauses that greatly support unit propagation, which is 

the key to the good performance of both these encodings. 

6.4. Solution Quality Evaluation 

Although all solutions generated by the proposed SAT-based solution techniques are 

makespan-optimal, that is, optimal with respect to the objective function selected, they may 

differ in other aspects. Of particular importance is the total number of moves executed by 

the agents, which is referred to as the sum-of-costs objective. Sum-of-costs can be 

understood as the total energy required for the agents to execute their movements. Recall 

0,001

0,01

0,1

1

10

100

1000

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

Average runtime | Grid 12⨯12
20% obstacles

INVERSE

MATCHING

DIRECT

ALL-DIFFERENT

SIMPLIFIED

OD+ID

MA-CBS

ICTS

0,001

0,01

0,1

1

10

100

1000

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

Median runtime | Grid 12⨯12
20% obstacles

INVERSE

MATCHING

DIRECT

ALL-DIFFERENT

SIMPLIFIED

OD+ID

MA-CBS

ICTS

|A| |A| 



Pavel Surynek 

 

42 

that the original versions of OD+ID, CBS, and ICTS were designed to optimize sum-of-costs 

[50, 51, 52]. 

Hence, it would be interesting to look at the solutions generated by the makespan-

optimal SAT-based methods in terms of sum-of-costs, although this was not taken into 

consideration in the design of the propositional encodings. 

 The way a particular problem is encoded into a propositional formula significantly 

influences the heuristics that the SAT solver uses to select variables and their values. The 

values selected to satisfy the formula are then reflected in the CPF solution reconstructed 

from its satisfying valuation. Although not a rule, SAT solvers are by default configured 

to assign 𝐹𝐴𝐿𝑆𝐸 values, unless it is more advantageous to assign a 𝑇𝑅𝑈𝐸 value. 

 Note that only the values assigned to visible propositional variables are directly 

reflected in the resulting CPF solution. The visible propositional variables in the proposed 

encodings are either part of a directly encoded state (DIRECT and SIMPLIFIED encodings) 

or a binary encoded bit vector (INVERSE, ALL-DIFFERENT, and MATCHING encodings). 

 

 
 

Figure 10. Comparison of the quality of solutions in a 6⨯6 4-connected grid. We compare the total 

number of moves in optimal solutions obtained by each method under evaluation for an incremental 

number of agents in the grid (left). The sorted differences in the total number of moves from the 

number of moves generated by the SIMPLIFIED encoding are also shown (right). The SIMPLIFIED 

encoding yields a solution with a smaller number of moves, compared to the other methods, in about 

one third of all solutions generated. 

 

The value patterns in bit vectors representing state variables behave differently with 

respect to the preference for assigning 𝐹𝐴𝐿𝑆𝐸 in the direct and log encoding. Propositional 

variables within a directly encoded state directly correspond to the occupancy of a vertex 

or edge by a fixed agent. The assignment of a 𝐹𝐴𝐿𝑆𝐸 value to the propositional variable 

of a directly encoded state corresponds to non-occupancy by the particular fixed agent. A 

complete non-occupancy occurs if and only if all propositional variables directly encoding 

the state are set to 𝐹𝐴𝐿𝑆𝐸 for all agents. 

 For bit vector propositional variables, the occupancy of a corresponding vertex or edge 

occurs if any of the propositional variables within the bit vector are set to 𝑇𝑅𝑈𝐸. Non-
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occupancy corresponds to the assignment of the integer zero to the bit vector. This means 

the assignment of 𝐹𝐴𝐿𝑆𝐸 to all propositional variables that make up the bit vector. 

 

 
 

Figure 11. Comparison of the quality of solutions in a 8⨯8 4-connected grid. The SIMPLIFIED 

encoding yields solutions with the fewest moves in approximately 75% of the cases. Note that the 

A*-based OD+ID generates solutions with even fewer moves, but it does not scale up well with agent 

density. 

 

Assuming that the SAT solver uses a conservative approach to finding a solution, that 

is, it prefers to assign 𝐹𝐴𝐿𝑆𝐸 values, the use of encodings with visible variables that 

directly encode states seems to result in lower vertex and edge occupancy rates. This 

corresponds to CPF solutions consisting of fewer moves. 

 

  
 

Figure 12. Comparison of the quality of solutions in a 12⨯12 4-connected grid. The SIMPLIFIED 

encoding almost invariably yields a solution with fewer moves compared to the other methods within 

this larger scenario. Again, solutions with the fewest moves are generated by OD+ID, but the 

comparison was run for instances with only a few agents due to the insufficient scalability of OD+ID. 
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The reasoning behind this hypothesis assumes that we have a set of agents 𝐴 and a 

position (vertex/edge) that is to be occupied by at most one agent from 𝐴. The occupancy 

of the position is modeled by a directly encoded state in one scenario and as a log encoded 

bit vector in another scenario. 

The first scenario yields |𝐴| propositional variables with |𝐴| + 1 allowed assignments 

- one of these assignments corresponds to non-occupancy of the position assigns 𝐹𝐴𝐿𝑆𝐸 

to all propositional variables; other allowed assignments have just one propositional 

variable set to 𝑇𝑅𝑈𝐸. The second scenario yields log2⌈|𝐴| + 1⌉ propositional variables - 

all possible combinations of Boolean values are allowed as assignments, while all 

propositional variables set to 𝐹𝐴𝐿𝑆𝐸 correspond to non-occupancy of the position.  If the 

preference for assigning 𝐹𝐴𝐿𝑆𝐸 actually results in setting strictly fewer variables to 𝑇𝑅𝑈𝐸, 

then non-occupancy immediately occurs in the first scenario, while there is little chance 

that non-occupancy will occur in the second scenario (setting strictly fewer variables to 

𝑇𝑅𝑈𝐸 may lead to another assignment of the bit vector with some propositional variables 

set to 𝑇𝑅𝑈𝐸 - that is, representing some occupancy). 

The results of measuring the total number of moves generated by the SAT-based CPF 

solution method using the encodings tested are presented in Figure 10, Figure 11, and 

Figure 12. 

We used the same set of test instances of 4-connected grids as in the runtime 

measurement. The total number of moves generated by OD+ID was also included in the 

measurement. 

 The SIMPLIFIED encoding produced the smallest number of moves in most test 

instances. Thus, we also present the sorted differences between the total numbers of moves 

produced by the SIMPLIFIED encoding and the other methods. It can be also observed that 

OD+ID generates solutions with the smallest number of moves for instances containing few 

agents. Unfortunately, OD+ID does not scale up well enough with the number of agents. 

 There is barely any significant difference between the total numbers of moves generated 

by the other methods except for a marginal tendency of the DIRECT encoding to produce 

better solutions compared to methods using binary encoded bit vectors, which is observable 

especially in the 8⨯8 grid. 

 All in all, we can conclude that the hypothesis stating that the encodings using directly 

encoded states would be better in terms of the total number of moves than encodings with 

binary encoded bit vectors has proven to be correct. 

7. Discussion 

The superior performance of the least sophisticated encodings – DIRECT and SIMPLIFIED, 

which are based on the direct representation of state variables, was relatively surprising. A 

definite drawback of these encodings is their size which mostly corresponds to the 

representation of the at-most-one constraints (constraints (40) and (41) for instance) that 

exclude any forbidden pairs. 

 We did further experiments with more space-efficient representations of the at-most-

one constraint based on sequential adder circuits [4] and Cartesian products [17]. The 
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results indicate a negative performance gain against the present basic encoding, although 

the formulae were generated faster due to their smaller size. 

 It is important to note that the ICTS and CBS solvers used in the experimental evaluation 

were implemented in C#, whereas the SAT-based solver was written in C++. This may 

give the SAT-based solver a certain performance advantage (though we are not able to 

quantify it). Note that the engineering aspects of the present SAT-based solver can in many 

ways be improved. For example, communication with the SAT solver occurs through text 

files generated and saved to a disk. While generating disk data does not affect performance, 

as everything takes places in a cache memory on high-spec hardware, the textual form 

represents an overhead – the CPF solver first translates its internal representation of the 

time-expanded graph into a textual formula and then the SAT solver translates the text back 

into its internal representation of the formula. 

8. Conclusions 

We have described several propositional encodings of the cooperative path-finding 

problem (CPF) - INVERSE, ALL-DIFFERENT, MATCHING, DIRECT, and SIMPLIFIED. The 

present encodings are based on the concept of a time-expanded graph. This graph expands 

the graphical model of the environment in time, so that the agent configurations in all time 

steps up to a certain final time step can be represented. 

 Time-expanded graphs are an essential step towards building propositional formulae 

that include an encoded query for checking whether there is a solution of a given CPF with 

the specified number of time steps. A makespan-optimal solution is then arrived at by 

submitting multiple queries to a SAT solver. The CPF-to-SAT reduction allow us to access 

the entire collection of advanced search, pruning, and learning techniques that are available 

in the SAT solver, which can thus be used to solve CPF problems. 

 The encodings proposed here use either log encoded bit vectors (INVERSE, ALL-

DIFFERENT, and MATCHING encodings) or directly encoded states (DIRECT and SIMPLIFIED 

encodings) to model the agent configurations in individual time steps. The use of log 

encoded bit vectors results in formulae that are shorter in terms of the number of variables 

and clauses. On the other hand, encodings with directly encoded states offer better support 

for Boolean constraint propagation (unit propagation), which is made possible by the 

presence of many short clauses. 

 Experimental evaluation indicates that the use of SAT in solving CPF problems is 

generally the best option in highly constrained situations (environments densely occupied 

by agents). SAT-based makespan-optimal methods scale up better with the number of 

agents than alternative state-of-the-art search-based techniques, which were, however, 

originally designed to produce sum-of-costs-optimal solutions (the adaptation from sum-

of-costs to makespan may impair the performance). 

 If we compare SAT encodings alone, the SIMPLIFIED encoding delivered the best 

performance, although it was one of the least sophisticated encodings in the present 

collection. Only the SIMPLIFIED encoding solved the instances with the highest agent 
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occupancy rates within the specified timeout period. Moreover, a comparison of the quality 

(defined in terms of the total number of moves generated) of the solutions produced by the 

SAT-based methods also indicated that the SIMPLIFIED encoding was the most efficient. 

 One possible future direction of the SAT-based approach to makespan-optimal CPF 

solving is a more sophisticated treatment of cases when encoded formula is unsatisfiable. 

Modern SAT solvers are able to provide unsatisfiable core [12] that can be further 

processed in the CPF solving process. 
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