
Conceptual Comparison of Compilation-based Solvers
for Multi-Agent Path Finding: MIP vs. SAT

Pavel Surynek
Czech Technical University in Prague, Faculty of Information Technology, Thaákurova 9, 160 00 Praha 6, Czechia

pavel.surynek@fit.cvut.cz

Abstract

The task in multi-agent path finding (MAPF) is to find paths
through which agents can navigate from their starting posi-
tions to given individual goal positions. The combination of
two additional requirements makes the problem challenging:
(i) agents must not collide with each other and (ii) the paths
must be optimal with respect to some objective. We summa-
rize and compare main ideas of contemporary compilation-
based solvers for MAPF using MIP and SAT formalisms.

Introduction
Compilation is one of the most prominent techniques in
computing. In the context of problem solving, compilation is
represented by reduction of an input problem instance from
its source formalism to a different usually well established
formalism for which an efficient solver exists. The key idea
behind using compilation in problem solving is that the solv-
ing process benefits from the advancements in solvers for the
target formalism.

The compilation-based solving approach has been ap-
plied successfully in solving combinatorial problems like
plannnig (Ghallab, Nau, and Traverso 2004), verification
(Bradley and Manna 2007), or scheduling (Blazewicz,
Brauner, and Finke 2004) where the target formalism is of-
ten represented by Boolean satisfiability (SAT) (Barrett et al.
2009), mixed integer linear programming (MIP) (Jünger
et al. 2010; Rader 2010), answer set programming (ASP)
(Lifschitz 2019), or constraint satisfaction (CSP) (Dechter
2003). Significant advancements have been achieved in
compilation for specific domains, namely in multi-agent
path finding (MAPF) (Silver 2005; Ryan 2008; Standley
2010) that we are focusing on in this paper.

The standard variant of MAPF is the problem of find-
ing collision-free paths for a set of agents from their start-
ing positions to individual goal positions. Agents move in
an environment which is usually modeled as an undirected
graph G = (V,E), where vertices represent positions and
edges the possibility of moving between positions. Agents
in this abstraction are discrete items, commonly denoted
A = {a1, a2, ..., ak}, k ≤ |V |, placed in vertices of the
graph, moving instantaneously between vertices via edges

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

provided that there is always at most one agent in a vertex
and no two agents traverse an edge in opposite directions.

Relatively simple formulation of MAPF is important fac-
tor that made it an accessible target of various solving
methods including compilation-based approaches. Contem-
porary state-of-the-art compilation-based solvers for MAPF
go even beyond the standard single shot reduction-solving-
interpreting loop coined for classical planning by the SAT-
Plan algorithm (Kautz and Selman 1992) where Boolean sat-
isfiability has been used as the target formalism and the SAT
solver has been treated merely as a black-box solver. Inten-
sive cross-fertilization between various methods for MAPF
and compilation techniques led to numerous improvements
in encodings and ways how the target solver is used, treating
it less like a black-box.

The effort culminated recently in a combination of com-
pilation and lazy conflict resolution introduced in Conflict-
based search algorithm (CBS) (Sharon et al. 2015) result-
ing in approaches that construct the target encoding lazily in
close cooperation with the solver. The solver in these lazy
schemes suggests solutions for incomplete encodings of the
input instance that do not specify it fully. After checking the
interpreted solution against original specification, that is, if
it is a valid MAPF solution, the high-level part of the MAPF
solver suggests refinement of the encoding and the process
is repeated. This scheme has been implemented using MIP
(Gange, Harabor, and Stuckey 2019; Lam et al. 2019) and
SAT (Surynek 2019) as target formalisms.

An Overview of Target Formalisms
Mixed integer linear programming (MIP). A linear pro-
gram (LP) is a finite list of linear inequalities plus linear
objective, the task is to minimize the objective such that
the inequalities hold. Geometrically the inequalities define a
polytope and the objective function a gradient so the task is
to find some boundary point of the polytope that minimizes
the gradient. Formally, the task is to minimize c>x subject
to Px ≤ b, x ≥ 0, where x is a real vector representing
the decision variables, P is a matrix of coefficients of linear
inequalities, and b is another real-valued vector.

Since in discrete decision problems like MAPF it is not
much convenient to use fractional assignments of decision
variables, some or all decision variables are often declared
to be integers making LP an integer program (IP) or mixed

integer program (MIP) respectively.
Boolean satisfiability (SAT) problem consists in deciding
whether there exists a truth-value assignment of variables
that satisfies a given Boolean formula. The formula is often
specified using the conjunctive normal form (CNF), which is
a conjunction of clauses where each clause is a disjunction
of literals, and a literal is either a variable or its negation.

Most modern SAT solvers are based on the conflict-driven
clause learning algorithm (Silva and Sakallah 1999; Eén and
Sörensson 2003; Audemard and Simon 2018) that imple-
ments constraint propagation and back-jumping techniques
known from CSP. The significant challenge when SAT is
used as the target formalism is bridging the original repre-
sentation of the problem and the yes/no environment of SAT.
The lack of expressiveness is balanced by thr efficiency of
SAT solvers.

Lazy Compilation
Conflict-based search (CBS) is currently the most popular
approach for MAPF. It is due to its elegant idea which en-
ables to implement the algorithm relatively easily.

From the compilation perspective, the CBS algorithm
should be understood as a lazy method that tries to solve
an under-specified problem and relies to be lucky to find
a correct solution even using this incomplete specification.
There is another mechanism that ensures soundness of this
lazy approach, the branching scheme. If the CBS algorithm
is not lucky, that is, the candidate solution is incorrect in
terms of MAPF rules, then the search branches for each pos-
sible refinement of the discovered MAPF rule violation and
the refinement is added to the problem specification in each
branch. Concretely, the MAPF rule violations are conflicts
of pairs of agents such as a collision of ai ∈ A and aj ∈ A
in v at time step t and the refinements are conflict avoidance
constraints for single agents in the form that ai ∈ A should
avoid v at time step t (for aj analogously).

While in CBS the branching scheme and the refinements
must be explicitly implemented, in the compilation-based
approach we can eliminate the MAPF rule violation by
adding a new constraint into the problem specification and
leave branching to the solver for the target formalism. In
this way, the encoding of MAPF (or any other problem) is
built dynamically and eventually may end up by the com-
plete specification of the problem as done in MDD-SAT.
However a solution or a proof of that is does not exists is
often found for incomplete specification, that is, well before
all constraints are added to the encoding.

Surprisingly intuitive explanation why this is possible
comes from the geometry of linear programming. The finite
set of inequalities define a polytope of feasible solutions as
an intersection of half-spaces. Optimal feasible solution is
often an element of some of the planes defining the poly-
tope but not an element of all of them (in other words some
inequalities are satisfied because optimal solution is deep in-
side their half-space). Hence, to specify the optimal solution
one does not need all the constraints. Similarly if there is
no solution, the polytope is empty. Again an empty poly-
tope may be obtained by intersecting only some of the half-
spaces.

Beyond Simple Time Expansion
MIP as the target formalism allows for reasoning about both
integer and real-valued decision variables which opens op-
portunities to use decision variables with completely differ-
ent meaning than in SAT.

SAT-based approaches assume Boolean decision variables
for each copy of a vertex for a relevant time step (Surynek
et al. 2016), that is, the underlying graph G is expanded
for every relevant timestep and corresponding Boolean vari-
ables are introduced. Constraints modeling MAPF rules are
expressed on top of these variables. As already mentioned
some constraints are introduced in a lazy style.

In contrast to this, the model suggested in (Lam et al.
2019) considers a large but finite pool of paths Π(ai) for
each agent ai ∈ A connecting its start and goal vertex. De-
cision variables determine the proportion of path π ∈ Π(ai)
being selected by the agent. Constraints ensure that agents
use at least one path and the overall cost of path is mini-
mized.

On the other hand, the MIP-based approach compared to
SAT-based compilation requires to deal with fractional so-
lutions, which adds non-trivial complexity to the high level
solving process.

MIP-based vs. SAT-based Compilation
MIP-based and SAT-based compilation schemes have differ-
ent opportunities how to enhance each approach with MAPF
specific heuristics and pruning techniques such as symmetry
breaking (Li et al. 2020) or mutex reasoning (Zhang et al.
2020). In this regard, the MIP-based scheme is more open
for integration of domain specific improvements as more de-
cisions are made at the high-level, namely branching strat-
egy where heuristics can be included, paths pool refinement
that could further guide the search can be modified at the
high level.

SAT-based approach still leaves lot of decisions on a gen-
eral purpose SAT-solver into which it is difficult to include
any MAPF specific heuristics without changing the imple-
mentation of the solver. On the other hand, the role of the
solver is bigger as it solves without any intervention from
the high-level the entire NP-hard component of the problem.
In the MIP-based approach, the MIP solver solves indepen-
dently a linear problem which is done in polynomial time
while the hard exponential-time part is solved in coopera-
tion with the high-level.

Conclusion
We summarized and compared main ideas of recent
compilation-based approaches to MAPF, the MIP-based and
SAT-based solvers. Our brief summary highlights important
common features of both approaches such as lazy conflict
elimination, but also focuses on significant differences such
as the need in SAT to build time expansion of the underlying
graph at the level of Boolean formula or the need in MIP to
eliminate fractional values of decision variables.

Acknowledgment. The author has been supported by
GAČR - the Czech Science Foundation, grant registration
number 19-17966S.

References
Audemard, G.; and Simon, L. 2018. On the Glucose
SAT Solver. Int. J. Artif. Intell. Tools 27(1): 1840001:1–
1840001:25.

Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
2009. Satisfiability Modulo Theories. In Biere, A.; Heule,
M.; van Maaren, H.; and Walsh, T., eds., Handbook of Sat-
isfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications, 825–885. IOS Press.

Blazewicz, J.; Brauner, N.; and Finke, G. 2004. Schedul-
ing with Discrete Resource Constraints. In Leung, J. Y., ed.,
Handbook of Scheduling - Algorithms, Models, and Perfor-
mance Analysis. Chapman and Hall/CRC.

Bradley, A. R.; and Manna, Z. 2007. The calculus of com-
putation - decision procedures with applications to verifica-
tion. Springer.

Dechter, R. 2003. Constraint processing. Elsevier Morgan
Kaufmann.

Eén, N.; and Sörensson, N. 2003. An Extensible SAT-solver.
In Theory and Applications of Satisfiability Testing, 6th In-
ternational Conference, SAT 2003. Selected Revised Papers,
volume 2919 of Lecture Notes in Computer Science, 502–
518. Springer.

Gange, G.; Harabor, D.; and Stuckey, P. J. 2019. Lazy CBS:
Implicit Conflict-Based Search Using Lazy Clause Gener-
ation. In Proceedings of the Twenty-Ninth International
Conference on Automated Planning and Scheduling, ICAPS
2018, 155–162. AAAI Press.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.

Jünger, M.; Liebling, T. M.; Naddef, D.; Nemhauser, G. L.;
Pulleyblank, W. R.; Reinelt, G.; Rinaldi, G.; and Wolsey,
L. A., eds. 2010. 50 Years of Integer Programming
1958-2008 - From the Early Years to the State-of-the-Art.
Springer.

Kautz, H. A.; and Selman, B. 1992. Planning as Satisfiabil-
ity. In 10th European Conference on Artificial Intelligence,
ECAI 92, Vienna, Austria, August 3-7, 1992. Proceedings,
359–363. John Wiley and Sons.

Lam, E.; Bodic, P. L.; Harabor, D. D.; and Stuckey, P. J.
2019. Branch-and-Cut-and-Price for Multi-Agent Pathfind-
ing. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, 1289–
1296. ijcai.org.

Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and
Koenig, S. 2020. New Techniques for Pairwise Symmetry
Breaking in Multi-Agent Path Finding. In Proceedings of the
Thirtieth International Conference on Automated Planning
and Scheduling, Nancy, France, October 26-30, 2020, 193–
201. AAAI Press.

Lifschitz, V. 2019. Answer Set Programming. Springer.

Rader, D. 2010. Deterministic Operations Research: Mod-
els and Methods in Linear Optimization. Wiley. ISBN
9780470484517.

Ryan, M. R. K. 2008. Exploiting Subgraph Structure in
Multi-Robot Path Planning. J. Artif. Intell. Res. 31: 497–
542.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artif. Intell. 219: 40–66.
Silva, J. P. M.; and Sakallah, K. A. 1999. GRASP: A
Search Algorithm for Propositional Satisfiability. IEEE
Trans. Computers 48(5): 506–521.
Silver, D. 2005. Cooperative Pathfinding. In Proceedings of
the First Artificial Intelligence and Interactive Digital En-
tertainment Conference, 117–122. AAAI Press.
Standley, T. S. 2010. Finding Optimal Solutions to Coop-
erative Pathfinding Problems. In Fox, M.; and Poole, D.,
eds., Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2010. AAAI Press.
Surynek, P. 2019. Unifying Search-based and Compilation-
based Approaches to Multi-agent Path Finding through Sat-
isfiability Modulo Theories. In Kraus, S., ed., Proceedings
of the Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2019, 1177–1183. ijcai.org.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016.
An Empirical Comparison of the Hardness of Multi-Agent
Path Finding under the Makespan and the Sum of Costs Ob-
jectives. In Proceedings of the Ninth Annual Symposium
on Combinatorial Search, SOCS 2016, Tarrytown, NY, USA,
July 6-8, 2016, 145–147. AAAI Press.
Zhang, H.; Li, J.; Surynek, P.; Koenig, S.; and Kumar, T.
K. S. 2020. Multi-Agent Path Finding with Mutex Propa-
gation. In Proceedings of the Thirtieth International Con-
ference on Automated Planning and Scheduling, Nancy,
France, October 26-30, 2020, 323–332. AAAI Press.

