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Abstract. This paper gives an overview of conflict reasoning in gener-
alizations of multi-agent path finding (MAPF). MAPF and derived vari-
ants assume items placed in vertices of an undirected graph with at most
one item per vertex. Items can be relocated across edges while various
constraints depending on the concrete type of relocation problem must
be satisfied. We recall a general problem formulation that encompasses
known types of item relocation problems such as multi-agent path finding
(MAPF), token swapping (TSWAP), token rotation (TROT), and token
permutation (TPERM). We then focused on three existing optimal al-
gorithms for MAPF: search-based CBS, and propositional satisfiability
(SAT) -based MDD-SAT and SMT-CBS. These algorithms were modi-
fied to tackle various types of conflicts. The major contribution of this
paper is a thorough experimental evaluation of CBS, MDD-SAT, and
SMT-CBS on various types of relocation problems.

Keywords: conflicts, MAPF, token swapping, token rotation, token
permutation, SMT, SAT

1 Introduction

Item relocation problems in graphs such as token swapping (TSWAP) [13,7],
multi-agent path finding (MAPF) [22,28,53], or pebble motion on graphs (PMG)
[47,15] represent important combinatorial problems in artificial intelligence with
specific applications in coordination of multiple robots and other areas such as
quantum circuit compilation [8]. Graphs in item relocation problems may be
directly derived from the physical environment where items move but can be
also represented by abstract spaces like configuration spaces in robotics [52].

Distinguishable items placed in vertices of an undirected graph such that at
most one item is placed in each vertex. Items can be moved across edges while
problem specific rules must be observed. For example, PMG and MAPF usually
assume that items (pebbles/agents) are moved to unoccupied neighbors only.
TSWAP on the other hand permits only swaps of pairs of tokens along edges
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while more complex movements involving more than two tokens are forbidden.
The task in item relocation problems is to reach a given goal configuration from
a given starting configuration.

We focus here on the optimal solving of item relocation problems with re-
spect to common objectives. Two cumulative objective functions are used in
MAPF and TSWAP - sum-of-costs [25,19] and makespan [35,55]. The sum-of-
costs corresponds to the total cost of all movements performed. The makespan
corresponds to the total number of time-steps until the goal is reached. We trying
to minimize the objective in both cases.

Many practical problems from robotics involving multiple robots can be in-
terpreted as an item relocation problems. Examples include discrete multi-robot
navigation and coordination [18], item rearrangement in automated warehouses
[4], ship collision avoidance [14], or formation maintenance and maneuvering
of aerial vehicles [57]. Examples not only include problems concerning physical
items but problems occurring in virtual spaces of simulations [12], computer
games [45], or quantum systems [8].

The contribution of this paper consists in an experimental evaluation of a
general framework for defining and solving item relocation problems based on
satisfiability modulo theories (SMT) [6,40] and conflict-based search (CBS) [24].

The framework has been used to define two problems derived from TSWAP:
token rotation (TROT) and token permutation (TPERM) where instead of swap-
ping pairs of tokens, rotations along non-trivial cycles and arbitrary permuta-
tions of tokens respectively are permitted. We show how to modify existing
algorithms for various variants of item relocation problems. We will adapt the
standard conflict-based search (CBS) but also propositional satisfiability (SAT)
- based MDD-SAT [42] and recent SMT-based SMT-CBS [40].

This work originally appeared as a conference paper [41]. In this revised
version we provide more thorough experimental study of concepts presented
in the original conference paper. We first introduce TSWAP and MAPF. Then
prerequisites for conflict handling formulated in the SMT framework are recalled.
On top of this, the combination of CBS and MDD-SAT is developed - the SMT-
CBS algorithm. Finally, a thorough experimental evaluation of CBS, MDD-SAT,
and SMT-CBS on various benchmarks including both small and large instances
is presented.

2 Background

Multi-agent path finding (MAPF) problem [27,23] consists of an undirected graph
G = (V,E) and a set of agents A = {a1, a2, ..., ak} such that |A| < |V |. Each
agent is placed in a vertex so that at most one agent resides in each vertex. The
placement of agents is denoted α : A→ V . Next we are given nitial configuration
of agents α0 and goal configuration α+.

At each time step an agent can either move to an adjacent location or wait
in its current location. The task is to find a sequence of move/wait actions for
each agent ai, moving it from α0(ai) to α+(ai) such that agents do not conflict,
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i.e., do not occupy the same location at the same time. Typically, an agent can
move into adjacent unoccupied vertex provided no other agent enters the same
target vertex but other rules for movements are used as well.

The following definition formalizes the commonly used move-to-unoccupied
movement rule in MAPF.

Definition 1. Movement in MAPF. Configuration α′ results from α if and
only if the following conditions hold: (i) α(a) = α′(a) or {α(a), α′(a)} ∈ E for
all a ∈ A (agents wait or move along edges); (ii) for all a ∈ A it holds that
if α(a) 6= α′(a) ⇒ α′(a) 6= α(a′) for all a′ ∈ A (target vertex must be empty);
and (iii) for all a, a′ ∈ A it holds that if a 6= a′ ⇒ α′(a) 6= α′(a′) (no two agents
enter the same target vertex).

Solving the MAPF instance is to search for a sequence of configurations
[α0, α1, ..., αµ] such that αi+1 results using valid movements from αi for i =
1, 2, ..., µ− 1, and αµ = α+.

In many aspects, a token swapping problem (TSWAP) (also known as sorting
on graphs) [49] is similar to MAPF. It represents a generalization of sorting
problems [44]. While in the classical sorting problem we need to obtain linearly
ordered sequence of elements by swapping any pair of elements, in the TSWAP
problem we are allowed to swap elements at selected pairs of positions only.

Using a modified notation from [50] the TSWAP each vertex in G is assigned
a color in C = {c1, c2, ..., ch} via τ+ : V → C. A token of a color in C is placed in
each vertex. The task is to transform a current token placement into the one such
that colors of tokens and respective vertices of their placement agree. Desirable
token placement can be obtained by swapping tokens on adjacent vertices in G.

We denote by τ : V → C colors of tokens placed in vertices of G. That is,
τ(v) for v ∈ V is a color of a token placed in v. Starting placement of tokens
is denoted as τ0; the goal token placement corresponds to τ+. Transformation
of one placement to another is captured by the concept of adjacency defined as
follows [50,48]:

Definition 2. adjacency in TSWAP Token placements τ and τ ′ are said
to be adjacent if there exists a subset of non-adjacent edges F ⊆ E such that
τ(v) = τ ′(u) and τ(u) = τ ′(v) for each {u, v} ∈ F and for all other vertices
w ∈ V \

⋃
{u,v}∈F {u, v} it holds that τ(w) = τ ′(w). 1

The task in TSWAP is to find a swapping sequence of token placements
[τ0, τ1, ..., τm] such that τm = τ+ and τi and τi+1 are adjacent for all i =
0, 1, ...,m − 1. It has been shown that for any initial and goal placement of
tokens τ0 and τ+ respectively there is a swapping sequence transforming τ0 and
τ+ containing O(|V |2) swaps [51]. The proof is based on swapping tokens on
a spanning tree of G. Let us note that the above bound is tight as there are
instances consuming Ω(|V |2) swaps. It is also known that finding a swapping
sequence that has as few swaps as possible is an NP-hard problem.

1 The presented version of adjacency is sometimes called parallel while a term adja-
cency is reserved for the case with |F | = 1.
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If each token has a different color we do not distinguish between tokens and
their colors ci; that is, we will refer to a token ci.

3 Related Work

Although many works sudying TSWAP from the theoretical point of view exist
[51,19,7] practical solving of the problem started only lately. In [39] optimal solv-
ing of TSWAP by adapted algorithms from MAPF has been suggested. Namely
conflict-based search (CBS) [26,24] and propositional satisfiability-based (SAT)
[5] MDD-SAT [42,43] originally developed for MAPF have been modified for
TSWAP.

3.1 Search for Optimal Solutions

We will commonly use the sum-of-costs objective funtion in all problems studied
in this paper. The following definition introduces the sum-of-costs objective in
MAPF.

Definition 3. Sum-of-costs (denoted ξ) is the summation, over all agents, of
the number of time steps required to reach the goal vertex [10,28,25,24]. Formally,

ξ =
∑k
i=1 ξ(path(ai)), where ξ(path(ai)) is an individual path cost of agent ai

connecting α0(ai) calculated as the number of edge traversals and wait actions.
2

Observe that in the sum-of-costs we accumulate the cost of wait actions for
items not yet reaching their goal vertices. Also observe that one swap in the
TSWAP problem yields the cost of 2 as two tokens traverses single edge.

A feasible solution of a solvable MAPF instance can be found in polynomial
time [47,15]; precisely the worst case time complexity of most practical algo-

rithms for finding feasible solutions is O(|V |3) (asymptotic size of the solution

is also O(|V |3)) [32,31,37,17,16,46]. This is also asymptotically best possible as

there are MAPF instances requiring Ω(|V |2) moves. As with TSWAP, finding
optimal MAPF solutions with respect to various cummulative objectives is NP-
hard [21,33,54].

3.2 Conflict-based Search

CBS uses the idea of resolving conflicts lazily; that is, a solution is searched
against an incomplete set of movement constraints hoping a valid solution can
be found before all constraints are added.

The high level of CBS searches a constraint tree (CT) using a priority queue
in breadth first manner. CT is a binary tree where each node N contains a set of

2 The notation path(ai) refers to path in the form of a seqeunce of vertices and edges
connecting α0(ai) and α+(ai) while ξ assigns the cost to a given path.
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collision avoidance constraints N.constraints - a set of triples (ai, v, t) forbidding
occurrence of agent ai in vertex v at time step t, a solution N.paths - a set of k
paths for individual agents, and the total cost N.ξ of the current solution.

The low level process in CBS associated with node N searches paths for
individual agents with respect to set of constraints N.constraints. For a given
agent ai, this is a standard single source shortest path search from α0(ai) to
α+(ai) that avoids a set of vertices {v ∈ V |(ai, v, t) ∈ N.constraints} whenever
working at time step t. For details see [24].

CBS stores nodes of CT into priority queue Open sorted according to as-
cending costs of solutions. At each step CBS takes node N with lowest cost
from Open and checks if N.paths represents paths that are valid with re-
spect to movements rules in MAPF. That is, if there are any collisions be-
tween agents in N.paths. If there is no collision, the algorithms returns valid
MAPF solution N.paths. Otherwise the search branches by creating a new pair
of nodes in CT - successors of N . Assume that a collision occurred between
agents ai and aj in vertex v at time step t. This collision can be avoided if
either agent ai or agent aj does not reside in v at timestep t. These two op-
tions correspond to new successor nodes of N - N1 and N2 that inherits set
of conflicts from N as follows: N1.conflicts = N.conflicts ∪ {(ai, v, t)} and
N2.conflicts = N.conflicts ∪ {(aj , v, t)}. N1.paths and N1.paths inherit path
from N.paths except those for agent ai and aj respectively. Paths for ai and
aj are recalculated with respect to extended sets of conflicts N1.conflicts and
N2.conflicts respectively and new costs for both agents N1.ξ and N2.ξ are de-
termined. After this N1 and N2 are inserted into the priority queue Open.

The pseudo-code of CBS is listed as Algorithm 1. One of crucial steps occurs
at line 16 where a new path for colliding agents ai and aj is constructed with
respect to an extended set of conflicts. Notation N.paths(a) refers to the path
of agent a.

3.3 SAT-based Approach

An alternative approach to optimal MAPF solving is represented by the re-
duction of MAPF to propositional satisfiability (SAT) [30,34]. The idea is to
construct a propositional formula such F(ξ) such that it is satisfiable if and only
if a solution of a given MAPF of sum-of-costs ξ exists.

Being able to construct such formula F one can obtain optimal MAPF solu-
tion by checking satisfiability of F(0), F(1), F(2),... until the first satisfiable F(ξ)
is met. This is possible due to monotonicity of MAPF solvability with respect to
increasing values of common cummulative objectives such as the sum-of-costs.
The framework of SAT-based solving is shown in pseudo-code in Algorithm 2.

The advantage of the SAT-based approach is that state-of-the-art SAT solvers
can be used for determinig satisfiability of F(ξ) [1].

Construction of F(ξ) relies on time expansion of underlying graph G [38].
Having ξ, the basic variant of time expansion determines the maximum number
of time steps µ (also refered to as a makespan) such that every possible solution
of the given MAPF with the sum-of-costs less than or equal to ξ fits within
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Algorithm 1: Basic CBS algorithm for MAPF solving [41]

1 CBS (G = (V,E), A, α0, α+)
2 R.constraints← ∅
3 R.paths← {shortest path from α0(ai) to α+(ai)|i = 1, 2, ..., k}
4 R.ξ ←

∑k

i=1
ξ(N.paths(ai))

5 insert R into Open
6 while Open 6= ∅ do
7 N ← min(Open)
8 remove-Min(Open)
9 collisions← validate(N.paths)

10 if collisions = ∅ then
11 return N.paths

12 let (ai, aj , v, t) ∈ collisions
13 for each a ∈ {ai, aj} do
14 N ′.constraints← N.constraints ∪ {(a, v, t)}
15 N ′.paths← N.paths
16 update(a, N ′.paths, N ′.conflicts)

17 N ′.ξ ←
∑k

i=1
ξ(N ′.paths(ai))

18 insert N ′ into Open

µ timestep (that is, no agent is outside its goal vertex after µ timestep if the
sum-of-costs ξ is not to be exceeded).

Time expansion itself makes copies of vertices V for each timestep t =
0, 1, 2, ..., µ. That is, we have vertices vt for each v ∈ V time step t. Edges from
G are converted to directed edges interconnecting timesteps in time expansion.
Directed edges (ut, vt+1) are introduced for t = 1, 2, ..., µ − 1 whenever there is
{u, v} ∈ E. Wait actions are modeled by introducing edges (ut, tt+1). A directed
path in time expansion corresponds to trajectory of an agent in time. Hence
the modeling task now consists in construction of a formula in which satisfying
assignments correspond to directed paths from α0

0(ai) to αµ+(ai).

Assume that we have time expansion TEGi = (Vi, Ei) for agent ai. Propo-
sitional variable X tv(aj) is introduced for every vertex vt in Vi. The semantics
of X tv(ai) is that it is True if and only if agent ai resides in v at time step t.
Similarly we introduce Eu, vt(ai) for every directed edge (ut, vt+1) in Ei. Anal-
ogously the meaning of Etu,v(ai) is that is True if and only if agent ai traverses
edge {u, v} between time steps t and t+ 1.

Finally constraints are added so that truth assignment are restricted to those
that correspond to valid solutions of a given MAPF. The detailed list of con-
straints is given in [42]. We here just illustrate the modeling by showing few
representative constraints. For example there is a constraint stating that if agent
ai appears in vertex u at time step t then it has to leave through exactly one
edge (ut, vt+1). This can be established by following constraints [41]:
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Algorithm 2: Framework of SAT-based MAPF solving [41]

1 SAT-Based (G = (V,E), A, α0, α+)
2 paths← {shortest path from α0(ai) to α+(ai)|i = 1, 2, ..., k}
3 ξ ←

∑k

i=1
ξ(N.paths(ai))

4 while True do
5 F(ξ)← encode(ξ,G,A, α0, α+)
6 assignment← consult-SAT-Solver(F(ξ))
7 if assignment 6= UNSAT then
8 paths← extract-Solution(assignment)
9 return paths

10 ξ ← ξ + 1

X tu(ai)⇒
∨

(ut,vt+1)∈Ei

Etu,v(ai), (1)

∑
vt+1|(ut,vt+1)∈Ei

Etu,v(ai) ≤ 1 (2)

Similarly, the target vertex of any movement except wait action must be
empty. This is ensured by the following constraint for every (ut, vt+1) ∈ Ei [41]:

Etu,v(ai)⇒
∧

aj∈A∧aj 6=ai∧vt∈Vj

¬X tv(aj) (3)

Other constraints ensure that truth assignments to variables per individual
agents form paths. That is if agent ai enters an edge it must leave the edge at
the next time step [41]:

Etu,v(ai)⇒ X tv(ai) ∧ X t+1
v (ai) (4)

Agents do not collide with each other; the following constraint is introduced
for every v ∈ V and timestep t [41]:∑

i=1,2,...,k|vt∈Vi

X tv(ai) (5)

A common measure how to reduce the number of decision variables derived
from the time expansion is the use of multi-value decision diagrams (MDDs) [25].
The basic observation that holds for MAPF and other item relocation problems
is that a token/agent can reach vertices in the distance d (distance of a vertex
is measured as the length of the shortest path) from the current position of the
agent/token no earlier than in the d-th time step.

Above observations can be utilized when making the time expansion of G.
For a given agent or token, we do not need to consider all vertices at time step
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t but only those that are reachable in t timesteps from the initial position and
that ensure that the goal can be reached in the remaining σ − t timesteps.

The combination of SAT-based approach and MDD time expansion led to the
MDD-SAT algorithm described in [42] that currently represent state-of-the-art
in SAT-based MAPF solving.

4 Generalizations of Item Relocation

We define two problems derived from MAPF and TSWAP: token rotation (TROT)
and token permutation (TPERM) 3.

4.1 Token Rotation and Token Permutation

A swap of pair of tokens can be interpreted as a rotation along a trivial cy-
cle consisting of single edge. We can generalize this towards longer cycles. The
TROT problem permits rotations along longer cycles but forbids trivial cycles;
that is, rotations along triples, quadruples, ... of vertices is allowed but swap
along edges are forbidden.

Definition 4. Adjacency in TROT. Token placements τ and τ ′ are said to be
adjacent in TROT if there exists a subset of edges F ⊆ E such that components
C1, C2, ..., Cp of induced sub-graph G[F ] satisfy following conditions:

(i) Cj = (V Cj , E
C
j ) such that V Cj = wj1, w

j
2, ..., w

j
nj

with nj ≤ 3 and

ECj = {{wj1, w
j
2}; {w

j
2, w

j
3}; ...; {wjnj

, wj1}}
(components are cycles of length at least 3)

(ii) τ(wj1) = τ ′(wj2), τ(wj3) = τ ′(wj3), ..., τ(wjnj
) = τ ′(wj1)

(colors are rotated in the cycle one position forward/backward)

The rest of the definition of a TROT instance is analogous to TSWAP.
Similarly we can define TPERM by permitting all lengths of cycles. The

formal definition of adjacency in TPERM is almost the same as in TROT except
relaxing the constraint on cycle lenght, nj ≤ 2.as

We omit here complexity considerations for TROT and TPERM for the sake
of brevity. Again it holds that a feasible solution can be found in polynomial
time but the optimal cases remain intractable in general.

Both approaches - SAT-based MDD-SAT as well as CBS - can be adapted for
solving TROT and TPERM without modifying their top level design. Only local
modification of how movement rules of each problem are reflected in algorithms
is necessary. In case of CBS, we need to define what does it mean a conflict
in TROT and TPERM. In MDD-SAT different movement constraints can be
encoded directly.

3 These problems have been considered in the literature in different contexts already
(for example in [56]). But not from the practical solving perspective focused on
finding optimal solutions.
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Motivation for studying these item relocation problems is the same as for
MAPF. In many real-life scenarios it happens that items or agents enters posi-
tions being simultaneously vacated by other items (for example mobile robots
often ). This is exactly the property captured formally in above definitions.

4.2 Adapting CBS and MDD-SAT

Both CBS and MDD-SAT can be modified for optimal solving of TSWAP,
TROT, and TPERM (with respect to sum-of-costs but other cumulative ob-
jectives are possible as well). Different movement rules can be reflected in CBS
and MDD-SAT algorithms without modifying their high level framework.

Different Conflicts in CBS In CBS, we need to modify the understanding
of conflict between agents/tokens. In contrast to the original CBS we need to
introduce edge conflicts to be able to handle conflicts properly in TSWAP and
TROT.

Edge conflicts have been introduced to tackle conflicting situations in TSWAP
and TROT properly within CBS and SMT-CBS. An edge conflict is triple
(ci, (u, v), t) with ci ∈ C, u, v ∈ V and timestep t. The interpretation of (ci, (u, v), t)
is that token ci cannot move across {u, v} from u to v between timesteps t and
t+ 1.

Conflict reasoning in individual item relocation problems follows.

TPERM: The easiest case is TPERM as it is least restrictive. We merely forbid
simultaneous occurrence of multiple tokens in a vertex - this situation is under-
stood as a collision in TPERM and conflicts are derived from it. If a collision
(ci, cj , v, t) between tokens ci and cj occurs in v at time step t then we introduce
conflicts (ci, v, t) and (cj , v, t) for ci and cj respectively. 4

TSWAP: This problem takes conflicts from TPERM but adds new conflicts
that arise from doing something else than swapping [39]. Each time edge {u, v}
is being traversed by token ci between time steps t and t+ 1, a token residing in
v at time step t, that is τt(v), must go in the opposite direction from v to u. If
this is not the case, then a so called edge collision involving edge {u, v} occurs
and corresponding edge conflicts (ci, (u, v), t) and (τt(v), (v, u), t) are introduced
for agents ci and τt(v) respectively.

Edge conflicts must be treated at the low level of CBS. Hence in addition
to forbidden vertices at given time-steps we have forbidden edges between given
time-steps.
TROT: The treatment of conflicts will be complementary to TSWAP in TROT.
Each time edge {u, v} is being traversed by token ci between time steps t and t+1,
a token residing in v at time step t, that is τt(v), must go anywhere else but not
to u. If this is not the case, then we again have edge collision (ci, τt(v),{u,v}, t)
which is treated in the same way as above.

4 Formally this is the same as in MAPF, but in addition to this MAPF checks vacancy
of the target vertex which may cause more colliding situations.
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Encoding Changes in MDD-SAT In MDD-SAT, we need to modify encoding
of movement rules in the propositional formula F(ξ). Again, proofs of soundness
of the following changes are omitted.
TPERM: This is the easiest case for MDD-SAT too. We merely remove all
constrains requiring tokens to move into vacant vertices only. That is we remove
clauses (3).
TSWAP: It inherits changes from TPERM but in addition to that we need
to carry out swaps properly. For this edge variables Etu,v(ci) will be utilized.
Following constraint will be introduced for every {ut, vt+1} ∈ Ei (intuitively,
if token ci traverses {u, v} some other token cj traverses {u, v} in the opposite
direction) [41]:

Etu,v(ci)⇒
∨

j=1,2,...,k|j 6=i∧(ut,vt+1)∈Ej

Etv,u(cj) (6)

TROT: TROT is treated in a complementary way to TSWAP. Instead of adding
constraints (6) we add constraints forbidding simultaneous traversal in the op-
posite direction as follows [41]:

Etu,v(ci)⇒
∧

j=1,2,...,k|j 6=i∧(ut,vt+1)∈Ej

¬Etv,u(cj) (7)

5 Combining the SAT-based Approach and CBS

A close look at CBS reveals that it works similarly as problem solving in satisfi-
ability modulo theories (SMT) [6,20]. SMT divides satisfiability problem in some
complex theory T into an abstract propositional part that keeps the Boolean
structure of the problem and simplified decision procedure DECIDET that
decides only conjunctive formulae over T . A general T -formula is transformed
to propositional skeleton by replacing atoms with propositional variables. The
SAT-solving procedure then decides what variables should be assigned TRUE
in order to satisfy the skeleton - these variables tells what atoms holds in T .
DECIDET checks if the conjunction of selected (satisfied) atoms is satisfiable.
If so then solution is returned. Otherwise a conflict from DECIDET is reported
back and the skeleton is extended with a constraint that eliminates the conflict.

Following the above observation we rephrased CBS in the SMT manner. The
abstract propositional part working with the skeleton was taken from MDD-
SAT except that only constraints ensuring that assignments form valid paths
interconnecting starting positions with goals will be preserved. Other constraints,
namely those ensuring collision avoidance between items will be omitted initially.
Paths validation procedure will act as DECIDET and will report back a set of
conflicts found in the current solution (here is a difference from the SMT-style
solving that reports only one conflict while here we take all conflicts). We call
the new algorithm SMT-CBS and it is shown in pseudo-code as Algorithm 3 (it
is formulated for MAPF; but is applicable for TSWAP, TPERM, and TROT
after replacing conflict resolution part).



Multi-Agent Path Finding with Generalized Conflicts: an experimental study 11

Algorithm 3: SMT-CBS algorithm for solving MAPF [41]

1 SMT-CBS (Σ = (G = (V,E), A, α0, α+))
2 conflicts← ∅
3 paths← {shortest path from α0(ai) to α+(ai)|i = 1, 2, ..., k}
4 ξ ←

∑k

i=1
ξ(paths(ai))

5 while True do
6 (paths, conflicts)← SMT-CBS-Fixed(conflicts, ξ,Σ)
7 if paths 6= UNSAT then
8 return paths

9 ξ ← ξ + 1

10 SMT-CBS-Fixed(conflicts, ξ,Σ)
11 F(ξ))← encode-Basic(conflicts, ξ,Σ)
12 while True do
13 assignment← consult-SAT-Solver(F(ξ))
14 if assignment 6= UNSAT then
15 paths← extract-Solution(assignment)
16 collisions← validate(paths)
17 if collisions = ∅ then
18 return (paths, conflicts)

19 for each (ai, aj , v, t) ∈ collisions do
20 F(ξ)← ¬X t

v(ai) ∨ ¬X t
v(aj)

21 conflicts← conflicts ∪ {[(ai, v, t), (aj , v, t)]}

22 return (UNSAT,conflicts)

The algorithm is divided into two procedures: SMT-CBS representing the
main loop and SMT-CBS-Fixed solving the input MAPF for a fixed cost ξ. The
major difference from the standard CBS is that there is no branching at the
high level. The high level SMT-CBS roughly corresponds to the main loop of
MDD-SAT. The set of conflicts is iteratively collected during entire execution of
the algorithm. Procedure encode from MDD-SAT is replaced with encode-Basic
that produces encoding that ignores specific movement rules (collisions between
agents) but on the other hand encodes collected conflicts into F(ξ).

The conflict resolution in the standard CBS implemented as high-level branch-
ing is here represented by refinement of F(ξ) with a disjunction (line 20). Branch-
ing is thus deferred into the SAT solver. The advantage of SMT-CBS is that it
builds the formula lazily; that is, it adds constraints on demand after a conflict
occurs. Such approach may save resources as solution may be found earlier than
all constraints are added. In contrast to this, the eager approach of MDD-SAT
first adds all constraints and then solves the complete formula.
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6 Experimental Evaluation

To evaluate how different conflicts affect the performance of solving algorithms
we performed an extensive evaluation of all presented algorithms on both stan-
dard synthetic benchmarks [9,25] and large maps from games [29]. A represen-
tative part of results is presented in this section.

 

Fig. 1. Example of 4-connected grid, star, path, and clique [41].

6.1 Benchmarks and Setup

We implemented the SMT-CBS algorithm in C++ on top of the Glucose 4 SAT
solver [1,2]. The choice of Glucose 4 is given by the fact that it ranks among the
best SAT solvers according to recent SAT solver competitions [3]. The standard
CBS has been re-implemented from scratch since the original implementation
written in Java does support only grids but not general graphs [24] that we need
in our tests.

Regarding MDD-SAT we used an existing implementation in C++ [42]. The
original MDD-SAT has been developed for MAPF but versions applicable on
TSWAP, TROT, and TPERM are implemented in the existing package as well.
All experiments were run on a Ryzen 7 CPU 3.0 Ghz under Kubuntu linux 16
with 16GB RAM5.

Our experimental evaluation is divided in three parts. The first part of ex-
perimental evaluation has been done on diverse instances consisting of small
graphs: random graphs containing 20% of random edges, star graphs, paths, and
cliques (see Figure 1). The initial and the goal configuration of tokens/agents
was set at random in all tests. The size of the set of vertices of clique, random
graph, path, and star graphs was 16 . Small graphs were densely populated with
tokes/agents. Instances containing up to 40 tokens/agents in grids of size 8× 8
and up to 64 tokens/agents in grids of size 16 × 16 were generated. All gener-
ated instances were solvable but not all of them could be solved under the given
timeout.

5 To enable reproducibility of results presented in this paper we pro-
vide complete source codes and experimental data on author’s web page:
http://users.fit.cvut.cz/surynpav/research/icaart2019revised.

http://users.fit.cvut.cz/surynpav/research/icaart2019revised
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Fig. 2. Runtime comparison of CBS, MDD-SAT, and SMT-CBS algorithms solving
MAPF, TSWAP, TPERM, and TROT on 8× 8 grid [41].

The second part of experiments has been done on medium-sized graphs -
4-connected open grids of size 8×8 and 16×16. This is the standard benchmark
being used for evaluation of MAPF algorithms [11].

And finally the third part of experimental evaluation took place on large
4-connected maps taken from Dragon Age [24,29] - three maps we used in our
experiments are shown in Figure 3. These are structurally different maps focusing
on various aspects such as narrow corridors, large almost isolated rooms, or
topologically complex open space. In contrast to small instances, these were only
sparsely populated with items. Initial and goal configuration were generated at
random again.

We varied the number of items in relocation instances to obtain instances of
various difficulties; that is, the underlying graph was not fully occupied - which
in MAPF has natural meaning while in token problems we use one special color
⊥ ∈ C that stands for any empty vertex (that is, we understand v as empty if
and only if τ(v) = ⊥). For each number of items in the relocation instance we
generated 10 random instances. For example, a clique consisting of 16 vertices
gives 160 instances in total.

The timeout was set to 60 seconds in the series of tests comparing the perfor-
mance of CBS, MDD-SAT, and, SMT-CBS with respect to the growing number
of items. The next series of large scale tests comparing the performance of CBS
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brc202d den520d ost003d 

Fig. 3. Three structurally diverse Dragon-Age maps used in the experimental evalua-
tion. This selection includes: narrow corridors in brc202d, large topologically complex
space in den520d, and open space with large almost isolated rooms in ost003d [41].
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Fig. 4. Comparison of TROT solving by CBS, MDD-SAT, and SMT-CBS on a star
and clique graphs consisting of 16 vertices [41].

and SMT-CBS with respect to the growing difficulty of instances used the time-
out of 1000 seconds (sorted runtimes are compared). All presented results were
obtained from instances finished under the given timeout.

6.2 Comparison on Small Graphs

Tests on small graphs were focused on the runtime comparison and the evaluation
of the size of encodings in case of MDD-SAT and SMT-CBS. Part of results we
obtained is presented in Figures 2, 4, and 5. The mean runtime out of 10 random
instances is reported per each number of items. Surprisingly we can see in 4 that
instances are relatively hard even for small graphs. For CBS the runtime quickly
grows with the increasing number of items. The runtime growth is slower in case
of MDD-SAT and SMT-CBS but even these algorithms are not fast enough to
solve all instances under the given timeout (only instances with up to 11 items
were solved).

In all tests CBS turned out to be uncompetitive against MDD-SAT and SMT-
CBS on instances containing more agents. This is an expectable result as it is
known that performance of CBS degrades quickly on densely occupied instances
[43].
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Number of generated clauses 

|Agents| 4 8 12 16 20 

MDD-SAT 556 56 652 1 347 469 3 087 838 2 124 941 

SMT-CBS 468 31 973 598 241 1 256 757 803 671 

 
Fig. 5. Comparison of the size of encodings generated by MDD-SAT and SMT-CBS
(number of clauses is shown) on MAPF instances [41].
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Fig. 6. Sorted runtimes of CBS and SMT-CBS solving MAPF on clique, random, and
star graphs consisting of 16 vertices.

If we focus on the number of clauses generated by SAT-based solvers MDD-
SAT and SMT-CBS we can see that MAPF, TSWAP and TROT have more
clauses in their eagerly-generated encodings by MDD-SAT than TPERM hence
SMT-CBS has greater room for reducing the size of the encoding by constructing
it lazily in these types of relocation problems.

Experiments indicate that using SMT-CBS generally leads to reduction of
the size of encoding to less than half of the original size generated by MDD-SAT
in case of MAPF, TSWAP, and TROT. Results concerning this claim for MAPF
are shown in Figure 5. The number of clauses for 4-connected grids are analyzed
in the next section.

In the rest of runtime experiments that are focused on large scale evaluation
we omitted MDD-SAT.

Figures 6, 7, 8, and 9 show sorted runtimes of CBS and SMT-CBS solving
MAPF, TSWAP, TROT, and TPERM on all types of small graphs: clique, path,
random graph, a star all consisting of 16 vertices (some combinations were not
applicable: MAPF is typically unsolvable on path; TROT is trivial on clique but
unsolvable on path; and TPERM is also trivial on clique).

The general trend is that CBS clearly dominates in easier instances but its
performance degrades faster as instances gets harder where SMT-CBS tends to
dominate. Eventually SMT-CBS solved more out of 160 instances per test than
CBS under the given timeout of 1000 seconds.

Some cases are particularly interesting as they point to the role of the struc-
ture of the underlying graph in the difficulty of instance. CBS significantly out-
performs SMT-CBS on easy instances over cliques (and generally highly con-
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Fig. 7. Sorted runtimes of CBS and SMT-CBS solving TSWAP on clique, path, random,
and star graphs consisting of 16 vertices.

nected graphs). Instances over paths seem to yield biggest difference in perfor-
mance of CBS and SMT-CBS, CBS looses very quickly here.

Interesting results can be seen on star graphs. The growth of the runtime
across sorted instances looks step-wise here (especially in TPERM - Figure 9).
The interpretation is that adding an item into the graph causes sharp increase
in the runtime (a step consists of 10 instances of roughly similar difficulty).

SMT-CBS turned out to be fastest in performed tests on small graphs. SMT-
CBS reduces the runtime by about 30% to 50% relatively to MDD-SAT. More
significant benefit of SMT-CBS was observed in MAPF and TSWAP while in
TROT and TPERM the improvement was less significant.

6.3 Comparison on 4-connected Grids

Solving of all types of relocation problems on girds - the 8×8 grid and the 16×16
grid - is shown in Figure 10 and 11. A different pattern can be observed in these
results, SMT-CBS dominates across all difficulties of instances over CBS.

The 8 × 8 grid contained up to 40 items, so having 10 random instances
per number of agents, we had 400 instances in total, but only about 300 were
solvable under 1000 seconds in the case of TPERM problem using SMT-CBS. In
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Fig. 8. Sorted runtimes of CBS and SMT-CBS solving TROT on random and star
graphs consisting of 16 vertices.
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Fig. 9. Sorted runtimes of CBS and SMT-CBS solving TPERM on random and star
graphs consisting of 16 vertices.

the 16×16 grid we had up to 64 items yielding to 640 instances in total. Almost
all were solvable in the case of TPERM by SMT-CBS.

On the 16 × 16 grid the dominance of SMT-CBS seems to be pronounced.
The general observation from this trend is that the difficulty on instances for
CBS grows faster with every new item on larger maps than in smaller maps
(disregarding the region where the performance of CBS and SMT-CBS is roughly
the same). This observation complements results for large maps where we will
see even bigger difference in difficulty growth.

In addition to runtime experiments we measured the number of generated
clauses for instances on the 8×8 grid and the 16×16 grid. Results are presented
in Figures 12 and 13.

We can observe that there is a small difference in the number of generated
clauses between MDD-SAT and SMT-CBS on the TPERM problem. This can be
attributed to the fact that TPERM is the least constrained version of relocation
problems hence conflicts here arise less frequently and are simpler to express
than in other more constrained versions. In other words, an encoding forbidding
no conflict is of similar size as that eagerly forbidding all conflicts.
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Fig. 10. Sorted runtimes of CBS and SMT-CBS solving MAPF, TSWAP, TPERM,
and TROT on the 8× 8 grid [41].

In MAPF, TSWAP, and TROT we can observe on both the 8 × 8 grid and
the 16 × 16 grid that the difference in the size of eagerly generated encoding
and lazily generated encoding grows in instances containing more agents. The
reduction to about half of the size of the encoding generated by MDD-SAT can
be achieved by SMT-CBS in sparsely occupied instances. But the difference is
up to the factor of 10 in densely occupied instances.

6.4 Evaluation on Large Maps

The final category of tests was focused on the performance of CBS and SMT-
CBS on large maps (experimenting with MDD-SAT was omitted here). In the
three structurally different maps, up to 64 items were placed randomly. Again
we had 10 random instances per each number of items.

Sorted runtimes are reported for each individual map and each version of
relocation problem in Figures 14, 15, 16, and 17. Somewhat different picture can
be seen here in comparison with experiments on small graphs. We attribute the
different picture to the fact that we observe the problem in a different scale.

CBS shows its advantage over SMT-CBS across large set of easier instances
where these correspond to instances containing fewer items. Eventually however
SMT-CBS wins since the runtime of SMT-CBS goes quickly up when instances
get more difficult. This is quite expectable from the theoretical properties of
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Fig. 11. Sorted runtimes of CBS and SMT-CBS solving MAPF, TSWAP, TPERM,
and TROT on the 16× 16 grid.

CBS and SMT-CBS. In instances with few items, CBS mostly searches for sin-
gle source shortest paths while not needing to handle conflicts frequently. This is
easier than building a SAT instance for the same problem. The situation changes
when CBS must handle frequent conflicts between items in more densely occu-
pied instances. Here viewing the problem as SAT and handling many conflicts
in SAT as done by SMT-CBS seems to be more efficient than handling conflicts
via branching the search at the high level in CBS.

MAPF and TSWAP are relatively more constrained than TROT and TPERM
while TPERM is the least constrained version of item relocation. This property
is clearly reflected in the line with the above observation in experiments. We
can see that in less constrained cases CBS performs better than SMT-CBS for
larger set of instances. Especially it is observable in TROT and TPERM solving
on the brc202d map.

The overall analysis of runtimes can be summarized into the observation
that whenever CBS has a chance to search for a long conflict free path it can
outperform SMT-CBS. On the other hand if conflict handling due to intensive
interaction among items prevails then SMT-CBS tends to dominate.
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Fig. 12. The number of clauses generated by MDD-SAT and SMT-CBS when solving
MAPF, TSWAP, TPERM, and TROT on the 8× 8 grid.

7 CONCLUSIONS

This paper summarizes a general framework for reasoning about conflicts in
item relocation problems in graphs based on concepts from the CBS algorithm.
Different types of conflicts in four versions of relocation problems derived from
multi-agent path finding (MAPF) are studied. In addition to two well studied
problems MAPF and TSWAP, we also cover two derived variants TROT and
TPERM. We presented thorough experimental evaluation of conflict handling in
CBS, MDD-SAT and novel algorithm SMT-CBS that combines CBS and SAT-
based reasoning from MDD-SAT. The experimental evaluation has been focused
on runtime comparison as well as on the size of generated SAT encodings.

Experiments with CBS, MDD-SAT, and SMT-CBS showed that SMT-CBS
outperforms both CBS and MDD-SAT on harder instances in all types of graphs.
The most significant benefit of SMT-CBS can be observed on highly constrained
MAPF and TSWAP instances where disjunctive conflict elimination is inten-
sively used. The CBS algorithm on the other hand suffers from steep growth
of the runtime in instances containing more items because it has to eliminate
many conflicts through branching at the high level. This observation can be made
across all individual types of relocation problem. The search for long paths with
few conflicts is, on the other hand, the performance bottleneck of SMT-CBS.
Hence in easier instances CBS is usually the fastest option.
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Fig. 13. The number of clauses generated by MDD-SAT and SMT-CBS when solving
MAPF, TSWAP, TPERM, and TROT on the 16× 16 grid.

MDD-SAT placed in the middle between CBS and SMT-CBS. The perfor-
mance of MDD-SAT almost copies that of SMT-CBS though it is worse approx-
imately by a factor of 2.0.

For the future work we plan to revise SAT encodings used in SMT-CBS and
perform relevant experiments. Variables Eu, vt(ai) are auxiliary in fact as they
can be derived from X tv(ai). Hence we plan to make experiments with modified
encodings where Eu, vt(ai) variables will not be used. This attempt is inspired
by the DIRECT encoding [36] that was the first MAPF encoding relying on only
X tv(ai) variables.

References

1. Audemard, G., Lagniez, J., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: Application to MUS extraction. In: SAT. pp. 309–317
(2013)

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI. pp. 399–404 (2009)

3. Balyo, T., Heule, M.J.H., Järvisalo, M.: SAT competition 2016: Recent develop-
ments. In: AAAI. pp. 5061–5063 (2017)

4. Basile, F., Chiacchio, P., Coppola, J.: A hybrid model of complex automated ware-
house systems - part I: modeling and simulation. IEEE Trans. Automation Science
and Engineering 9(4), 640–653 (2012)



22 P. Surynek

 

 

0,01

0,1

1

10

100

1000

0 80 160 240 320

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

 

Instance 

Runtime Ost003d| MAPF 

CBS SMT-CBS

0,01

0,1

1

10

100

1000

0 80 160 240 320

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

 

Instance 

Runtime Brc202d| MAPF 

CBS SMT-CBS

0,01

0,1

1

10

100

1000

0 80 160 240 320 400

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

 

Instance 

Runtime Den520d| MAPF 

CBS SMT-CBS

Fig. 14. Sorted runtimes of CBS and SMT-CBS solving MAPF on ost003d, brc202d,
and den520d maps.

 

 

0,01

0,1

1

10

100

1000

0 80 160 240 320

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

 

Instance 

Runtime Ost003d| TSWAP 

CBS SMT-CBS

0,01

0,1

1

10

100

1000

0 80 160 240 320 400

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

 

Instance 

Runtime Brc202d| TSWAP 

CBS SMT-CBS

0,01

0,1

1

10

100

1000

0 80 160 240 320 400
R

u
n

ti
m

e 
(s

ec
o

n
d

s)
 

Instance 

Runtime Den520d| TSWAP 

CBS SMT-CBS

Fig. 15. Sorted runtimes of CBS and SMT-CBS solving TSWAP on ost003d, brc202d,
and den520d maps.

5. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfia-
bility: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press
(2009)

6. Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: Solving constraint satisfaction problems
with SAT modulo theories. Constraints 17(3), 273–303 (2012)
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Fig. 16. Sorted runtimes of CBS and SMT-CBS solving TROT on ost003d, brc202d,
and 2den520d maps.
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