
Conflict Handling Framework in Generalized Multi-Agent Path Finding
advantages and shortcomings of satisfiability modulo approach

Pavel Surynek
Faculty of Information Technology

Czech Technical University in Prague
Thákurova 9, 160 00 Praha 6, Czech Republic

pavel.surynek@fit.cvut.cz

Keywords: conflicts, MAPF, token swapping, token rotation, token permutation, SMT, SAT

Abstract: We address conflict reasoning in generalizations of multi-agent path finding (MAPF). We assume items placed
in vertices of an undirected graph with at most one item per vertex. Items can be relocated across edges
while various constraints depending on the concrete type of MAPF must be satisfied. We recall a general
problem formulation that encompasses known types of item relocation problems such as multi-agent path
finding (MAPF) and token swapping (TSWAP). We show how to express new types of relocation problems
in the general problem formulation. We thoroughly evaluate a novel solving method for item relocation that
combines satisfiability modulo theory (SMT) with conflict-based search (CBS). CBS is interpreted in the SMT
framework where we start with the basic model and refine the model with a collision resolution constraint
whenever a collision between items occurs. The key difference between the standard CBS and the SMT-based
modification of CBS (SMT-CBS) is that the standard CBS branches the search to resolve the collision while
SMT-CBS iteratively adds a single disjunctive collision resolution constraint. Our experimental evaluation
revealed that although SMT-CBS performs better than CBS in small densely occupied instances of variants
of MAPF, it is outperformed on large sparsely occupied environments. The performed analysis shows that
individual paths in large environments of relocation instances can be found faster using simple A*-based
algorithm than by the SMT solver. On the other hand the SMT solver performs better when many conflicts
between items need to be resolved.

1 INTRODUCTION

Item relocation problems in graphs such as token
swapping (TSWAP) [Kawahara et al., 2017, Bonnet
et al., 2017], multi-agent path finding (MAPF) [Ryan,
2007, Standley, 2010, Yu and LaValle, 2013], or peb-
ble motion on graphs (PMG) [Wilson, 1974, Korn-
hauser et al., 1984] represent important combinatorial
problems in artificial intelligence with specific appli-
cations in coordination of multiple robots and other
areas such as quantum circuit compilation [Botea
et al., 2018]. We assume multiple distinguishable
items placed in vertices of an undirected graph such
that at most one item is placed in each vertex. Items
can be moved between vertices across edges while
problem specific rules must be observed. For ex-
ample, PMG and MAPF usually assume that items
(pebbles/agents) are moved to unoccupied neighbors
only. Sometimes in MAPF it is also possible that
items form a train (sequence of items) and the en-
tire train moves simultaneously while only the lead-

ing item needs to enter a vacant vertex 1. TSWAP on
the other hand permits only swaps of pairs of tokens
along edges while more complex movements involv-
ing more than two tokens are forbidden. The task in
item relocation problems is to reach a given goal con-
figuration of items from a given starting configuration
using allowed movements.

We focus here on the optimal solving of item re-
location problems with respect to common cumula-
tive objective functions. Two cumulative objective
functions are used in MAPF and TSWAP - sum-of-
costs [Sharon et al., 2013, Miltzow et al., 2016] and
makespan [Surynek, 2014a, Yu and LaValle, 2016].
The sum-of-costs corresponds to the total cost of all
movements performed until the goal configuration is
reached - the traversal of an edge by an item has unit
cost. The makespan calculates the total number of
time-steps until the goal is reached. In both cases we

1This variant of MAPF is sometimes called a parallel
MAPF or parallel PMG [Surynek, 2010].

trying to minimize the objective which in the case of
sum-of-costs intuitively corresponds to energy mini-
mization while the minimization of makespan corre-
sponds to minimization of time.

Many practical problems from robotics involving
multiple robots can be interpreted as an item reloca-
tion problems. Examples include discrete multi-robot
navigation and coordination [Luna and Bekris, 2010],
item rearrangement in automated warehouses [Basile
et al., 2012], ship collision avoidance [Kim et al.,
2014], or formation maintenance and maneuvering of
aerial vehicles [Zhou and Schwager, 2015]. Examples
not only include problems concerning physical items
but problems occurring in virtual spaces of simula-
tions [Kapadia et al., 2013], computer games [Wender
and Watson, 2014], or quantum systems [Botea et al.,
2018].

The contribution of this paper consists in a thor-
ough experimental evaluation of a general frame-
work for defining and solving item relocation prob-
lems based on satisfiability modulo theories (SMT)
[Bofill et al., 2012, Surynek, 2018b] and conflict-
based search (CBS) [Sharon et al., 2015].

The framework has been used to define two prob-
lems derived from TSWAP: token rotation (TROT)
and token permutation (TPERM) where instead of
swapping pairs of tokens, rotations along non-trivial
cycles and arbitrary permutations of tokens respec-
tively are permitted. We show how to deal with all
MAPF related item relocation problems through con-
flict reasoning in two algorithms suitable for this task
- SMT-CBS and CBS algorithms. Tests on various
benchmarks revealed that there is no universal win-
ner in solving item relocation problems among the
tested algorithms. While SMT-CBS turned out to be
better in small densely-populated instances, CBS ex-
hibited better performance in large environments con-
taining few items. These results are in line with pre-
vious results for the SAT-based MAPF solving where
SAT-based solvers usually perform well on small in-
stances and worse on larger ones [Surynek et al.,
2016a, Surynek et al., 2016b].

The organization of the paper is as follows. We
first introduce TSWAP and MAPF problems formally.
Then prerequisites for conflict handling in item relo-
cation problems formulated in the SMT framework
are recalled, that is, we recall the CBS algorithm
and the MDD-SAT algorithm. On top of this, the
combination of CBS and MDD-SAT is developed -
the SMT-CBS algorithm. Finally, a thorough experi-
mental evaluation of CBS and SMT-CBS on various
benchmarks including both small and large instances
is presented.

2 BACKGROUND

We briefly recall multi-agent path finding and to-
ken swapping in this section.

Multi-agent path finding (MAPF) problem [Sil-
ver, 2005,Ryan, 2008] consists of an undirected graph
G=(V,E) and a set of agents A= {a1,a2, ...,ak} such
that |A|< |V |. Each agent is placed in a vertex so that
at most one agent resides in each vertex. The place-
ment of agents is denoted α : A→ V . Next we are
given nitial configuration of agents α0 and goal con-
figuration α+.

At each time step an agent can either move to an
adjacent location or wait in its current location. The
task is to find a sequence of move/wait actions for
each agent ai, moving it from α0(ai) to α+(ai) such
that agents do not conflict, i.e., do not occupy the
same location at the same time. Typically, an agent
can move into adjacent unoccupied vertex provided
no other agent enters the same target vertex but other
rules for movements are used as well. An example of
MAPF instance is shown in Figure 1.

α+

α0 A a1

a2

a3

a1

a2

a3

α0 α1 α2 α3 α4= α+

A C C C D

B B A A A

D D D B B

B C

D

A

a1

a2

a3 B C

D

Figure 1: A MAPF instance with three agents a1, a2, and
a3.

The following definition formalizes the com-
monly used move-to-unoccupied movement rule in
MAPF.

Definition 1. Movement in MAPF. Configuration α′

results from α if and only if the following conditions
hold: (i) α(a) = α′(a) or {α(a),α′(a)} ∈ E for all
a ∈ A (agents wait or move along edges); (ii) for all
a ∈ A it holds that if α(a) 6= α′(a)⇒ α′(a) 6= α(a′)
for all a′ ∈ A (target vertex must be empty); and (iii)
for all a,a′ ∈A it holds that if a 6= a′⇒α′(a) 6= α′(a′)
(no two agents enter the same target vertex).

Solving the MAPF instance is to search for a
sequence of configurations [α0,α1, ...,αµ] such that
αi+1 results using valid movements from αi for i =
1,2, ...,µ−1, and αµ = α+.

In many aspects, a token swapping problem
(TSWAP) (also known as sorting on graphs) [Ya-
manaka et al., 2014] is similar to MAPF. It represents
a generalization of sorting problems [Thorup, 2002].
While in the classical sorting problem we need to ob-
tain linearly ordered sequence of elements by swap-
ping any pair of elements, in the TSWAP problem we

τ+

τ0 A

c2

c3

A

B

C
D

τ0 τ1 τ2= τ +

c1 c2 c2

c2 c1 c3

c4 c4 c4
c3 c3 c1

B C

D

A

c1

c2

c3
B C

D

c1

c4 c4

Figure 2: A TSWAP instance. A solution consisting of two
swaps is shown.

are allowed to swap elements at selected pairs of po-
sitions only.

Using a modified notation from [Yamanaka et al.,
2015] the TSWAP each vertex in G is assigned a color
in C = {c1,c2, ...,ch} via τ+ : V → C. A token of a
color in C is placed in each vertex. The task is to
transform a current token placement into the one such
that colors of tokens and respective vertices of their
placement agree. Desirable token placement can be
obtained by swapping tokens on adjacent vertices in
G. See Figure 2 for an example instance of TSWAP.

We denote by τ : V → C colors of tokens placed
in vertices of G. That is, τ(v) for v ∈ V is a color of
a token placed in v. Starting placement of tokens is
denoted as τ0; the goal token placement corresponds
to τ+. Transformation of one placement to another is
captured by the concept of adjacency defined as fol-
lows [Yamanaka et al., 2015, Yamanaka et al., 2017]:
Definition 2. adjacency in TSWAP Token place-
ments τ and τ′ are said to be adjacent if there ex-
ists a subset of non-adjacent edges F ⊆ E such that
τ(v) = τ′(u) and τ(u) = τ′(v) for each {u,v} ∈ F and
for all other vertices w ∈ V \

⋃
{u,v}∈F {u,v} it holds

that τ(w) = τ′(w). 2

The task in TSWAP is to find a swapping sequence
of token placements [τ0,τ1, ...,τm] such that τm = τ+

and τi and τi+1 are adjacent for all i= 0,1, ...,m−1. It
has been shown that for any initial and goal placement
of tokens τ0 and τ+ respectively there is a swapping
sequence transforming τ0 and τ+ containing O(|V |2)
swaps [Yamanaka et al., 2016]. The proof is based on
swapping tokens on a spanning tree of G. Let us note
that the above bound is tight as there are instances
consuming Ω(|V |2) swaps. It is also known that find-
ing a swapping sequence that has as few swaps as pos-
sible is an NP-hard problem.

If each token has a different color we do not dis-
tinguish between tokens and their colors ci; that is, we
will refer to a token ci.

Observe, that the operational meaning of agents
and tokens in MAPF and TSWAP is similar. They

2The presented version of adjacency is sometimes called
parallel while a term adjacency is reserved for the case with
|F |= 1.

both occupy vertices of the graph and no two of them
can share a vertex. Hence works studying relation of
both problems from the practical solving perspective
have appeared recently [Surynek, 2018a].

3 RELATED WORK

Although many works sudying TSWAP from the
theoretical point of view exist [Yamanaka et al.,
2016, Miltzow et al., 2016, Bonnet et al., 2017]
practical solving of the problem started only lately.
In [Surynek, 2018a] optimal solving of TSWAP
by adapted algorithms from MAPF has been sug-
gested. Namely conflict-based search (CBS) [Sharon
et al., 2012, Sharon et al., 2015] and propositional
satisfiability-based (SAT) [Biere et al., 2009] MDD-
SAT [Surynek et al., 2016a, Surynek et al., 2016b]
originally developed for MAPF have been modified
for TSWAP.

3.1 Search for Optimal Solutions

We will commonly use the sum-of-costs objective
funtion in all problems studied in this paper. The fol-
lowing definition introduces the sum-of-costs objec-
tive in MAPF. However, analogous definition can be
introduced for TSWAP too.

Definition 3. Sum-of-costs (denoted ξ) is the sum-
mation, over all agents, of the number of time steps
required to reach the goal vertex [Dresner and Stone,
2008, Standley, 2010, Sharon et al., 2013, Sharon
et al., 2015]. Formally, ξ = ∑

k
i=1 ξ(path(ai)), where

ξ(path(ai)) is an individual path cost of agent ai
connecting α0(ai) calculated as the number of edge
traversals and wait actions. 3

Observe that in the sum-of-costs we accumulate
the cost of wait actions for items not yet reaching
their goal vertices. Also observe that one swap in the
TSWAP problem correspond to the cost of 2 as two
tokens traverses single edge. Let us note that all algo-
rithms and concepts we use can be modified for dif-
ferent cummulative objective functions like makespan
or the total number of moves/swaps etc.

A feasible solution of a solvable MAPF instance
can be found in polynomial time [Wilson, 1974, Ko-
rnhauser et al., 1984]; precisely the worst case time
complexity of most practical algorithms for finding
feasible solutions is O(|V |3) (asymptotic size of the
solution is also O(|V |3)) [Surynek, 2009b, Surynek,

3The notation path(ai) refers to path in the form of a se-
qeunce of vertices and edges connecting α0(ai) and α+(ai)
while ξ assigns the cost to a given path.

2009a,Surynek, 2014b,Luna and Bekris, 2011a,Luna
and Bekris, 2011b,de Wilde et al., 2014]. This is also
asymptotically best possible as there are MAPF in-
stances requiring Ω(|V |2) moves. As with TSWAP,
finding optimal MAPF solutions with respect to var-
ious cummulative objectives is NP-hard [Ratner and
Warmuth, 1986, Surynek, 2010, Yu and LaValle,
2015].

3.2 Conflict-based Search

CBS uses the idea of resolving conflicts lazily; that is,
a solution of MAPF instance is not searched against
the complete set of movement constraints that for-
bids collisions between agents but with respect to ini-
tially empty set of collision forbidding constraints that
gradually grows as new conflicts appear. The advan-
tage of CBS is that it can find a valid solution before
all constraints are added.

The high level of CBS searches a constraint tree
(CT) using a priority queue in breadth first manner.
CT is a binary tree where each node N contains a set
of collision avoidance constraints N.constraints - a
set of triples (ai,v, t) forbidding occurrence of agent
ai in vertex v at time step t, a solution N.paths - a set
of k paths for individual agents, and the total cost N.ξ
of the current solution.

The low level process in CBS associated with
node N searches paths for individual agents with re-
spect to set of constraints N.constraints. For a given
agent ai, this is a standard single source shortest path
search from α0(ai) to α+(ai) that avoids a set of
vertices {v ∈ V |(ai,v, t) ∈ N.constraints} whenever
working at time step t. For details see [Sharon et al.,
2015].

CBS stores nodes of CT into priority queue OPEN
sorted according to ascending costs of solutions. At
each step CBS takes node N with lowest cost from
OPEN and checks if N.paths represents paths that
are valid with respect to movements rules in MAPF.
That is, if there are any collisions between agents in
N.paths. If there is no collision, the algorithms re-
turns valid MAPF solution N.paths. Otherwise the
search branches by creating a new pair of nodes in
CT - successors of N. Assume that a collision oc-
curred between agents ai and a j in vertex v at time
step t. This collision can be avoided if either agent ai
or agent a j does not reside in v at timestep t. These
two options correspond to new successor nodes of N
- N1 and N2 that inherits set of conflicts from N as
follows: N1.con f licts = N.con f licts∪{(ai,v, t)} and
N2.con f licts = N.con f licts ∪ {(a j,v, t)}. N1.paths
and N1.paths inherit path from N.paths except those
for agent ai and a j respectively. Paths for ai and a j

Algorithm 1: Basic CBS algorithm for
MAPF solving
1 CBS (G = (V,E),A,α0,α+)
2 R.constraints← /0

3 R.paths← {shortest path from α0(ai) to
α+(ai)|i = 1,2, ...,k}

4 R.ξ← ∑
k
i=1 ξ(N.paths(ai))

5 insert R into OPEN
6 while OPEN 6= /0 do
7 N← min(OPEN)
8 remove-Min(OPEN)
9 collisions← validate(N.paths)

10 if collisions = /0 then
11 return N.paths

12 let (ai,a j,v, t) ∈ collisions
13 for each a ∈ {ai,a j} do
14 N′.constraints←

N.constraints∪{(a,v, t)}
15 N′.paths← N.paths
16 update(a, N′.paths, N′.con f licts)
17 N′.ξ← ∑

k
i=1 ξ(N′.paths(ai))

18 insert N′ into OPEN

are recalculated with respect to extended sets of con-
flicts N1.con f licts and N2.con f licts respectively and
new costs for both agents N1.ξ and N2.ξ are deter-
mined. After this N1 and N2 are inserted into the pri-
ority queue OPEN.

The pseudo-code of CBS is listed as Algorithm
1. One of crucial steps occurs at line 16 where a
new path for colliding agents ai and a j is constructed
with respect to an extended set of conflicts. Notation
N.paths(a) refers to the path of agent a.

The CBS algorithm ensures finding sum-of-costs
optimal solution. Detailed proofs of this claim can be
found in [Sharon et al., 2015].

3.3 SAT-based Approach

An alternative approach to optimal MAPF solving
as well as to TSWAP solving is represented by re-
duction of MAPF to propositional satisfiability (SAT)
[Surynek, 2012b,Surynek, 2012a]. The idea is to con-
struct a propositional formula such F (ξ) such that it
is satisfiable if and only if a solution of a given MAPF
of sum-of-costs ξ exists. Moreover, the approach is
constructive; that is, F (ξ) exactly reflects the MAPF
instance and if satisfiable, solution of MAPF can be
reconstructed from satisfying assignment of the for-
mula.

Being able to construct such formula F one can
obtain optimal MAPF solution by checking satisfia-
bility of F (0), F (1), F (2),... until the first satisfiable

Algorithm 2: Framework of SAT-based
MAPF solving
1 SAT-Based (G = (V,E),A,α0,α+)
2 paths← {shortest path from α0(ai) to

α+(ai)|i = 1,2, ...,k}
3 ξ← ∑

k
i=1 ξ(N.paths(ai))

4 while True do
5 F (ξ)← encode(ξ,G,A,α0,α+)
6 assignment← consult-SAT-Solver(F (ξ))
7 if assignment 6= UNSAT then
8 paths←

extract-Solution(assignment)
9 return paths

10 ξ← ξ+1

F (ξ) is met. This is possible due to monotonicity of
MAPF solvability with respect to increasing values of
common cummulative objectives such as the sum-of-
costs. In practice it is however impractical to start at
0; lower bound estimation is used instead - sum of
lengths of shortest paths can be used in the case of
sum-of-costs. The framework of SAT-based solving
is shown in pseudo-code in Algorithm 2.

The advantage of the SAT-based approach is that
state-of-the-art SAT solvers can be used for deter-
minig satisfiability of F (ξ) [Audemard et al., 2013]
and any progress in SAT solving hence can be utilized
for increasing efficiency of MAPF solving.

3.4 Multi-value Decision Diagrams -
MDD-SAT

Construction of F (ξ) relies on time expansion of un-
derlying graph G [Surynek, 2017]. Having ξ, the ba-
sic variant of time expansion determines the maxi-
mum number of time steps µ (also refered to as a
makespan) such that every possible solution of the
given MAPF with the sum-of-costs less than or equal
to ξ fits within µ timestep (that is, no agent is outside
its goal vertex after µ timestep if the sum-of-costs ξ is
not to be exceeded).

Time expansion itself makes copies of vertices V
for each timestep t = 0,1,2, ...,µ. That is, we have
vertices vt for each v ∈ V time step t. Edges from
G are converted to directed edges interconnecting
timesteps in time expansion. Directed edges (ut ,vt+1)
are introduced for t = 1,2, ...,µ−1 whenever there is
{u,v} ∈ E. Wait actions are modeled by introducing
edges (ut , tt+1). A directed path in time expansion
corresponds to trajectory of an agent in time. Hence
the modeling task now consists in construction of a
formula in which satisfying assignments correspond

to directed paths from α0
0(ai) to α

µ
+(ai) in time ex-

pansion.
Assume that we have time expansion T EGi =

(Vi,Ei) for agent ai. Propositional variable X t
v(a j) is

introduced for every vertex vt in Vi. The semantics of
X t

v(ai) is that it is True if and only if agent ai resides
in v at time step t. Similarly we introduce Eu,vt(ai)
for every directed edge (ut ,vt+1) in Ei. Analogously
the meaning of E t

u,v(ai) is that is True if and only if
agent ai traverses edge {u,v} between time steps t and
t +1.

Finally constraints are added so that truth assign-
ment are restricted to those that correspond to valid
solutions of a given MAPF. The detailed list of con-
straints is given in [Surynek et al., 2016a]. We here
just illustrate the modeling by showing few represen-
tative constraints. For example there is a constraint
stating that if agent ai appears in vertex u at time
step t then it has to leave through exactly one edge
(ut ,vt+1). This can be established by following con-
straints:

X t
u(ai)⇒

∨
(ut ,vt+1)∈Ei

E t
u,v(ai), (1)

∑
vt+1|(ut ,vt+1)∈Ei

E t
u,v(ai)≤ 1 (2)

Similarly, the target vertex of any movement ex-
cept wait action must be empty. This is ensured by
the following constraint for every (ut ,vt+1) ∈ Ei:

E t
u,v(ai)⇒

∧
a j∈A∧a j 6=ai∧vt∈V j

¬X t
v(a j) (3)

Other constraints ensure that truth assignments to
variables per individual agents form paths. That is if
agent ai enters an edge it must leave the edge at the
next time step.

E t
u,v(ai)⇒ X t

v(ai)∧X t+1
v (ai) (4)

Agents do not collide with each other; the fol-
lowing constraint is introduced for every v ∈ V and
timestep t:

∑
i=1,2,...,k|vt∈Vi

X t
v(ai) (5)

A common measure how to reduce the number of
decision variables derived from the time expansion
is the use of multi-value decision diagrams (MDDs)
[Sharon et al., 2013]. The basic observation that
holds for MAPF and other item relocation problems
is that a token/agent can reach vertices in the dis-
tance d (distance of a vertex is measured as the length
of the shortest path) from the current position of the

agent/token no earlier than in the d-th time step. Ana-
logical observation can be made with respect to the
distance from the goal position.

Above observations can be utilized when making
the time expansion of G. For a given agent or token,
we do not need to consider all vertices at time step t
but only those that are reachable in t timesteps from
the initial position and that ensure that the goal can be
reached in the remaining σ− t timesteps. This idea
can reduce the size the expansion graph significantly
and consequently can reduce the size of the Boolean
formula by eliminating X (a)t

v and E(a)t
u,v variables

correspoding to unreachable vertices u and v.
A comparison of standard time expansion and

MDD expansion in MAPF for agent (ai) is shown in
Figure 3.

A0

 Timestep 0 1 2 3

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

A

C

B

ai

G=(V,E) Time expansion graph for ai (TEGi), µ = 3 MDD for ai (MDDi), µ = 3, ξ = 3

A1

B1 B2

C2 C3

0 1 2 3

Figure 3: An example of time expansion and MDD expan-
sion for agent a1.

The combination of SAT-based approach and
MDD time expansion led to the MDD-SAT algorithm
described in [Surynek et al., 2016a] that currently rep-
resent state-of-the-art in SAT-based MAPF solving.

4 GENERALIZATIONS OF ITEM
RELOCATION

Although the differences between MAPF and
TSWAP led to different worst case time complexi-
ties in algorithms for finding feasible solutions, prob-
lems differ only in local understanding of conflicts re-
flected in different movement rules in fact. This im-
mediately inspired us to suggest various modifications
of movement rules.

We define two problems derived from MAPF and
TSWAP: token rotation (TROT) and token permuta-
tion (TPERM) 4.

4These problems have been considered in the literature
in different contexts already (for example in [Yu and Rus,
2014]). But not from the practical solving perspective fo-
cused on finding optimal solutions.

4.1 Token Rotation and Token
Permutation

A swap of pair of tokens can be interpreted as a ro-
tation along a trivial cycle consisting of single edge.
We can generalize this towards longer cycles. The
TROT problem permits rotations along longer cy-
cles but forbids trivial cycles; that is, rotations along
triples, quadruples, ... of vertices is allowed but swap
along edges are forbidden.
Definition 4. Adjacency in TROT. Token place-
ments τ and τ′ are said to be adjacent in TROT if there
exists a subset of edges F ⊆ E such that components
C1,C2, ...,Cp of induced sub-graph G[F] satisfy fol-
lowing conditions:

(i) C j = (VC
j ,E

C
j) such that VC

j = w j
1,w

j
2, ...,w

j
n j with

n j ≤ 3 and
EC

j = {{w j
1,w

j
2};{w

j
2,w

j
3}; ...;{w

j
n j ,w

j
1}}

(components are cycles of length at least 3)
(ii) τ(w j

1) = τ′(w j
2), τ(w j

3) = τ′(w j
3), ..., τ(w j

n j) =

τ′(w j
1)

(colors are rotated in the cycle one position for-
ward/backward)

The rest of the definition of a TROT instance is
analogical to TSWAP.

Similarly we can define TPERM by permitting all
lengths of cycles. The formal definition of adjacency
in TPERM is almost the same as in TROT except re-
laxing the constraint on cycle lenght, n j ≤ 2.as

We omit here complexity considerations for
TROT and TPERM for the sake of brevity. Again it
holds that a feasible solution can be found in polyno-
mial time but the optimal cases remain intractable in
general.

Both approaches - SAT-based MDD-SAT as well
as CBS - can be adapted for solving TROT and
TPERM without modifying their top level design.
Only local modification of how movement rules of
each problem are reflected in algorithms is necessary.
In case of CBS, we need to define what does it mean
a conflict in TROT and TPERM. In MDD-SAT differ-
ent movement constraints can be encoded directly.

Motivation for studying these item relocation
problems is the same as for MAPF. In many real-life
scenarios it happens that items or agents enters po-
sitions being simultaneously vacated by other items
(for example mobile robots often). This is exactly
the property captured formally in above definitions.

4.2 Adapting CBS and MDD-SAT

Both CBS and MDD-SAT can be modified for opti-
mal solving of TSWAP, TROT, and TPERM (with re-

spect to sum-of-costs but other cumulative objectives
are possible as well). Different movement rules can
be reflected in CBS and MDD-SAT algorithms with-
out modifying their high level framework.

4.2.1 Different Conflicts in CBS

In CBS, we need to modify the understanding of con-
flict between agents/tokens. In contrast to the original
CBS we need to introduce edge conflicts to be able to
handle conflicts properly in TSWAP and TROT.

Consider an example from Figure 4 that concerns
TSWAP being solved by CBS. The situation when to-
ken c1 traverses from A to B and simultaneously to-
ken c2 traverses from B to C cannot occur in TSWAP.
However we cannot properly branch in CBS using
vertex conflicts to tackle this situation. Although all
movements of c2 from B into any other vertex than
A can be ruled out by vertex conflicts, wrong move-
ment of c2 into A from a vertex other than B remains
allowed.

c2

t → t+1

c1

(c1,B,t+1) or (c2,C,t+1)

t → t+1

c1

c2

A B

C

D

A B

C
t → t+1

c1

c2
D

A B

C

D

Figure 4: A collision that leads to wrong reasoning with
vertex conflicts in TSWAP. Vertex conflict (c2,C, t) does
not properly forbid simultaneous movements from A to B
and from B to C. At some later stage in the sub-tree after
(c2,C, t) it would be still possible that although c2 cannot
move into any other vertex than A at t it can move into A
from other vertex than B which is not desirable.

Therefore edge conflicts have been introduced to
tackle conflicting situations in TSWAP and TROT
properly within CBS and SMT-CBS. An edge con-
flict is triple (ci,(u,v), t) with ci ∈ C, u,v ∈ V and
timestep t. The interpretation of (ci,(u,v), t) is that
token ci cannot move across {u,v} from u to v be-
tween timesteps t and t +1.

Edge conflict can be used to resolve collision from
4. Instead of forbidding c2 to enter any vertex other
than A at timestep t movements of c2 across all edges
other than (B,A) at timestep t are forbidden. Analog-
ical collision resolution using edge conflicts can be
applied in the TROT problem.

Conflict reasoning in individual item relocation
problems derived from MAPF is described in the fol-

lowing paragraphs. Proofs of soundness of conflict
reasoning are omitted here.

TPERM: The easiest case is TPERM as it is least re-
strictive. We merely forbid simultaneous occurrence
of multiple tokens in a vertex - this situation is un-
derstood as a collision in TPERM and conflicts are
derived from it. If a collision (ci,c j,v, t) between to-
kens ci and c j occurs in v at time step t then we in-
troduce conflicts (ci,v, t) and (c j,v, t) for ci and c j re-
spectively. 5

TSWAP: This problem takes conflicts from TPERM
but adds new conflicts that arise from doing some-
thing else than swapping [Surynek, 2018a]. Each time
edge {u,v} is being traversed by token ci between
time steps t and t+1, a token residing in v at time step
t, that is τt(v), must go in the opposite direction from
v to u. If this is not the case, then a so called edge col-
lision involving edge {u,v} occurs and corresponding
edge conflicts (ci,(u,v), t) and (τt(v),(v,u), t) are in-
troduced for agents ci and τt(v) respectively.

Edge conflicts must be treated at the low level of
CBS. Hence in addition to forbidden vertices at given
time-steps we have forbidden edges between given
time-steps.
TROT: The treatment of conflicts will be comple-
mentary to TSWAP in TROT. Each time edge {u,v}
is being traversed by token ci between time steps t
and t + 1, a token residing in v at time step t, that
is τt(v), must go anywhere else but not to u. If this
is not the case, then we again have edge collision
(ci,τt(v),{u,v}, t) which is treated in the same way
as above.

4.2.2 Encoding Changes in MDD-SAT

In MDD-SAT, we need to modify encoding of move-
ment rules in the propositional formula F (ξ). Again,
proofs of soundness of the following changes are
omitted.
TPERM: This is the easiest case for MDD-SAT too.
We merely remove all constrains requiring tokens to
move into vacant vertices only. That is we remove
clauses (3).
TSWAP: It inherits changes from TPERM but in ad-
dition to that we need to carry out swaps properly. For
this edge variables E t

u,v(ci) will be utilized. Following
constraint will be introduced for every {ut ,vt+1} ∈ Ei
(intuitively, if token ci traverses {u,v} some other to-
ken c j traverses {u,v} in the opposite direction):

5Formally this is the same as in MAPF, but in addition to
this MAPF checks vacancy of the target vertex which may
cause more colliding situations.

E t
u,v(ci)⇒

∨
j=1,2,...,k| j 6=i∧(ut ,vt+1)∈E j

E t
v,u(c j) (6)

TROT: TROT is treated in a complementary way to
TSWAP. Instead of adding constraints (6) we add con-
straints forbidding simultaneous traversal in the oppo-
site direction as follows:

E t
u,v(ci)⇒

∧
j=1,2,...,k| j 6=i∧(ut ,vt+1)∈E j

¬E t
v,u(c j) (7)

5 COMBINING SAT-BASED
APPROACH AND CBS

Close look at CBS reveals that it operates simi-
larly as problem solving in satisfiability modulo theo-
ries (SMT) [Bofill et al., 2012]. SMT divides satisfi-
ability problem in some complex theory T into an ab-
stract propositional part that keeps the Boolean struc-
ture of the problem and simplified decision procedure
DECIDET that decides conjunctive formulae over T .
A general T -formula is transformed to propositional
skeleton by replacing atoms with propositional vari-
ables. The standard SAT-solving procedure then de-
cides what variables should be assigned T RUE in or-
der to satisfy the skeleton - these variables tells what
atoms holds in T . DECIDET if the conjunction of
satisfied atoms is satisfiable. If so then solution is
returned. Otherwise conflict from DECIDET is re-
ported back and the skeleton is extended with a con-
straint forbidding the conflict.

The above observation let us to the idea to imple-
ment CBS in the SMT manner. The abstract propo-
sitional part working with the skeleton will be taken
from MDD-SAT except that only constraints ensur-
ing that assignments form valid paths interconnect-
ing starting positions with goals will be preserved.
Other constraints for collision avoidance will be omit-
ted initially. Paths validation procedure will act as
DECIDET and will report back a set of conflicts
found in the current solution. We call this algorithm
SMT-CBS and it is shown in pseudo-code as Algo-
rithm 3 (it is formulated for MAPF; but is applicable
for TSWAP, TPERM, and TROT after replacing con-
flict resolution part).

The algorithm is divided into two procedures:
SMT-CBS representing the main loop and SMT-CBS-
Fixed solving the input MAPF for a fixed cost ξ. The
major difference from the standard CBS is that there
is no branching at the high level. The high level SMT-
CBS rougly correspond to the main loop of MDD-
SAT. The set of conflicts is iteratively collected during

Algorithm 3: SMT-CBS algorithm for solv-
ing MAPF
1 SMT-CBS (Σ = (G = (V,E),A,α0,α+))
2 con f licts← /0

3 paths← {shortest path from α0(ai) to
α+(ai)|i = 1,2, ...,k}

4 ξ← ∑
k
i=1 ξ(paths(ai))

5 while True do
6 (paths,con f licts)←

SMT-CBS-Fixed(con f licts,ξ,Σ)
7 if paths 6= UNSAT then
8 return paths

9 ξ← ξ+1

10 SMT-CBS-Fixed(con f licts,ξ,Σ)
11 F (ξ))← encode-Basic(con f licts,ξ,Σ)
12 while True do
13 assignment← consult-SAT-Solver(F (ξ))
14 if assignment 6=UNSAT then
15 paths←

extract-Solution(assignment)
16 collisions← validate(paths)
17 if collisions = /0 then
18 return (paths,con f licts)

19 for each (ai,a j,v, t) ∈ collisions do
20 F (ξ)←¬X t

v(ai)∨¬X t
v(a j)

21 con f licts←
con f licts∪{[(ai,v, t),(a j,v, t)]}

22 return (UNSAT,con f licts)

entire execution of the algorithm. Procedure encode
from MDD-SAT is replaced with encode-Basic that
produces encoding that ignores specific movement
rules (collisions between agents) but on the other hand
encodes collected conflicts into F (ξ).

The conflict resolution in standard CBS imple-
mented as high-level branching is here represented
by refinement of F (ξ) with disjunction (line 20).
Branching is thus deferred into the SAT solver. The
presented SMT-CBS process builds in fact equisatis-
fiable formula to that built by MDD-SAT. The advan-
tage of SMT-CBS is that it builds the formula lazily;
that is, it adds constraints on demand after conflict oc-
curs. Such approach may save resources as solution
may be found before all constraint are added.

6 EXPERIMENTAL EVALUATION

We performed an extensive evaluation of all pre-
sented algorithms on standard synthetic benchmarks
[Boyarski et al., 2015, Sharon et al., 2013]. A repre-
sentative part of results is presented in this section.

6.1 Benchmarks and Setup

We used the implementation of SMT-CBS in C++ on
top of the Glucose 4 SAT solver [Audemard et al.,
2013, Audemard and Simon, 2009] that ranks among
the best SAT solvers according to recent SAT solver
competitions [Balyo et al., 2017]. The standard CBS
has been re-implemented from scratch since the orig-
inal implementation written in Java does support only
grids but not general graphs [Sharon et al., 2015] that
we need in our tests. Regarding MDD-SAT we used
a version applicable on TSWAP, TPERM, and TROT
that is implemented in C++ [Surynek et al., 2016a].
All experiments were run on a Ryzen 7 CPU 3.0 Ghz
under Kubuntu linux 16 with 16GB RAM6

Figure 5: Example of 4-connected grid, star, path, and
clique.

We divided the experimental evaluation into two
categories of tests. The first part of experimental eval-
uation has been done on diverse instances consisting
of small graphs: 4-connected grid of size 8× 8 and
16× 16, random graphs containing 20% of random
edges, star graphs, paths, and cliques (see Figure 5).
Initial and goal configurations of tokens/agents was
set at random in all tests. We used a clique, a random
graph, a path, and a star consisting of 16 vertices.

The second part of experimental evaluation took
place on large 4-connected maps taken from Dragon
Age [Sharon et al., 2015, Sturtevant, 2012] - three
maps we used in our experiments are shown in Fig-
ure 7. In contrast to small instances, these were only
sparsely populated with items. Initial and goal con-
figuration were generated at random again.

We varied the number of items in relocation in-
stances to obtain instances of various difficulties; that
is, the underlying graph was not fully occupied -
which in MAPF has natural meaning while in token
problems we use one special color ⊥ ∈C that stands
for any empty vertex (that is, we understand v as
empty if and only if τ(v) = ⊥). For each number of
items in the relocation instance we generated 10 ran-
dom instances. For example, a clique consisting of 16
vertices gives 160 instances in total.

The timeout in all test was set to 60 seconds. Pre-
sented results were obtained from instances finished
under this timeout.

6To enable reproducibility of presented results we will
provide complete source codes and data on author’s web:
http://users.fit.cvut.cz/surynpav/research/icaart2019.

0,001

0,01

0,1

1

10

100

2 4 6 8 10 12 14 16

R
u

n
ti

m
e

(s
ec

o
n

d
s)

|Agents/Tokens|

Runtime Grid 8x8 | MAPF

CBS MDD-SAT SMT-CBS

0,01

0,1

1

10

100

2 4 6 8 10 12 14 16 18

R
u

n
ti

m
e

(s
ec

o
n

d
s)

|Agents/Tokens|

Runtime Grid 8x8 | TSWAP

CBS MDD-SAT SMT-CBS

0,01

0,1

1

10

100

2 4 6 8 10 12 14 16 18 20 22 24 26

R
u

n
ti

m
e

(s
ec

o
n

d
s)

|Agents/Tokens|

Runtime Grid 8x8 | TPERM

CBS MDD-SAT SMT-CBS

0,01

0,1

1

10

100

2 4 6 8 10 12 14 16 18 20 22 24

R
u

n
ti

m
e

(s
ec

o
n

d
s)

|Agents/Tokens|

Runtime Grid 8x8 | TROT

CBS MDD-SAT SMT-CBS

Figure 6: Runtime comparison of CBS, MDD-SAT, and
SMT-CBS algorithms solving MAPF, TSWAP, TPERM,
and TROT on 8×8 grid.

brc202d den520d ost003d

Figure 7: Three structurally diverse Dragon-Age maps used
in the experimental evaluation. This selection includes: nar-
row corridors in brc202d, large open space in den520d, and
open space with almost isolated rooms in ost003d.

6.2 Comparison on Small Graphs

Tests on small graphs were focused on the runtime
comparison and evaluation of the size of encodings in
case of MDD-SAT and SMT-CBS. Part of results we
obtained is presented in Figures 6, 8, and 9 - mean
runtime out of 10 random instances is reported per
each number of items. Surprisingly instances turned
out to be relatively hard even for small graphs.

In all tests CBS turned out to be uncompetitive
against MDD-SAT and SMT-CBS on instances con-
taining more agents. This is an expectable result as
it is known that performance of CBS degrades on
densely occupied instances [Surynek et al., 2016b].
In the rest of experiments we omitted MDD-SAT.

Figures 10 and 11 show sorted runtimes of CBS
and SMT-CBS solving TROT on a random graph and
a star and TSWAP on a clique, and a path all con-
sisting of 16 vertices. In all cases, CBS clearly domi-
nates in easier instances but its performance degrades
faster as instances gets harder where SMT-CBS tends
to dominate. Eventually SMT-CBS solved more out
of 160 instances per test than CBS under the given

http://users.fit.cvut.cz/surynpav/research/icaart2019

0,001

0,01

0,1

1

10

100

2 3 4 5 6 7 8 9 10 11

R
u

n
ti

m
e

(s
ec

o
n

d
s)

|Tokens|

Runtime Star| TROT

CBS MDD-SAT SMT-CBS

0,001

0,01

0,1

1

10

100

2 3 4 5 6 7 8 9 10 11

R
u

n
ti

m
e

(s
ec

o
n

d
s)

|Tokens|

Runtime Clique| TROT

CBS MDD-SAT SMT-CBS

Figure 8: Comparison of TROT solving by CBS, MDD-
SAT, and SMT-CBS on a star and clique graphs consisting
of 16 vertices.

Number of generated clauses

|Agents| 4 8 12 16 20

MDD-SAT 556 56 652 1 347 469 3 087 838 2 124 941

SMT-CBS 468 31 973 598 241 1 256 757 803 671

Figure 9: Comparison of the size of encodings generated by
MDD-SAT and SMT-CBS (number of clauses is shown) on
MAPF instances.

timeout of 60 seconds. Path is particularly interesting
case as the performance of CBS and SMT-CBS differs
greatly there.

0,001

0,01

0,1

1

10

100

0 20 40 60 80 100 120

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Instance

Runtime Random (16) | TROT

CBS SMT-CBS

0,001

0,01

0,1

1

10

100

0 20 40 60 80

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Instance

Runtime Star (16) | TROT

CBS SMT-CBS

Figure 10: Sorted runtimes of CBS and SMT-CBS solving
TROT on random and star graphs consisting of 16 vertices.

Solving of all types of relocation problems on the
same type of graph - 8×8 grid in this case - is shown
in Figure 12. A different pattern can be observed
in these results, SMT-CBS dominates across all dif-
ficulties of instances over CBS. Grids contained up
to 40 items, so having 10 random instances per num-
ber of agents, we had 400 instances in total, but only
about 250 were solved under 60 seconds in the case
of TPERM problem using SMT-CBS.

SMT-CBS turned out to be fastest in performed
tests on small graphs. SMT-CBS reduces the run-
time by about 30% to 50% relatively to MDD-SAT.
More significant benefit of SMT-CBS was observed in
MAPF and TSWAP while in TROT and TPERM the
improvement was less significant. Both MAPF and
TSWAP have more clauses in their eagerly-generated
encodings by MDD-SAT than TROT and TPERM
hence SMT-CBS has greater room for reducing the
size of encoding by constructing it lazily in these
types of relocation problems. This claim has been
experimentally verified (Figure 9); the SMT-CBS re-

0,001

0,01

0,1

1

10

100

0 20 40 60 80 100 120 140

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Instance

Runtime Clique (16) | TSWAP

CBS SMT-CBS

0,001

0,01

0,1

1

10

100

0 20 40 60 80 100 120

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Instance

Runtime Path (16) | TSWAP

CBS SMT-CBS

Figure 11: Sorted runtimes of CBS and SMT-CBS solving
TSWAP on clique and path graphs consisting of 16 vertices.

0,001

0,01

0,1

1

10

100

0 20 40 60 80 100 120 140 160 180 200 220

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Instance

Runtime Grid 8×8| TSWAP

CBS SMT-CBS

0,001

0,01

0,1

1

10

100

0 20 40 60 80 100 120 140 160 180

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Instance

Runtime Grid 8×8| MAPF

CBS SMT-CBS

0,001

0,01

0,1

1

10

100

0 40 80 120 160 200 240

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Instance

Runtime Grid 8×8| TROT

CBS SMT-CBS

0,001

0,01

0,1

1

10

100

0 40 80 120 160 200 240

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Instance

Runtime Grid 8×8| TPERM

CBS SMT-CBS

Figure 12: Sorted runtimes of CBS and SMT-CBS solving
MAPF, TSWAP, TPERM, and TROT on 8×8 grid.

duces the number of clauses to less than half of the
number generated by MDD-SAT.

6.3 Evaluation on Large Maps

0,01

0,1

1

10

100

0 20 40 60 80 100 120 140 160 180

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Instance

Runtime Ost003d| TSWAP

CBS SMT-CBS
Figure 13: Sorted runtimes
of CBS and SMT-CBS solving
TSWAP on ost003d.

The second cate-
gory of tests was
focused on the per-
formance of CBS
and SMT-CBS on
large maps (ex-
perimenting with
MDD-SAT was
omitted). In the
three structurally
different maps, up
to 32 items were
placed randomly.
Again we had 10
random instances
per each number of
items.

Sorted runtimes
are reported in Figures 13 and 14. Completely differ-
ent picture can be seen here. CBS is faster than SMT-
CBS across all difficulties of instances over brc202d

and den520d. In the case of ost003d we can see
CBS and SMT-CBS performing similarly in easier
instances but eventually CBS won in hard instances
containing more items.

0,01

0,1

1

10

100

0 20 40 60 80 100 120 140 160 180 200

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Instance

Runtime Brc202d| TSWAP

CBS SMT-CBS

0,01

0,1

1

10

100

0 40 80 120 160 200 240

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Instance

Runtime Den520d| TSWAP

CBS SMT-CBS

Figure 14: Sorted runtimes of CBS and SMT-CBS solving
TSWAP on brc202d and den520d.

A deeper analysis of runtimes revealed that when-
ever CBS has a chance to search for a long conflict
free path it can outperform SMT-CBS. On the other
hand if conflict handling due to intensive interaction
among items prevails then SMT-CBS tends to domi-
nate which usually takes place in small graphs.

7 CONCLUSIONS

We studied a general framework for reasoning
about conflicts in item relocation problems in graphs
based on concepts from the CBS algorithm. In ad-
dition to two known problems MAPF and TSWAP,
we studied two derived variants TROT and TPERM.
The experimental evaluation of CBS, MDD-SAT, and
SMT-CBS showed that SMT-CBS outperforms both
CBS and MDD-SAT on instances in small graphs.
But we have also shown that there is no universal win-
ner as CBS turned out to be faster on large maps.

The most significant benefit of SMT-CBS can be
observed on highly constrained MAPF and TSWAP
instances. The search for long paths with few con-
flicts is, on the other hand, the performance bottle-
neck of SMT-CBS. For future work we plan to fur-
ther reduce the size of SAT encodings in SMT-CBS
by eliminating unnecessary time expansions in MDDs
and improve the search for long paths. We also would
like improve the performance of all implemented al-
gorithms to be able to observe their behavior on large
more densely occupied instances so far a missing case
in our experiments.

ACKNOWLEDGEMENTS

This paper has been supported by the Czech Science
Foundation (application number 19-17966S). The au-
thor would like to thank anonymous reviewers for
their effort to provide valuable comments.

REFERENCES

Audemard, G., Lagniez, J., and Simon, L. (2013). Improv-
ing glucose for incremental SAT solving with assump-
tions: Application to MUS extraction. In SAT, pages
309–317.

Audemard, G. and Simon, L. (2009). Predicting learnt
clauses quality in modern SAT solvers. In IJCAI,
pages 399–404.

Balyo, T., Heule, M. J. H., and Järvisalo, M. (2017). SAT
competition 2016: Recent developments. In AAAI,
pages 5061–5063.

Basile, F., Chiacchio, P., and Coppola, J. (2012). A hy-
brid model of complex automated warehouse systems
- part I: modeling and simulation. IEEE Trans. Au-
tomation Science and Engineering, 9(4):640–653.

Biere, A., Biere, A., Heule, M., van Maaren, H., and Walsh,
T. (2009). Handbook of Satisfiability. IOS Press.

Bofill, M., Palahı́, M., Suy, J., and Villaret, M. (2012). Solv-
ing constraint satisfaction problems with SAT modulo
theories. Constraints, 17(3):273–303.

Bonnet, É., Miltzow, T., and Rzazewski, P. (2017). Com-
plexity of token swapping and its variants. In STACS
2017, volume 66 of LIPIcs, pages 16:1–16:14.

Botea, A., Kishimoto, A., and Marinescu, R. (2018). On the
complexity of quantum circuit compilation. In Pro-
ceedings of SOCS 2018, pages 138–142.

Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin,
D., Betzalel, O., and Shimony, S. (2015). ICBS:
improved conflict-based search algorithm for multi-
agent pathfinding. In IJCAI, pages 740–746.

de Wilde, B., ter Mors, A., and Witteveen, C. (2014). Push
and rotate: a complete multi-agent pathfinding algo-
rithm. JAIR, 51:443–492.

Dresner, K. and Stone, P. (2008). A multiagent approach to
autonomous intersection management. JAIR, 31:591–
656.

Kapadia, M., Ninomiya, K., Shoulson, A., Garcia, F. M.,
and Badler, N. I. (2013). Constraint-aware navigation
in dynamic environments. In Motion in Games, MIG
’13, pages 111–120. ACM.

Kawahara, J., Saitoh, T., and Yoshinaka, R. (2017). The
time complexity of the token swapping problem and
its parallel variants. In WALCOM 2017, volume 10167
of LNCS, pages 448–459. Springer.

Kim, D.-G., Hirayama, K., and Park, G.-K. (2014). Col-
lision avoidance in multiple-ship situations by dis-
tributed local search. Journal of Advanced Com-
putational Intelligence and Intelligent Informatics,
18:839–848.

Kornhauser, D., Miller, G. L., and Spirakis, P. G. (1984).
Coordinating pebble motion on graphs, the diameter
of permutation groups, and applications. In FOCS,
1984, pages 241–250.

Luna, R. and Bekris, K. (2011a). Efficient and complete
centralized multi-robot path planning. In IROS, pages
3268–3275.

Luna, R. and Bekris, K. E. (2010). Network-guided multi-
robot path planning in discrete representations. In
IROS, pages 4596–4602.

Luna, R. and Bekris, K. E. (2011b). Push and swap: Fast co-
operative path-finding with completeness guarantees.
In IJCAI, pages 294–300.

Miltzow, T., Narins, L., Okamoto, Y., Rote, G., Thomas, A.,
and Uno, T. (2016). Approximation and hardness of
token swapping. In ESA 2016, volume 57 of LIPIcs,
pages 66:1–66:15.

Ratner, D. and Warmuth, M. K. (1986). Finding a shortest
solution for the N × N extension of the 15-puzzle is
intractable. In AAAI, pages 168–172.

Ryan, M. R. K. (2007). Graph decomposition for efficient
multi-robot path planning. In IJCAI 2007, Proceed-
ings of the 20th International Joint Conference on Ar-
tificial Intelligence, pages 2003–2008.

Ryan, M. R. K. (2008). Exploiting subgraph structure in
multi-robot path planning. J. Artif. Intell. Res. (JAIR),
31:497–542.

Sharon, G., Stern, R., Felner, A., and Sturtevant, N.
(2015). Conflict-based search for optimal multi-agent
pathfinding. Artif. Intell., 219:40–66.

Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R.
(2012). Conflict-based search for optimal multi-agent
path finding. In AAAI.

Sharon, G., Stern, R., Goldenberg, M., and Felner, A.
(2013). The increasing cost tree search for optimal
multi-agent pathfinding. Artif. Intell., 195:470–495.

Silver, D. (2005). Cooperative pathfinding. In AIIDE, pages
117–122.

Standley, T. (2010). Finding optimal solutions to coopera-
tive pathfinding problems. In AAAI, pages 173–178.

Sturtevant, N. R. (2012). Benchmarks for grid-based
pathfinding. Computational Intelligence and AI in
Games, 4(2):144–148.

Surynek, P. (2009a). An application of pebble motion on
graphs to abstract multi-robot path planning. In ICTAI
2009, pages 151–158.

Surynek, P. (2009b). A novel approach to path planning for
multiple robots in bi-connected graphs. In ICRA 2009,
pages 3613–3619.

Surynek, P. (2010). An optimization variant of multi-robot
path planning is intractable. In AAAI 2010. AAAI
Press.

Surynek, P. (2012a). On propositional encodings of coop-
erative path-finding. In ICTAI 2012, pages 524–531.
IEEE Computer Society.

Surynek, P. (2012b). Towards optimal cooperative path
planning in hard setups through satisfiability solving.
In PRICAI 2012, pages 564–576. Springer.

Surynek, P. (2014a). Compact representations of coopera-
tive path-finding as SAT based on matchings in bipar-
tite graphs. In ICTAI, pages 875–882.

Surynek, P. (2014b). Solving abstract cooperative path-
finding in densely populated environments. Compu-
tational Intelligence, 30(2):402–450.

Surynek, P. (2017). Time-expanded graph-based proposi-
tional encodings for makespan-optimal solving of co-
operative path finding problems. Ann. Math. Artif. In-
tell., 81(3-4):329–375.

Surynek, P. (2018a). Finding optimal solutions to token
swapping by conflict-based search and reduction to
SAT. In Proceedings of ICTAI 2018, pages 592–599.

Surynek, P. (2018b). Lazy modeling of variants of to-
ken swapping problem and multi-agent path finding
through combination of satisfiability modulo theories
and conflict-based search. CoRR, abs/1809.05959.

Surynek, P., Felner, A., Stern, R., and Boyarski, E. (2016a).
Efficient SAT approach to multi-agent path finding un-
der the sum of costs objective. In ECAI, pages 810–
818.

Surynek, P., Felner, A., Stern, R., and Boyarski, E. (2016b).
An empirical comparison of the hardness of multi-
agent path finding under the makespan and the sum
of costs objectives. In SoCS 2016.

Thorup, M. (2002). Randomized sorting in o(n log log n)
time and linear space using addition, shift, and bit-
wise boolean operations. J. Algorithms, 42(2):205–
230.

Wender, S. and Watson, I. D. (2014). Combining case-based
reasoning and reinforcement learning for unit naviga-
tion in real-time strategy game AI. In ICCBR, volume
8765 of LNCS, pages 511–525. Springer.

Wilson, R. M. (1974). Graph puzzles, homotopy, and the
alternating group. Journal of Combinatorial Theory,
Series B, 16(1):86 – 96.

Yamanaka, K., Demaine, E. D., Horiyama, T., Kawamura,
A., Nakano, S., Okamoto, Y., Saitoh, T., Suzuki, A.,
Uehara, R., and Uno, T. (2017). Sequentially swap-
ping colored tokens on graphs. In WALCOM 2017,
volume 10167 of LNCS, pages 435–447. Springer.

Yamanaka, K., Demaine, E. D., Ito, T., Kawahara, J.,
Kiyomi, M., Okamoto, Y., Saitoh, T., Suzuki, A.,
Uchizawa, K., and Uno, T. (2014). Swapping labeled
tokens on graphs. In FUN 2014 Proceedings, volume
8496 of LNCS, pages 364–375. Springer.

Yamanaka, K., Demaine, E. D., Ito, T., Kawahara, J.,
Kiyomi, M., Okamoto, Y., Saitoh, T., Suzuki, A.,
Uchizawa, K., and Uno, T. (2015). Swapping labeled
tokens on graphs. Theor. Comput. Sci., 586:81–94.

Yamanaka, K., Horiyama, T., Kirkpatrick, D., Otachi, Y.,
Saitoh, T., Uehara, R., and Uno, Y. (2016). Computa-
tional complexity of colored token swapping problem.
In IPSJ SIG Technical Report, volume 156.

Yu, J. and LaValle, S. M. (2013). Planning optimal paths
for multiple robots on graphs. In ICRA 2013, pages
3612–3617.

Yu, J. and LaValle, S. M. (2015). Optimal multi-robot
path planning on graphs: Structure and computational
complexity. CoRR, abs/1507.03289.

Yu, J. and LaValle, S. M. (2016). Optimal multirobot path
planning on graphs: Complete algorithms and effec-
tive heuristics. IEEE Trans. Robotics, 32(5):1163–
1177.

Yu, J. and Rus, D. (2014). Pebble motion on graphs with
rotations: Efficient feasibility tests and planning algo-
rithms. In WAFR 2014, pages 729–746.

Zhou, D. and Schwager, M. (2015). Virtual rigid bodies
for coordinated agile maneuvering of teams of micro
aerial vehicles. In ICRA 2015, pages 1737–1742.

	Introduction
	Background
	RELATED WORK
	Search for Optimal Solutions
	Conflict-based Search
	SAT-based Approach
	Multi-value Decision Diagrams - MDD-SAT

	GENERALIZATIONS OF ITEM RELOCATION
	Token Rotation and Token Permutation
	Adapting CBS and MDD-SAT
	Different Conflicts in CBS
	Encoding Changes in MDD-SAT

	COMBINING SAT-BASED APPROACH AND CBS
	EXPERIMENTAL EVALUATION
	Benchmarks and Setup
	Comparison on Small Graphs
	Evaluation on Large Maps

	CONCLUSIONS

