
Multi-Goal Multi-Agent Path Finding via
Decoupled and Integrated Goal Vertex Ordering

Pavel Surynek ∗

Czech Technical University in Prague, Faculty of Information Technology, Thákurova 9, 160 00 Praha 6, Czechia
pavel.surynek@fit.cvut.cz

Abstract

We introduce multi-goal multi agent path finding (MG-
MAPF) which generalizes the standard discrete multi-agent
path finding (MAPF) problem. While the task in MAPF is
to navigate agents in an undirected graph from their starting
vertices to one individual goal vertex per agent, MG-MAPF
assigns each agent multiple goal vertices and the task is to
visit each of them at least once. Solving MG-MAPF not only
requires finding collision free paths for individual agents but
also determining the order of visiting agent’s goal vertices so
that common objectives like the sum-of-costs are optimized.
We suggest two novel algorithms using different paradigms
to address MG-MAPF: a heuristic search-based algorithm
called Hamiltonian-CBS (HCBS) and a compilation-based al-
gorithm built using the satisfiability modulo theories (SMT),
called SMT-Hamiltonian-CBS (SMT-HCBS).

Introduction
Mutli-agent path finding (MAPF) (Silver 2005; Ryan 2008;
Surynek 2009; Luna and Bekris 2011; Wang and Botea
2011; Ma and Koenig 2017) is an abstraction for many real-
life problems where agents, both autonomous or passive,
need to be moved (see (Felner et al. 2017; Ma and Koenig
2017) for a survey). The environment in MAPF is modeled
as an undirected graph where vertices represent positions
and edges define the topology 1.

The standard variant of MAPF assumes that each agent
starts in a specified starting vertex and its task is to reach a
specified goal vertex. While such formalization encompass
many real-life navigation tasks (Cáp et al. 2013; Ma et al.
2017a) there still exist problems especially in logistic do-
main where the standard MAPF lacks expressiveness.

Such problems that cannot be expressed as MAPF include
situations where agents have multiple goals so that instead
of reaching single goal location agents need to perform a
round-trip to service a set of goals. Many real-life appli-
cations requires that agents perform certain task at each of

∗The author has been supported by GAČR - the Czech Science
Foundation, grant registration number 19-17966S.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Similar setup is used in graph pebbling (Kornhauser, Miller,
and Spirakis 1984; Parberry 2015; Ratner and Warmuth 1990)
where however the focus is rather on computational complexity.

multiple goal locations such as performing maintenance or
pickup operation (Pansart, Catusse, and Cambazard 2018;
Briant et al. 2020).

Having multiple goals per agent adds a significant new
challenge to the problem consisting of determining the order
of visiting agent’s goal vertices. Hence the ordering of goals
as well as non-conflicting path finding are subject to decision
making which in addition to this aims on the optimization of
various objectives such as commonly adopted sum-of-costs
(Standley 2010; Sharon et al. 2013)

We introduce a problem we call a multi-goal multi-agent
path finding (MG-MAPF). The problem shares movement
rules with the standard MAPF but generalizes it by allowing
each agent to have multiple goal vertices. Each of the agent’s
goal vertices must be visited at least once to successfully
solve MG-MAPF.

Contribution
We introduce two novel solving algorithms for MG-MAPF:
a search-based Hamiltonian CBS (HCBS), a derivative of
the CBS algorithm (Sharon et al. 2015), and a compilation-
based algorithm, called SMT-Hamiltonian-CBS, derived
from SMT-CBS (Surynek 2019b).

The important feature of HCBS is that it decouples the
goal vertex ordering from collision free path finding, making
HCBS a three level search algorithm where at the high-level,
the standard CBS conflict resolution search is performed and
the low level search for collision-free circuit is further di-
vided into two levels. The higher level of circuit-finding de-
termines the goal vertex ordering while the lower level finds
a collision free circuit visiting all goals following the order
determined by the higher level.

The compilation-based approach uses the ideas from
solvers for satisfiability modulo theories (SMT) (Barrett,
de Moura, and Stump 2005; Barrett et al. 2009) namely lazy
construction of formulae. A significant feature of this ap-
proach is that collision avoidance and goal vertex ordering
are integrated and solved at once.

The paper is organized as follows: basic definitions from
MAPF and its properties are introduced first. Then search-
based HCBS and related MG-MAPF specific heuristics are
developed. Compilation-based SMT-HCBS follows in the
next section. Finally both new algorithms are experimentally
evaluated and compared.

circuits(a1) =
[1, 4, 5, 4, 7]
Cost = 4

circuits(a2) =
[3, 6, 9, 8, 5]
Cost = 4

SoC = 8

MAPFMG ϴ

s0(a1) = 1
g(a1) = {5, 7}

s0(a2) = 3
g(a2) = {5, 9}

1
a1 a2

2 3

4 5 6

7 8 9

a1 a2
1

4

7

2

5

8

3

6

9

Figure 1: A MG-MAPF instance with and its sum-of-costs
optimal solution.

Background and Definitions
We first recall the concepts from the standard multi-agent
path finding (MAPF) that we inherit into MG-MAPF.
Agents in MAPF are placed in vertices of an undirected
graph so that there is at most one agent per vertex. Formally,
s : A 7→ V is a configuration of agents in vertices of the
graph. A configuration can be transformed instantaneously
to the next one by valid movements of agents; the next con-
figuration corresponds to the next time step. An agent can
move into another vertex across an edge provided no colli-
sion occurs. A collision occurs if two agents are located in
the same vertex (vertex collision) or if two agents simultane-
ously cross the same edge in opposite directions (edge col-
lision) (Sharon et al. 2015). The configuration at time step t
is denoted st.

Definition 1 Mutli-goal multi-agent path finding (MG-
MAPF) is a 4-tuple Θ = (G = (V,E), A, s0, g) where
G = (V,E) is an undirected graph, A = {a1, a2, ..., ak}
with k ∈ N is a set of agents where k ≤ |V |, s : A 7→ V
represents agents’ starting vertices (starting configuration),
and g : A 7→ 2V assigns a set of goal vertices to each agent.

Each agent in MG-MAPF has the task to visit its goal ver-
tices. Agent’s goal vertices can be visited in an arbitrary or-
der but each goal vertex must be visited by the agent at least
once. Various objectives can be taken into account. We de-
velop all concepts here for the sum-of-costs objective com-
monly adopted in MAPF but different cumulative objectives
can be used as well (Surynek et al. 2016b).

Formally, an MG-MAPF solution is a sequence of config-
urations that can be obtained via valid moves from the start-
ing configuration s0 following the MAPF movement rules
such that each agent visits each of its goal vertices at least
once:

Definition 2 A solution to MG-MAPF Θ = (G =
(V,E), A, s0, g) is a sequence of configurations S =
[s0, s1, ..., stM] such that st results from st−1 ∀t ∈ {1, 2,
..., tM} via valid MAPF movements and ∀ai ∈ A it holds
that (∀vg ∈ g(ai)) (∃t ∈ {1, 2, ..., tM}) (st(ai) = vg).

Given a solution S = [s0, s1, ..., stM], tM is the
makespan, denoted Make(S). We define the sum-of-costs
as the sum of costs for individual agents: SoC (S) =∑k

i=1 Cost(ai), where the individual cost for agent ai is
defined as: Cost(ai) = min {tc | (∀vg ∈ g(ai)) (∃t ∈
1, 2, ..., tc) (st(ai) = vg)}.

Let us note that the SoC (S) accumulates unit costs of ac-
tions including wait actions until all goals are visited. After

that we do not care about agent’s movements. This is one
possible definition of MG-MAPF. We can alternatively re-
quire that all agents should return to their starting vertices
and/or stay in the final goal. The developed solving algo-
rithms require only minor modifications to be applicable for
any of such MG-MAPF variants.

MG-MAPF as well as MAPF is NP-hard (Ratner and
Warmuth 1990; Surynek 2010; Yu and LaValle 2013, 2015).
A difference can be observed for a special case with one
agent. Finding a sum-of-costs optimal solution to MAPF
with one agent is in P as it corresponds to finding a short-
est path in G. On the other hand sum-of-costs optimal MG-
MAPF with one agent is still NP-hard as it corresponds to
finding a Hamiltonian path (Rahman and Kaykobad 2005).
An example of MG-MAPF is shown in Figure 1.

Hamiltonian Conflict-based Search: HCBS
We suggest a novel algorithm called Hamiltonian Conflict-
based Search (Hamiltonian CBS, HCBS) which shares the
high level structure with the CBS algorithm (Sharon et al.
2015), one of the most commonly used algorithm for the
standard MAPF (Li et al. 2019b,a; Zhang et al. 2020; Li et al.
2020; Boyarski et al. 2020).

When trying to use CBS for MG-MAPF, the significant
challenge is represented by the fact that at the low level there
is no longer search for a minimum cost path with respect to
the set of conflicts, a polynomial-time problem, but rather
the search for a minimum cost Hamiltonian path (which
even without a set of conflicts is a difficult problem).

Definition 3 A Hamiltonian path (HP) in G starting at u ∈
V covering a subset of vertices U ⊆ V is a sequence of
vertices denoted HP (u, U) = [h0, h1, ..., htH] such that
h1 = u, {ht, ht+1} ∈ E for t ∈ {0, 1, ..., tH − 1}, and
for each v ∈ U ∃t ∈ {0, 1, ..., tH} such that ht = v. The
cost of Hamiltonian path corresponds to the number of its
edges: Cost(HP (u, U)) = tH − 1.

Such CBS hence consists of potentially exponential-sized
conflict resolution at the high-level where each conflict leads
to exponential-time search for a fresh Hamiltonian path, re-
sulting in an algorithm with high exponential factor. Despite
prohibitive theoretical complexity such algorithm could be
feasible provided that the low level search is fast enough.

Decoupled Goal Ordering
The key to adapt CBS for MG-MAPF is to decouple the goal
vertex ordering from conflict avoidance. The search for a
Hamiltonian path going through agent’s goal vertices with
respect to a set of conflicts is done in two level fashion.
At the high-level (of this low level) we are trying to deter-
mine optimal ordering of agent’s goal vertices. To this pur-
pose we made use of the A* algorithm (Hart, Nilsson, and
Raphael 1968) that searches the space of possible permuta-
tions of agent’s goals. After determining the next goal vertex
to visit, the algorithm searches for the shortest path observ-
ing the conflicts that interconnects the next goal vertex with
the current one. The search for the shortest path is done by
another instance of A*. Another important factor for the per-
formance of the decoupled approach are the heuristics.

Minimum Spanning Tree Heuristic
We define a variant of spanning tree with respect to a subset
of vertices of undirected graph G = (V,E).

Definition 4 A spanning tree (ST) of an undirected graph
G = (V,E) with respect to a subset of vertices U ⊆ V ,
denoted TS(U) = (VU , EU) is a tree covering U , that is,
U ⊆ VU ⊆ V and EU ⊆ E. The cost of a spanning
tree is defined as the number of edges included in the tree:
Cost(TS(U)) = |EU |. A minimum spanning tree (MST)
with respect to U is a spanning tree with minimum cost.

Observe that TS(U) may contain other vertices in addi-
tion to U to keep it connected. We use the notation TS(u, U)
for u ∈ V denoting a spanning tree covering {u} ∪ U .

The important property of MST is that it can be found in
polynomial time with respect to G (Boruvka 1926; Nesetril,
Milková, and Nesetrilová 2001). Another important property
is that the cost of MST can serve as the lower bound for the
cost of shortest Hamiltonian path:

Proposition 1 For any u ∈ V and U ⊆ V it holds that
min{Cost(TS(u, U))} ≤ min{Cost(HP (u, U))}.

This enables us to use the concept of MST as a basis for
a consistent A* heuristic (proof omitted). The HCBS algo-
rithm is described using pseudo-code as Algorithm 1.

The high-level represented by HCBSconflicts follows the
standard CBS. It construct a constraint tree (CT) in breadth-
first search manner where each node N contains a set of col-
lision avoidance constraints N.constraints - a set of triples
(ai, v, t) forbidding occurrence of agent ai at v ∈ V at
time step t, a solution N.circuits - a set of k Hamiltonian
paths for individual agents covering their individual goals,
and the sum-of-costs N.SoC of the current solution. Nodes
are stored in a priority queue OPEN and processed in the
ascending order according to N.SoC .

Initially, the shortest Hamiltonian paths for each agent
are determined and corresponding node is stored into OPEN
(lines 2-5). At a general step, HCBS takes a node N with
the minimum sum-of-costs from OPEN and checks whether
it represents a valid solution w.r.t. MG-MAPF rules (lines
7-9). If there are no collisions, then the valid solution
N.circuits is returned and the algorithm finishes (lines 10-
11). Otherwise the search branches by creating two new
nodes N1 and N2 - successors of N . Assuming a collision
(ai, aj , v, t) between agents ai and aj at vertex v at time
step t, this can be avoided if either ai or aj does not re-
side at v at time step t. This requirement corresponds to
two conflict avoidance constraints in successor nodes N1

and N2 that inherit the set of constraints from N as fol-
lows: N1.constraints = N.constraints ∪ {(ai, v, t)} and
N2.constraints = N.constraints ∪{(aj , v, t)} (line 14). In
addition to this, fresh Hamiltonian paths for affected agents
ai and aj are recomputed in respective nodes (lines 15-17).

The low-level is represented by HCBSordering that deter-
mines the ordering of agent’s goal vertices. This is an A*-
based search of the space of goal vertex permutations. Each
node N of the search tree consists of N.u a current vertex,
starting at s0(ai), a set of visited goals N.finished, an A*’s
g-value and h-value: N.g and N.h where N.g corresponds

to the actual cost of partially constructed Hamiltonian path
finishing in N.u, and N.h is a lower bound estimation of the
cost for the remaining part of the Hamiltonian path calcu-
lated as the cost of MST starting in N.u and covering the
remaining goals. Finally, N.circuit is the partial Hamilto-
nian path itself.

The very low-level search is done by another instance of
A* (line 33) which interconnects the current vertex N.u with
the candidate for the next goal v by a shortest path taking
into account collision avoidance constraints from the very
high-level CBS-style search.

Altogether HCBS consists of thee levels of search in
three different spaces: (i) space of conflicts, (ii) goal order-
ing space, and (iii) path space.

Combining soundness and optimality of CBS with prop-
erties of MST-based heuristic for goal vertex ordering we
can state the following proposition.

Proposition 2 The HCBS algorithm returns sum-of-costs
optimal solution for given input MG-MAPF Θ.

Compilation-based Approach: SMT-HCBS
The second approach for solving MG-MAPF is based on
the reduction of MG-MAPF to a series of Boolean formulae
that are decided by an external SAT solver (Audemard and
Simon 2018). Our new algorithm called SMT-Hamiltonian-
CBS combines existing SMT-CBS (Surynek 2019b) with
MG-MAPF specific generation of target Boolean formuale.

Time Expansion and Decision Diagrams
Construction of a Boolean formula corresponding to solv-
ability of MAPF as used in SMT-CBS relies on the time
expansion of G. Having SoC , the basic variant of time
expansion determines the maximum number of time steps
(makespan) tM such that every possible solution with the
sum-of-costs less than or equal to SoC fits in tM timesteps.

The time expansion makes copies of vertices V for each
timestep t = 0, 1, 2, ..., tM . That is, we have vertices vt

for each v ∈ V and time step t. Edges from G are con-
verted to directed edges interconnecting timesteps in the
time expansion. Directed edges (ut, vt+1) are introduced for
t = 0, 1, ..., tM − 1 whenever there is {u, v} ∈ E. Wait
actions are modeled by introducing edges (ut, ut+1). A di-
rected path in the time expansion corresponds to the trajec-
tory of an agent in G. Hence the modeling task now con-
sists in construction of a formula in which satisfying truth-
value assignments correspond to directed paths from s00(ai)
to gtM (ai) in the time expansion.

The time expansion is often further improved so that un-
reachable nodes are removed which reduces the subsequent
search effort done on top of the time expansion (Bryant
1995; Sharon et al. 2013; Surynek et al. 2016a). A structure
called multi-valued decision diagram (MDD) is a subset of
the time expansion as described above, that is, it is a directed
graph MDD i = (Vi, Ei) for each agent ai. A vertex vt is
included in MDD i if is reachable with respect to the given
makespan bound tM . That is, vt is included if and only if
Dist(s0(ai), v) ≤ t (agent ai has enough time to reach v
at time step t) and Dist(v, g(ai)) ≤ tM − t (agent ai can

Algorithm 1: HCBS algorithm for MG-MAPF.
1 HCBSconflicts (Θ = (G = (V,E), A, s0, g))
2 N.constraints← ∅
3 N.circuits← {circuit∗(ai) a shortest Hamiltonian

path from s0(ai) covering g(ai) | i = 1, 2, ..., k}
4 N.SoC ←

∑k
i=1 Cost(N.circuits(ai))

5 insert (SoC , N) into OPEN
6 while OPEN 6= ∅ do
7 (key,N)← min-Key(OPEN)
8 remove-Min-Key(OPEN)
9 collisions← validate(N.circuits)

10 if collisions = ∅ then
11 return N.circuits
12 let (ai, aj , v, t) ∈ collisions
13 for each a ∈ {ai, aj} do
14 N ′.constraints←

N.constraints ∪ {(a, v, t)}
15 N ′.circuits← N.circuits
16 N ′.circuits(ai)← HCBSordering (Θ, a,

N ′.constraints)

17 SoC ′ ←
∑k

i=1 Cost(N
′.circuits(ai))

18 insert (SoC ′, N ′) into OPEN

19 HCBSordering (Θ, ai, constraints)
20 let Θ = (G = (V,E), A, s0, g)
21 N.u← s0(ai); N.finished← ∅
22 TS(N.u, g(ai))← construct-MST(s0(ai), gR, G)
23 N.g ← 0; N.h← Cost(TS(N.u, gR))
24 N.circuit← []
25 insert (N.g +N.h,N) into OPEN
26 while OPEN 6= ∅ do
27 (key,N)← min-Key(OPEN)
28 remove-Min-Key(OPEN)
29 if N.finished = g(ai) then
30 return N.circuit
31 else
32 for each v ∈ g(ai) \N.finished do
33 path← A*(N.u, v, constraints,N.g)
34 if path 6= Fail then
35 N ′.u← v
36 N ′.finished← N.finished ∪ {v}
37 g′R ← g(ai) \N ′.finished
38 TS(N ′.u, g′R)←

construct-MST(N ′.u, g′R, G)
39 N ′.g ← N.g + Cost(path)
40 N ′.h← Cost(TS(N ′.u, g′R))
41 N ′h← N.circuit · path
42 insert (N ′.g +N ′.h,N) into OPEN

43 return Fail

reach its goal in the remaining time) where Dist(u, v) is the
length of the shortest path between u and v in G.

Hamiltonian Multi-value Decision Diagram
The idea of MDD can be adapted for MG-MAPF. We in-
troduce a Hamiltonian MDD for individual agents denoted
MDDH

i which is almost identical to MDD i in the terms of

v1
a1

v2 v3

v4 v5

v6 MDD1
TS

v1
0 v1

1

v3
1

v1
2

v3
2

v4
2

v1
3

v3
3

v4
3

v5
3

0 1 2 3
v1

a1

v2 v3

v4 v5

v6

v1
a1

v2 v3

v4 v5

v6
TS(v1,{v4,v5}) TS(v1,{v2,v4,v5})

Cost = 3 Cost = 4

Figure 2: MDDTS expanded for tM = 3. Spanning trees
including various vertices are shown too.

expanding G. However, the reachability of vertices at given
time steps in MDDH

i is treated in a different way to reflect
that each agent in MG-MAPF has multiple goal vertices.

A node vt is included in MDDH
i iff the following condi-

tions hold:
1. Dist(s0(ai), v) ≤ t and
2. a Hamiltonian path HP = HP (s0(ai), g(ai)∪{v}) exists

in G such that Cost(HP) ≤ tM .
In other words, time t must be enough to reach v from the

start and there must be a Hamiltonian path starting at s0(ai)
visiting both v and all agent’s goals of the cost not exceeding
the number of levels of expansion tM . Without proof let us
summarize important property of MDDHP .
Proposition 3 A sequence of vertices visited by an agent ai
within any solution to MG-MAPF Θ with the sum-of-costs
SoC corresponds to a directed path in MDDHP

i .
Computing costs of Hamiltonian paths for every vertex

in G requires substantial computational effort as finding
Hamiltonian path is an NP-hard problem (Garey, Johnson,
and Tarjan 1976) and also confirmed by our preliminary
tests. Hence we introduce a relaxation of MDDHP denoted
MDDTS in which the requirement of the existence of a
Hamiltonian path is replaced with the requirement of exis-
tence of a spanning tree TS(s0(ai), g(ai) ∪ {v}) of cost at
most tM . Computing a spanning tree can be done in polyno-
mial time. The direct corollary of Proposition 1 is that using
MDDTS is sound for construction of the formula.
Corollary 1 A sequence of vertices visited by an agent ai
within any solution to MG-MAPF Θ with the sum-of-costs
SoC corresponds to a directed path in MDDTS

i .

See figure 2 for illustration how MDDTS can be used to
reduce the number of nodes in the time expansion. A span-
ning tree of cost 3 including vertices v1, v3 and v5 exists so
these vertices reachable at time step 3 from v1 are included
but v2 not because no spanning tree of cost less than 4 in-
cluding v1, v2, v3 and v5 exists in G (similarly for v6).

As solutions to MG-MAPF are typically longer than those
in the standard MAPF such pruning of the time expansion is
crucial to keep the resulting formula reasonably small.

Incomplete Boolean Model
We construct a formulaH(SoC) representing an incomplete
model for MG-MAPF. Assume we have MDDTS

i = (Vi, Ei)

for ai from which we derive the formula as follows. A
Boolean variable X t

v(aj) is introduced for every vertex vt in
Vi. The semantics of X t

v(ai) is that it is TRUE if and only
if agent ai resides in v at time step t. Similarly we introduce
Etu,v(ai) for every directed edge (ut, vt+1) in Ei with the
meaning that it is TRUE if and only if agent ai traverses
edge {u, v} between time steps t and t + 1.

Constraints are added on top of these variables to encode
the movement rules of MG-MAPF that are exactly the stan-
dard MAPF rules such as that agents move across edges (do
not jump) and preserve basic physical properties (do not dis-
appear and do not spawn). The detailed list of constraints is
given in (Surynek et al. 2016a) and (Surynek 2019b), for the
sake of brevity we show here only illustrative examples:

X t
u(ai)⇒

∨
(ut,vt+1)∈Ei

Etu,v(ai), (1)

∑
vt+1 | (ut,vt+1)∈Ei

Etu,v(ai) ≤ 1 (2)

These constraints state that if ai is in u ∈ V at time step t
then it has to leave via exactly one edge (ut, vt+1).

MG-MAPF differs from MAPF in the encoding of the
goal condition. An agent ai in MG-MAPF must visit each
of its goals at least once. Hence we add for each v ∈ g(ai)
the following constraint, that is we take all copies of v in
MDDTS

i and require that at least one of the corresponding
Boolean variables must be TRUE :∑

vt | vt∈Vi

X t
v(ai) ≥ 1 (3)

The incompleteness of the model as suggested in
(Surynek 2019b) consists in omitting certain constraints.
Specifically collision avoidance constraints are omitted.
Hence instead of the equivalence between the satisfiability
of H(SoC) and the solvability of MG-MAPF under given
SoC we only establish an implication as follows:

Definition 5 (incomplete Boolean model). A Boolean for-
mula H(SoC) is an incomplete Boolean model of MG-
MAPF Θ if the following condition holds:

H(SoC) ∈ SAT ⇐ Θ has a solution of sum-of-costs SoC .

The Algorithm and Integrated Goal Ordering
After obtaining a satisfiable formula we cannot immediately
declare it to represent a valid solution but first the extracted
candidate for MG-MAPF solution must be verified for colli-
sions. If there are no collisions then we are finished and the
candidate is a valid MG-MAPF solution. If not then a colli-
sion avoidance constraint must be added to refine H(SoC)
and solving process continues with the next iteration. Such
a tight integration of lazy formula construction and its solv-
ing using the SAT solver is often used in the satisfiability
modulo theories (SMT) paradigm (Katz et al. 2016).

Assume that a collision occurs at time step t at vertex v
between agents ai and aj (denoted (ai, aj , v, t)). Eliminat-
ing this collision is to forbid that ai or aj appears at v at
time step t which naturally corresponds to a binary clause:

Algorithm 2: SMT-based MG-MAPF solver
1 SMT-HCBS (Θ = (G = (V,E), A, s0, g))
2 conflicts← ∅
3 circuits← {circuit∗(ai) a shortest Hamiltonian path

from s0(ai) covering g(ai) | i = 1, 2, ..., k}
4 SoC ←

∑k
i=1 Cost(circuits(ai))

5 while TRUE do
6 (circuits, conflicts)←

SMT-HCBS-Fixed(conflicts, SoC ,Θ)
7 if circuits 6= UNSAT then
8 return circuits
9 SoC ← SoC + 1

10 SMT-HCBS-Fixed(conflicts, Soc,Θ)
11 H(SoC)← encode-Hamiltonian(conflicts, SoC ,Θ)
12 while TRUE do
13 assignment← consult-SAT-Solver(H(SoC))
14 if assignment 6= UNSAT then
15 circuits← extract-Solution(assignment)
16 collisions← validate(circuits)
17 if collisions = ∅ then
18 return (circuits, conflicts)

19 for each (ai, aj , v, t) ∈ collisions do
20 H(ξ)← H(ξ) ∪ {¬X t

v(ai) ∨ ¬X t
v(aj)}

21 conflicts←
conflicts ∪ {[(ai, v, t), (aj , v, t)]}

22 else
23 return (UNSAT,conflicts)

¬X t
v(ai) ∨ ¬X t

v(aj). Being aware of the construction of
modern CDCL SAT solvers (Audemard and Simon 2018)
we can see that this is quite fortunate as such short clauses
promote Boolean constraint propagation (resolution, unit
propagation) that significantly reduces the search effort.

The resulting algorithm called SMT-HCBS is described
using pseudo-code as Algorithm 2. It is a modification of
existing SMT-CBS, the major difference is the use of spe-
cific Boolean encoding for MG-MAPF (line 11) as described
above. The algorithm tests the existence of a solution of the
input instance Θ for increasing sum-of-costs until a positive
answer is obtained (lines 5-9). The lower bound for sum-of-
costs is obtained as the sum-of-costs of individual Hamilto-
nian paths for agents (lines 3-4).

The advantage against complete models (Surynek et al.
2016a) is that a valid solution can be obtained before the
problem is fully specified in terms of constraints which often
leads to faster solving process. Observe that an unsatisfiable
formula in the case of incomplete model according to Defi-
nition 5 means that the input instance Θ is not solvable under
the given cost SoC , leading to its incrementing of SoC and
the next iteration of the algorithm.

Let us note that both goal vertex ordering and conflict res-
olution are integrated at the same conceptual level - both
problems are encoded in the target Boolean formula are de-
cided by the SAT solver.

Experimental Evaluation
We evaluated HCBS and SMT-HCBS on standard bench-
marks from movingai.com (Sturtevant 2012). Represen-
tative part of the results is presented in this section.

Benchmarks and Setup
HCBS and SMT-HCBS were implemented in C++. The
SMT-HCBS solver is built on top of the Glucose 3.0 SAT
solver (Audemard and Simon 2018) that ranks among the
high performing SAT solvers according to recent SAT solver
competitions (Balyo, Heule, and Järvisalo 2017).

The experimental evaluation has been done on diverse
instances consisting of 4-connected grid maps ranging
in sizes from small to large. Random MAPF scenarios
from movingai.com are used to generate MG-MAPF in-
stances. To obtain instances of various difficulties we varied
the number of agents while the number of goal vertices per
agent was set as constant. As defined in the benchmark set,
25 different instances are generated per number of agents.

Starting positions of agents are taken directly from the
scenario. Since only one goal is defined per agent in each
MAPF scenario the set of goals for an agent is generated by
making a specified number of random picks among goal po-
sitions of all agents in the scenario. This results in instances
whose goal vertices are equally distributed across the map.

The tests we focused on comparing HCBS and SMT-
HCBS in the terms of success rate and runtime. All experi-
ments were run on system consisting of 200 Xeon 2.8 GHz
cores, 1TB RAM, running Ubuntu Linux 18. 2 The success
rate is the ratio of the number of instances out of 25 per
number of agents that the solver managed to solver under
the time limit of 5 minutes.

Runtime Results
We divided the tests into three categories with respect to the
size of maps. Results for small instances derived from the
empty-16-16 map are shown in Figure 3. Three different
cases with the number of goal vertices per agent: 1 (corre-
sponds to MAPF), 2, 4, and 8 are tested.

We can observe that for 1, 2 and 4 goals per agent SMT-
HCBS dominates. This is an expectable result since simi-
lar behavior can be observed for SMT-CBS vs. CBS for the
standard MAPF (Surynek 2019b). However the clearly vis-
ible trend it that HCBS scales better for increasing number
of goals which eventually resulted in reversed situation with
8 goals where HCBS performs better.

Results for medium-sized instances shown in Figure 4,
where 8 goals per agent were used, indicate that HCBS per-
form significantly better than SMT-HCBS. Only relatively
closer performance to HCBS was achieved by SMT-HCBS
on instances derived from the room-64-64-8 map.

Finally, results for large instances shown in Figure 5 in-
dicate clear dominance of HCBS over SMT-HCBS.

2For the full reproducibility of the presented re-
sults we provide a complete source code of our
solvers and detailed experimental data on author’s web:
http://users.fit.cvut.cz/∼surynpav/research
and in git repository: https://github.com/surynek.

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12 14 16 18 20 22 24

Su
cc

e
ss

 R
at

e

Number of agents

Success Rate
empty-16-16 |g|=1

HCBS

SMT-HCBS

0,01

0,1

1

10

100

0 50 100 150 200 250 300 350

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance

Sorted Runtimes
empty-16-16 |g|=1

HCBS

SMT-HCBS

0

0,2

0,4

0,6

0,8

1

0 4 8 12 16 20 24 28 32

Su
cc

e
ss

 R
at

e

Number of agents

Success Rate
empty-16-16 |g|=2

HCBS

SMT-HCBS

0,01

0,1

1

10

100

0 100 200 300 400 500 600 700

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance

Sorted Runtimes
empty-16-16 |g|=2

HCBS

SMT-HCBS

0

0,2

0,4

0,6

0,8

1

0 4 8 12 16 20 24 28
Su

cc
e

ss
 R

at
e

Number of agents

Success Rate
empty-16-16 |g|=4

HCBS

SMT-HCBS

0,01

0,1

1

10

100

0 100 200 300 400 500

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance

Sorted Runtimes
empty-16-16 |g|=4

HCBS

SMT-HCBS

0

0,2

0,4

0,6

0,8

1

0 4 8 12 16 20 24 28

Su
cc

e
ss

 R
at

e

Number of agents

Success Rate
empty-16-16 |g|=8

HCBS

SMT-HCBS

0,01

0,1

1

10

100

0 50 100 150 200

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance

Sorted Runtimes
empty-16-16 |g|=8

HCBS

SMT-HCBS

Figure 3: Success rate and runtime comparison on small-
sized maps.

Explanation of Results

There are multiple factors explaining the observed results.
SMT-HCBS often needs to iterate through many unsatisfi-
able sum-of-costs before the optimal sum-of-cost is met on
instances with greater number of goal vertices. This is due to
the fact that agents interact more in such cases which results
in a greater difference between the true optimal sum-of-costs
and its lower bound estimation. Moreover node pruning in
the spanning tree MDDs is less efficient for greater number
of goals since the cost of spanning tree deviates more from
the true Hamiltonian path cost.

In contrast to this, the effect of domain specific heuris-
tics is more direct in HCBS which can more effectively de-
termine the optimal ordering of goal vertices for individ-
ual agents - the choice of the next vertex can be immedi-
ately assessed by the heuristic. Similar effect cannot be eas-
ily achieved in SMT-HCBS since during MDD generation
phase we need to represent all possible goal vertex order-
ings and the SAT solver itself has no domain specific infor-
mation.

0

0,2

0,4

0,6

0,8

1

0 4 8 12 16 20 24 28 32

Su
cc

e
ss

 R
at

e

Number of agents

Success Rate
random-32-32-20 |g| = 8

HCBS

SMT-HCBS

0,01

0,1

1

10

100

0 100 200 300

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance

Sorted Runtimes
random-32-32-20 |g|=8

HCBS

SMT-HCBS

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12 14

Su
cc

e
ss

 R
at

e

Number of agents

Success Rate
room-64-64-8 |g|=8

HCBS

SMT-HCBS

0,1

1

10

100

0 50 100 150 200

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance

Sorted Runtimes
room-64-64-8 |g|=8

HCBS

SMT-HCBS

Figure 4: Success rate and runtime comparison on medium-
sized maps.

Related Work
The most closely related problem to MG-MAPF is multi-
agent pickup and delivery (MAPD) (Ma et al. 2017b; Liu
et al. 2019), defining a set of tasks T = {t1, t2, ...tm} where
each task tj = (pj , dj) is characterized by a pickup location
pj ∈ V and a delivery location dj ∈ V . Agents can freely
select tasks to fulfill. The freedom in choice of tasks and
the order of their fulfilling makes the problem very hard.
The contemporary solving approaches for MAPD first as-
sign tasks to agents and followed by determining the order-
ing of tasks per agent ignoring collisions. Then collision free
paths are planned according to the task ordering. As there is
no feedback between the phases the resulting plan is sub-
optimal.

Another related work is represented by order picking
problem (OPP) (Pansart, Catusse, and Cambazard 2018)
which is a variant of traveling salesman problem in a rect-
angular warehouse. Various integer programming and flow-
based formulations of OPP have been studied. The important
difference from MG-MAPF is that it is typically regarded as
a single agent problem, hence collisions between agents are
not considered in OPP.

A generalization of MAPF where an agent is assigned
multiple goal vertices and is successful if it reaches any of its
goals is suggested in (Surynek 2013). Similar setup has been
studied for target assignment in MAPF (Hönig et al. 2018)
where each agent selects one goal from multiple choices.

A compilation-based approach to MAPF that uses a sim-
ilar lazy clause generation scheme as SMT-HCBS but de-
rived from CSP has been proposed in (Gange, Harabor, and
Stuckey 2019).

Conclusion
We introduced a novel multi-goal multi agent path find-
ing (MG-MAPF) problem. MG-MAPF generalizes MAPF
by assigning each agent a set of goal vertices instead of

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10

Su
cc

e
ss

 R
at

e

Number of agents

Success Rate
maze-128-128-10 |g|=8

HCBS

SMT-HCBS

1

10

100

0 20 40 60 80 100 120 140 160

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance

Sorted Runtimes
maze-128-128-10 |g|=8

HCBS

SMT-HCBS

0

0,2

0,4

0,6

0,8

1

0 4 8 12 16 20 24 28 32 36

Su
cc

e
ss

 R
at

e

Number of agents

Success Rate |g|=8
warehouse-10-20-10-2-1

HCBS

SMT-HCBS
0,1

1

10

100

0 100 200 300 400 500

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance

Sorted Runtimes
warehouse-10-20-10-2-1 |g|=8

HCBS

SMT-HCBS

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12 14 16
Su

cc
e

ss
 R

at
e

Number of agents

Success Rate | lak303d |g|=8

HCBS

SMT-HCBS

0,1

1

10

100

0 50 100 150 200

R
u

n
ti

m
e

 (
se

co
n

d
s)

Instance

Sorted Runtimes| lak303d |g|=8

HCBS

SMT-HCBS

Figure 5: Success rate and runtime comparison on large-
sized maps.

one goal. The task is to visit each of agent’s goal ver-
tices at least once while we aim on finding sum-of-costs
optimal solutions. Two algorithms generating sum-of-costs
optimal solutions are suggested. A search-based algorithm
called Hamiltonian CBS (HCBS) derived from CBS and a
compilation-based approach SMT-HCBS that reduces MG-
MAPF to Boolean logic and solves the problem in the target
formalism by the SAT solver.

HCBS introduces three level search in which conflict res-
olution is done at the high level and goal vertex ordering and
path planning are done at the low level. The key technique
is decoupling the vertex ordering from collision-free path
planning. CBS provides greater room for integrating heuris-
tics that we made use of when adapting it for MG-MAPF.

In contrast to this, SMT paradigm provides more pow-
erful search but integration of domain specific heuristics is
more complicated. We increased the informedness of the
SMT-based algorithm SMT-HCBS through the concept of
Hamiltonian and spanning tree MDD which eventually led
to significant improvements so that SMT-HCBS is able to
solve some of the standard benchmarks. However decou-
pling of the goal vertex ordering from conflict resolution
turned out to be the crucial factor behind the better per-
formance of HCBS. The worse support of domain specific
heuristics shows limitations of the SMT approach generally.

For future work we plan investigate possibility of gener-
ating the formulae lazily not only in the phase of conflict
resolution but also in the phase of MDD generation. A pos-
sible future direction is also to address MG-MAPF via the
DPLL(MG-MAPF) framework (Surynek 2019a).

References
Audemard, G.; and Simon, L. 2018. On the Glucose SAT Solver.
Int. J. Artif. Intell. Tools 27(1): 1840001:1–1840001:25.

Balyo, T.; Heule, M. J. H.; and Järvisalo, M. 2017. SAT Compe-
tition 2016: Recent Developments. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA, 5061–5063. AAAI Press.

Barrett, C. W.; de Moura, L. M.; and Stump, A. 2005. SMT-COMP:
Satisfiability Modulo Theories Competition. In Computer Aided
Verification, 17th International Conference, CAV 2005, Edinburgh,
Scotland, UK, July 6-10, 2005, Proceedings, volume 3576 of Lec-
ture Notes in Computer Science, 20–23. Springer.

Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C. 2009.
Satisfiability Modulo Theories. In Biere, A.; Heule, M.; van
Maaren, H.; and Walsh, T., eds., Handbook of Satisfiability, vol-
ume 185 of Frontiers in Artificial Intelligence and Applications,
825–885. IOS Press.

Boruvka, O. 1926. O jistém problému minimánı́m. Práce
Moravské přı́rodovědecké společnosti 3(3): 7–58.

Boyarski, E.; Harabor, D.; Stuckey, P. J.; Bodic, P. L.; and Fel-
ner, A. 2020. F-Cardinal Conflicts in Conflict-Based Search. In
Harabor, D.; and Vallati, M., eds., Proceedings of the Thirteenth
International Symposium on Combinatorial Search, SOCS 2020,
Online Conference [Vienna, Austria], 26-28 May 2020, 123–124.
AAAI Press.

Briant, O.; Cambazard, H.; Cattaruzza, D.; Catusse, N.; Ladier, A.;
and Ogier, M. 2020. An efficient and general approach for the
joint order batching and picker routing problem. Eur. J. Oper. Res.
285(2): 497–512.

Bryant, R. E. 1995. Binary decision diagrams and beyond: en-
abling technologies for formal verification. In Rudell, R. L., ed.,
Proceedings of the 1995 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 1995, 236–243. IEEE Computer
Society / ACM.

Cáp, M.; Novák, P.; Vokrı́nek, J.; and Pechoucek, M. 2013. Multi-
agent RRT: sampling-based cooperative pathfinding. In Gini,
M. L.; Shehory, O.; Ito, T.; and Jonker, C. M., eds., International
conference on Autonomous Agents and Multi-Agent Systems, AA-
MAS 2013, 1263–1264. IFAAMAS.

Felner, A.; Stern, R.; Shimony, S. E.; Boyarski, E.; Goldenberg,
M.; Sharon, G.; Sturtevant, N. R.; Wagner, G.; and Surynek, P.
2017. Search-Based Optimal Solvers for the Multi-Agent Pathfind-
ing Problem: Summary and Challenges. In Proceedings of the
Tenth International Symposium on Combinatorial Search, SOCS
2017, 29–37. AAAI Press.

Gange, G.; Harabor, D.; and Stuckey, P. J. 2019. Lazy CBS: Im-
plicit Conflict-Based Search Using Lazy Clause Generation. In
Proceedings of the Twenty-Ninth International Conference on Au-
tomated Planning and Scheduling, ICAPS 2019, 155–162. AAAI
Press.

Garey, M. R.; Johnson, D. S.; and Tarjan, R. E. 1976. The Planar
Hamiltonian Circuit Problem is NP-Complete. SIAM J. Comput.
5(4): 704–714.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A Formal Basis
for the Heuristic Determination of Minimum Cost Paths. IEEE
Trans. Syst. Sci. Cybern. 4(2): 100–107.

Hönig, W.; Kiesel, S.; Tinka, A.; Durham, J. W.; and Ayanian, N.
2018. Conflict-Based Search with Optimal Task Assignment. In
Proceedings of the 17th International Conference on Autonomous

Agents and MultiAgent Systems, AAMAS 2018, 757–765. IFAA-
MAS / ACM.

Katz, G.; Barrett, C. W.; Tinelli, C.; Reynolds, A.; and Hadarean, L.
2016. Lazy proofs for DPLL(T)-based SMT solvers. In Piskac, R.;
and Talupur, M., eds., 2016 Formal Methods in Computer-Aided
Design, FMCAD 2016, Mountain View, CA, USA, October 3-6,
2016, 93–100. IEEE.

Kornhauser, D.; Miller, G. L.; and Spirakis, P. G. 1984. Coor-
dinating Pebble Motion on Graphs, the Diameter of Permutation
Groups, and Applications. In 25th Annual Symposium on Founda-
tions of Computer Science, FOCS 1984, 241–250. IEEE Computer
Society.

Li, J.; Boyarski, E.; Felner, A.; Ma, H.; and Koenig, S. 2019a.
Improved Heuristics for Multi-Agent Path Finding with Conflict-
Based Search: Preliminary Results. In Proceedings of the Twelfth
International Symposium on Combinatorial Search, SOCS 2019,
Napa, California, 16-17 July 2019, 182–183. AAAI Press.

Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig,
S. 2020. New Techniques for Pairwise Symmetry Breaking in
Multi-Agent Path Finding. In Proceedings of the Thirtieth Interna-
tional Conference on Automated Planning and Scheduling, Nancy,
France, October 26-30, 2020, 193–201. AAAI Press.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig, S. 2019b.
Disjoint Splitting for Multi-Agent Path Finding with Conflict-
Based Search. In Proceedings of the Twenty-Ninth International
Conference on Automated Planning and Scheduling, ICAPS 2018,
Berkeley, CA, USA, July 11-15, 2019, 279–283. AAAI Press.

Liu, M.; Ma, H.; Li, J.; and Koenig, S. 2019. Task and Path Plan-
ning for Multi-Agent Pickup and Delivery. In Proceedings of the
18th International Conference on Autonomous Agents and Mul-
tiAgent Systems, AAMAS ’19, Montreal, QC, Canada, May 13-
17, 2019, 1152–1160. International Foundation for Autonomous
Agents and Multiagent Systems.

Luna, R.; and Bekris, K. E. 2011. Push and Swap: Fast Cooperative
Path-Finding with Completeness Guarantees. In Walsh, T., ed., IJ-
CAI 2011, Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22,
2011, 294–300. IJCAI/AAAI.

Ma, H.; and Koenig, S. 2017. AI buzzwords explained: multi-agent
path finding (MAPF). AI Matters 3(3): 15–19.

Ma, H.; Koenig, S.; Ayanian, N.; Cohen, L.; Hönig, W.; Kumar,
T. K. S.; Uras, T.; Xu, H.; Tovey, C. A.; and Sharon, G. 2017a.
Overview: Generalizations of Multi-Agent Path Finding to Real-
World Scenarios. CoRR abs/1702.05515.

Ma, H.; Li, J.; Kumar, T. K. S.; and Koenig, S. 2017b. Lifelong
Multi-Agent Path Finding for Online Pickup and Delivery Tasks.
In Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12,
2017, 837–845. ACM.

Nesetril, J.; Milková, E.; and Nesetrilová, H. 2001. Otakar Boruvka
on minimum spanning tree problem Translation of both the 1926
papers, comments, history. Discret. Math. 233(1-3): 3–36.

Pansart, L.; Catusse, N.; and Cambazard, H. 2018. Exact algo-
rithms for the order picking problem. Comput. Oper. Res. 100:
117–127.

Parberry, I. 2015. Solving the (n2 - 1)-Puzzle with 8/3 n3 Expected
Moves. Algorithms 8(3): 459–465.

Rahman, M. S.; and Kaykobad, M. 2005. On Hamiltonian cycles
and Hamiltonian paths. Inf. Process. Lett. 94(1): 37–41.

Ratner, D.; and Warmuth, M. K. 1990. NxN Puzzle and Related
Relocation Problem. J. Symb. Comput. 10(2): 111–138.

Ryan, M. R. K. 2008. Exploiting Subgraph Structure in Multi-
Robot Path Planning. J. Artif. Intell. Res. 31: 497–542.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding. Artif.
Intell. 219: 40–66.

Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013. The in-
creasing cost tree search for optimal multi-agent pathfinding. Artif.
Intell. 195: 470–495.

Silver, D. 2005. Cooperative Pathfinding. In Proceedings of the
First Artificial Intelligence and Interactive Digital Entertainment
Conference, 117–122. AAAI Press.

Standley, T. S. 2010. Finding Optimal Solutions to Cooperative
Pathfinding Problems. In Fox, M.; and Poole, D., eds., Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010. AAAI Press.

Sturtevant, N. R. 2012. Benchmarks for Grid-Based Pathfinding.
IEEE Trans. Comput. Intell. AI Games 4(2): 144–148.

Surynek, P. 2009. A novel approach to path planning for multiple
robots in bi-connected graphs. In 2009 IEEE International Confer-
ence on Robotics and Automation, ICRA 2009, Kobe, Japan, May
12-17, 2009, 3613–3619. IEEE.

Surynek, P. 2010. An Optimization Variant of Multi-Robot Path
Planning Is Intractable. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia,
USA, July 11-15, 2010. AAAI Press.

Surynek, P. 2013. Optimal Cooperative Path-Finding with Gener-
alized Goals in Difficult Cases. In Proceedings of the Tenth Sym-
posium on Abstraction, Reformulation, and Approximation, SARA
2013, 11-12 July 2013, Leavenworth, Washington, USA. AAAI.

Surynek, P. 2019a. On the Tour Towards DPLL(MAPF) and Be-
yond. In Discussion and Doctoral Consortium papers of AI*IA
2019 - 18th International Conference of the Italian Association for
Artificial Intelligence, Rende, Italy, November 19-22, 2019, volume
2495 of CEUR Workshop Proceedings, 74–83. CEUR-WS.org.

Surynek, P. 2019b. Unifying Search-based and Compilation-
based Approaches to Multi-agent Path Finding through Satisfiabil-
ity Modulo Theories. In Kraus, S., ed., Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJ-
CAI 2019, 1177–1183. ijcai.org.

Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016a. Effi-
cient SAT Approach to Multi-Agent Path Finding Under the Sum
of Costs Objective. In ECAI 2016 - 22nd European Conference on
Artificial Intelligence, volume 285 of Frontiers in Artificial Intelli-
gence and Applications, 810–818. IOS Press.

Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016b. An
Empirical Comparison of the Hardness of Multi-Agent Path Find-
ing under the Makespan and the Sum of Costs Objectives. In Pro-
ceedings of the Ninth Annual Symposium on Combinatorial Search,
SOCS 2016, Tarrytown, NY, USA, July 6-8, 2016, 145–147. AAAI
Press.

Wang, K. C.; and Botea, A. 2011. MAPP: a Scalable Multi-Agent
Path Planning Algorithm with Tractability and Completeness Guar-
antees. J. Artif. Intell. Res. 42: 55–90.

Yu, J.; and LaValle, S. M. 2013. Structure and Intractability of
Optimal Multi-Robot Path Planning on Graphs. In Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelligence,
July 14-18, 2013, Bellevue, Washington, USA. AAAI Press.

Yu, J.; and LaValle, S. M. 2015. Optimal Multi-Robot Path Plan-
ning on Graphs: Structure and Computational Complexity. CoRR
abs/1507.03289.

Zhang, H.; Li, J.; Surynek, P.; Koenig, S.; and Kumar, T. K. S.
2020. Multi-Agent Path Finding with Mutex Propagation. In Pro-
ceedings of the Thirtieth International Conference on Automated
Planning and Scheduling, Nancy, France, October 26-30, 2020,
323–332. AAAI Press.

