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Abstract— We address variants of multi-robot path planning
in graphs (MRPP). We assume robots placed in vertices of an
undirected graph with at most one robot per vertex. Robots can
move across edges while various problem specific constraints
must be satisfied. We introduce a general problem formulation
that encompasses known types of robot relocation problems
such as multi-robot path planning (MRPP), token swapping
(TSWAP), token rotation (TROT), and token permutation
(TPERM). We generalize SMT-CBS, a recent solving approach
for MRPP based on satisfiability modulo theories (SMT). SMT-
CBS compiles MRPP lazily within the SMT framework, starting
with the basic model that is refined with a collision resolution
constraints whenever collisions between robots occur in the cur-
rent solution. We show modifications the SMT-CBS algorithm
for variants of MRPP and evaluate them experimentally.

I. INTRODUCTION AND MOTIVATION

Multi-robot path planning in graphs (MRPP) [1], [2] and
related problems such as token swapping (TSWAP) [3], [4],
pebble motion on graphs (PMG) [5] represent important
combinatorial problems for motion planning in robotics. We
assume that multiple distinguishable robots are placed in
vertices of an undirected graph such that at most one robot
is placed in each vertex. Robots can move across edges
while problem specific rules are observed. For instance, PMG
and MRPP usually requires that robots (pebbles/robots) are
moved to unoccupied neighbors only. TSWAP on the other
hand permits only swaps of pairs of tokens along edges while
more complex movements are forbidden. The task in robot
path planning problems is to reach a given goal configuration
of robots from a given starting configuration using allowed
movements.

In this paper we focus on optimal solving of MRPP and
its variants with respect to common cumulative objective
functions like sum-of-costs [6] and makespan [7]. Sum-
of-costs corresponds to the total cost of all movements
performed until the goal configuration in reached - traversal
of an edge by an robot has unit cost typically. The makespan
calculates the number of time-steps until the goal is reached.
In both cases we trying to minimize the objective.

Many practical problems from robotics can be interpreted
as MRPP. Examples include discrete multi-robot naviga-
tion and coordination, robot rearrangement in automated
warehouses [8], ship collision avoidance [9], or formation
maintenance of aerial vehicles [10].
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A. Contributions

The contribution of this paper consists in suggesting a
general framework for defining and solving MRPP based
on satisfiability modulo theories (SMT) [11]. We used the
framework to define two new variants derived from MRPP
and TSWAP: token rotation (TROT) and token permutation
(TPERM) where instead of swapping tokens, rotations along
non-trivial cycles and arbitrary permutations of tokens are
permitted. A recently suggested algorithm called SMT-CBS
[12] that combines ideas from CBS [13] and SMT is adapted
for all variants of MRPP and experimentally evaluated. Tests
on standard benchmarks indicate that SMT-CBS outperforms
the previous CBS and the previous state-of-the-art SAT-based
algorithm MDD-SAT [14].

We first recall TSWAP and MRPP formally. The SMT-
CBS algorithm is recalled in the line with its precursors - the
CBS and MDD-SAT algorithms. Together with SMT-CBS
we introduce TROT and TPERM. Finally, an experimental
evaluation of all concerned algorithms CBS, MDD-SAT, and
SMT-CBS on all variants of MRPP is presented.

II. BACKGROUND

We first recall multi-robot path planning (MRPP) [15],
[16] and token swapping (TSWAP) [17] formally. MRPP
consists of an undirected graph G = (V,E) and a set of
robots R = {r1, r2, ..., rk} such that |R| < |V |. Each robot
is placed in a vertex so that at most one robot resides in
each vertex. The configuration of robots is denoted α :
R → V with α0 and α+ denoting the initial and the goal
configuration respectively.

A robot can either move to an adjacent empty vertex or
wait in its current location. The task is to find a sequence of
move/wait actions for each robot ri, moving it from α0(ri)
to α+(ri) such that robots do not collide, that is no two
robots can enter the same target vertex simultaneously. An
example of MRPP instance is shown in Figure 1.
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Fig. 1. An MRPP instance with three robots r1, r2, and a3.

Definition 1: (move-to-unoccupied rule of MRPP) Con-
figuration α′ results from α if and only if the following
conditions hold:
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Fig. 2. A TSWAP instance. A solution consisting of two swaps is shown.

(i) α(a) = α′(a) or {α(a), α′(a)} ∈ E for all a ∈ A
(robots wait or move along edges);

(ii) for all a ∈ A it holds that if α(a) 6= α′(a) ⇒
α′(a) 6= α(a′) for all a′ ∈ A (target vertex must be
empty);

(iii) and for all a, a′ ∈ A it holds that if a 6= a′ ⇒
α′(a) 6= α′(a′) (no two robots enter the same target).

The task in MRPP is to find a sequence of configurations
[α0, α1, ..., αµ] such that αi+1 results from αi for i =
1, 2, ..., µ− 1, and αµ = α+.

A feasible solution of a solvable MRPP instance can be
found in polynomial time [5]; precisely the worst case time
complexity of most practical algorithms for finding feasible
solutions is O(|V |3) (asymptotic size of the solution is also
O(|V |3)) [18]. This is also asymptotically best what can be
done as there are MRPP instances requiring Ω(|V |3) moves.

In many aspects, token swapping problem (TSWAP) (also
known as sorting on graphs) is similar to MRPP. Using a
modified notation from [19] each vertex in G is assigned
a color from C = {c1, c2, ..., ch} via τ+ : V → C. A
token of a color from C is placed in each vertex. The
task is to transform a given token placement into the one
such that colors of tokens and respective vertices of their
placement agree. Desirable token placement can be obtained
by swapping tokens on adjacent vertices. See Figure 2 for
an example instance of TSWAP.

We denote by τ : V → C colors of tokens placed in
vertices of G. That is, τ(v) for v ∈ V is a color of a token
placed in v. Starting placement of tokens is denoted as τ0;
the goal token placement corresponds to τ+. Transformation
of one placement to another is captured by the concept of
adjacency defined as follows [19]:

Definition 2: (adjacency in TSWAP) Token placements
τ and τ ′ are adjacent if there exists a subset of non-adjacent
edges F ⊆ E such that τ(v) = τ ′(u) and τ(u) = τ ′(v)
for each {u, v} ∈ F and for all other vertices w ∈ V \⋃

{u,v}∈F {u, v} it holds that τ(w) = τ ′(w).
The task in TSWAP is to find a swapping sequence of

token placements [τ0, τ1, ..., τm] such that τm = τ+ and τi
and τi+1 are adjacent for all i = 0, 1, ...,m− 1.

It has been shown that for any initial and goal placement of
tokens τ0 and τ+ respectively there is a swapping sequence
transforming τ0 and τ+ containing O(|V |2) swaps. The proof
is based on swapping tokens on a spanning tree of G. We
note that the above bound is tight as there are instances
consuming Ω(|V |2) swaps.

III. RELATED WORK

Although many works studying TSWAP from the theoret-
ical point of view exist [20] practical solving of the problem
started only lately [21] .

A. Search for Optimal Solutions

We will use the sum-of-costs objective function in all
problems studied in this paper. But all presented concepts can
be migrated to other cumulative objectives. The following
definition introduces the sum-of-costs objective in MRPP.
Analogical definition can be introduced for TSWAP too.

Definition 3: Sum-of-costs [22] ξ =
∑k
i=1 ξ(path(ri))

where ξ(path(ri)) is an individual path cost of robot ri
connecting α0(ri) calculated as the number of edge traversals
and wait actions.

We note that one swap in TSWAP corresponds to the
cost of 2 as two tokens traverses single edge. Finding
optimal MRPP and TSWAP solutions with respect to various
cumulative objectives is NP-hard [7].

B. Conflict-based Search

CBS uses the idea of resolving conflicts lazily; that is,
a solution of MRPP instance is not searched against the
complete set of movement constraints that forbids collisions
between robots but with respect to initially empty set of
collision forbidding constraints that gradually grows as new
conflicts appear.

The high level of CBS searches a constraint tree (CT)
using a priority queue in breadth first manner. CT is a binary
tree where each node N contains a set of collision avoidance
constraints N.constraints - a set of triples (ri, v, t) forbid-
ding occurrence of robot ri in vertex v at time step t, a
solution N.paths - a set of k paths for individual robots,
and the total cost N.ξ of the current solution.

The low level process in CBS associated with node
N searches paths for individual robots with respect to
N.constraints. This is single source shortest path search
from α0(ri) to α+(ri) that avoids a set of vertices {v ∈
V |(ri, v, t) ∈ N.constraints} whenever working at time
step t. For details see [23].

CBS stores nodes of CT into priority queue OPEN sorted
according to ascending N.ξ. At each step CBS takes node N
with lowest N.ξ from OPEN and checks if N.paths represent
collision free paths. If there is no collision, the algorithms
returns valid MRPP solution N.paths. Otherwise the search
branches by creating a new pair of nodes in CT - successors
of N . Assuming that a collision occurred between robots
ri and rj in vertex v at time step t it can be avoided if
either robot ri or robot rj does not reside in v at timestep
t. These two options correspond to new successor nodes of
N - N1 and N2 that inherit the set of conflicts from N
as follows: N1.conflicts = N.conflicts ∪ {(ri, v, t)} and
N2.conflicts = N.conflicts ∪ {(rj , v, t)}. N1.paths and
N1.paths inherit path from N.paths except those for robot
ri and rj respectively. Paths for ri and rj are recalculated
with respect to extended sets of conflicts N1.conflicts and
N2.conflicts respectively and new costs for both robots



N1.ξ and N2.ξ are determined. After this N1 and N2 are
inserted into the priority queue OPEN.

The CBS algorithm ensures finding sum-of-costs optimal
solution. Detailed proofs of this claim can be found in [13].

C. SAT-based Approach

An alternative approach to optimal MRPP solving as well
as to TSWAP solving is represented by reduction of MRPP
to propositional satisfiability (SAT) as done in MDD-SAT
[14]. The idea is to construct a propositional formula F(ξ)
such that it is satisfiable if and only if a solution of a given
MRPP of sum-of-costs ξ exists.

Being able to construct such formula F one can obtain
optimal MRPP solution by checking satisfiability of F(ξ0),
F(ξ0+1), F(ξ0+2),... until the first satisfiable F(ξ) is met,
where ξ0 is the sum of lengths of shortest paths serving as
the lower bound for the sum-of-costs. This is possible due to
monotonicity of MRPP solvability with respect to increasing
values of common cumulative objectives such as the sum-
of-costs.

D. Details of MDD-SAT Encoding

Construction of F(ξ) relies on the time expansion of G.
Having ξ, the basic variant of time expansion determines
the maximum number of time steps µ (also refered to as a
makespan) such that every possible solution with the sum-
of-costs less than or equal to ξ fits within µ timesteps.

The time expansion itself makes copies of vertices V for
each timestep t = 0, 1, 2, ..., µ. That is, we have vertices vt

for each v ∈ V time step t. Edges from G are converted to
directed edges interconnecting timesteps in time expansion.
Directed edges (ut, vt+1) are introduced for t = 1, 2, ..., µ−1
whenever there is {u, v} ∈ E. Wait actions are modeled
by introducing edges (ut, tt+1). A directed path in time
expansion corresponds to trajectory of a robot in time. Hence
the modeling task now consists in construction of a formula
in which satisfying assignments correspond to directed paths
from α0

0(ri) to αµ+(ri) in the time expansion.
Assume that we have time expansion TEG i = (Vi, Ei)

for robot ri. Propositional variable X tv(rj) is introduced for
every vertex vt in Vi. The semantics of X tv(ri) is that it
is TRUE if and only if robot ri resides in v at time step
t. Similarly we introduce Eu, vt(ri) for every directed edge
(ut, vt+1) in Ei. Analogously the meaning of Etu,v(ri) is
that it is TRUE if and only if robot ri traverses edge {u, v}
between time steps t and t+ 1.

Finally constraints are added so that truth assignment are
restricted to those that correspond to valid solutions of a
given MRPP. For the detailed list of constraints we refer the
reader to [14]. We here illustrate the encoding by showing
a representative constraints saying that the target vertex of
any movement except wait action must be empty. This is
ensured by the following propositional expression for every
(ut, vt+1) ∈ Ei:

Etu,v(ai)⇒
∧

aj∈A | aj 6=ai∧vt∈Vj

¬X tv(aj) (1)

IV. GENERALIZATIONS OF ROBOT RELOCATION

We define two problems derived from MRPP and TSWAP:
token rotation (TROT) and token permutation (TPERM) 1.

A. Token Rotation and Token Permutation

A swap of pair of tokens can be interpreted as a rotation
along a trivial cycle consisting of a single edge. We can gen-
eralize this towards longer cycles. TROT permits rotations
along longer cycles but forbids trivial cycles; that is, rotations
along triples, quadruples, ... of vertices are permitted but
swaps along edges are forbidden.

Definition 4: (adjacency in TROT) Token placements τ
and τ ′ are adjacent in TROT if there exists a subset of edges
F ⊆ E such that components C1, C2, ..., Cp of induced sub-
graph G[F ] satisfy following conditions:

(i) Cj = (V Cj , E
C
j ) such that V Cj = wj1, w

j
2, ..., w

j
nj

with
nj ≤ 3 and
ECj = {{wj1, w

j
2}; {w

j
2, w

j
3}; ...; {wjnj

, wj1}}
(components are cycles of length at least 3)

(ii) τ(wj1) = τ ′(wj2), τ(wj3) = τ ′(wj3), ..., τ(wjnj
) = τ ′(wj1)

(colors are rotated in the cycle one position for-
ward/backward)

The rest of the definition of a TROT instance is analogous
to TSWAP. Similarly we can define TPERM by permitting
all lengths of cycles. The formal definition of adjacency in
TPERM is almost the same as in TROT except relaxing the
constraint on cycle length, nj ≤ 2.

We omit here complexity considerations for TROT and
TPERM for the sake of brevity. Again it holds that a feasible
solution can be found in polynomial time but the optimal
cases remain intractable in general.

In many real-life scenarios it happens that robots enter
positions being simultaneously vacated by other robots (for
example mobile robots often move formations like snake
etc.) which is the property captured in above definitions.

B. Adapting CBS and MDD-SAT

Both CBS and MDD-SAT can be modified for optimal
solving of TSWAP, TROT, and TPERM. Different movement
rules can be reflected in CBS and MDD-SAT algorithms
without modifying their high level framework.

1) Different Conflicts in CBS: In CBS, we need to mod-
ify the understanding of conflict between robots/tokens. To
define conflicts in variants of MRPP we use the concept of
vertex collision [23] and edge collision [25].
TPERM: The easiest case is TPERM as it is least restrictive.
We merely forbid simultaneous occurrence of multiple tokens
in a vertex - this situation is understood as a collision in
TPERM and conflicts are derived from it. If a collision
(ci, cj , v, t) between tokens ci and cj occurs in v at time
step t then we introduce conflicts (ci, v, t) and (cj , v, t) for
ci and cj respectively. 2

1These problems have been considered in the literature in different
contexts already (for example in [24]). But not from the practical solving
perspective focused on finding optimal solutions.

2In addition to this MRPP checks vacancy of the target vertex which may
cause more colliding situations.



TSWAP: This problem takes conflicts from TPERM but adds
new conflicts that arise from doing something else than swap-
ping [21]. Each time edge {u, v} is being traversed by token
ci between time steps t and t+1, a token residing in v at time
step t, that is τt(v), must go in the opposite direction from v
to u. If this is not the case, then edge collision involving edge
{u, v} occurs and corresponding edge conflicts (ci, (u, v), t)
and (τt(v), (v, u), t) are introduced for robots ci and τt(v)
respectively.

Edge conflicts must be treated at the low level of CBS.
Hence in addition to forbidden vertices at given time-steps
we have forbidden edges between given time-steps.
TROT: The treatment of conflicts will be complementary to
TSWAP in TROT. Each time edge {u, v} is being traversed
by token ci between time steps t and t+ 1, a token residing
in v at time step t, that is τt(v), must go anywhere else
but not to u. If this is not the case, then we again have edge
collision (ci, τt(v),{u,v}, t) which is treated in the same way
as above.

2) Encoding Changes in MDD-SAT: In MDD-SAT, we
need to modify encoding of movement rules in propositional
formula F(ξ).
TPERM: This is the easiest case for MDD-SAT. We merely
remove all constrains requiring tokens to move into vacant
vertices only. That is we remove clauses (1).
TSWAP: Inherits changes from TPERM but in addition to
that we need to carry out swaps properly. Edge variables
Etu,v(ci) will hence be utilized. The following constraint will
be introduced for every {ut, vt+1} ∈ Ei (intuitively, if token
ci traverses {u, v} some other token cj traverses {u, v} in
the opposite direction):

Etu,v(ci)⇒
∨

j=1,2,...,k | j 6=i∧(ut,vt+1)∈Ej

Etv,u(cj) (2)

TROT: Is treated in a complementary way to TSWAP. In-
stead of adding constraints (2) we add constraints forbidding
simultaneous traversal in the opposite direction as follows:

Etu,v(ci)⇒
∧

j=1,2,...,k|j 6=i∧(ut,vt+1)∈Ej

¬Etv,u(cj) (3)

V. COMBINING SAT-BASED APPROACH AND CBS
A close look at CBS reveals that it operates similarly as

problem solving in satisfiability modulo theories (SMT) [11].
SMT divides satisfiability problem in some complex theory
T into an abstract propositional part that keeps the Boolean
structure of the decision problem and a simplified decision
procedure DECIDET that decides conjunctive fragment of
T . A general T -formula Γ is transformed to a propositional
skeleton by replacing atoms with propositional variables. The
standard SAT-solving procedure then decides what variables
should be assigned TRUE in order to satisfy the skeleton
- these variables tells what atoms hold in Γ. DECIDET

then checks if the conjunction of atoms assigned TRUE
is valid with respect to axioms of T . If so then satisfying
assignment is returned. Otherwise a conflict from DECIDET

(often called a lemma) is reported back and the skeleton is
extended with a constraint forbidding the conflict.

In the context of MRPP, the abstract propositional part
working with the skeleton is taken from the MDD-SAT
encoding provided that only constraints ensuring that as-
signments form valid paths interconnecting starting positions
with goalsare kept. Other constraints for collision avoidance
are omitted initially. The paths validation procedure will act
as DECIDET and will report back a set of conflicts found in
the current solution. Hence axioms of T are represented by
the movement rules of MRPP, TSWAP, TROT, and TPERM
respectively.

The SMT-CBS algorithm based on the above idea is shown
in pseudo-code as Algorithm 1 (it is formulated for MRPP;
but is applicable for TSWAP, TPERM, and TROT after
replacing conflict resolution part).

Algorithm 1: Framework of SMT-based MRPP solv-
ing

1 SMT-CBS (Σ = (G = (V,E), R, α0, α+))
2 conflicts← ∅
3 paths← {path∗(ri) a shortest path from α0(ri) to

α+(ri)|i = 1, 2, ..., k}
4 ξ ←

∑k
i=1 ξ(paths(ri))

5 while TRUE do
6 (paths, conflicts)←

SMT-CBS-Fixed(conflicts, ξ,Σ)
7 if paths 6= UNSAT then
8 return paths
9 ξ ← ξ + 1

10 SMT-CBS-Fixed(conflicts, ξ,Σ)
11 H(ξ)← encode-Basic(conflicts, ξ,Σ)
12 while TRUE do
13 assignment← consult-SAT-Solver(H(ξ))
14 if assignment 6= UNSAT then
15 paths← extract-Solution(assignment)
16 collisions← validate(paths)
17 if collisions = ∅ then
18 return (paths, conflicts)

19 for each (ri, rj , v, t) ∈ collisions do
20 H(ξ)←H(ξ) ∪ {¬X t

v(ri) ∨ ¬X t
v(rj)}

21 conflicts←
conflicts ∪ {[(ri, v, t), (rj , v, t)]}

22 return (UNSAT ,conflicts)

The conflict resolution from the standard CBS imple-
mented as high-level branching is here represented by re-
finement of F(ξ) with disjunction (line 20). Branching is
thus deferred into the SAT solver. The advantage of SMT-
CBS in contrast to MDD-SAT is that it builds the formula
lazily; that is, it adds constraints on demand after conflict
occurs. Such approach may save resources as solution may
be found before all constraint are added.

VI. EXPERIMENTAL EVALUATION
We performed an extensive evaluation of all presented

algorithms on standard benchmarks [26]. Representative part
of results is presented in this section.

We implemented SMT-CBS for all variants of MRPP in
C++ on top of the Glucose 4 SAT solver [27]. Whenever



possible the SAT solver is consulted in the incremental mode.
The standard CBS has been re-implemented in C++ from
scratch since the original implementation written in Java does
support only grids but not general graphs [23] that we need
in our tests. And finally we took existing implementation
of MDD-SAT also written in C++ and modified it for all
problem variants.

All experiments were run on a system consisting of 120
Xeon 2.0 GHz cores, 512 GB RAM, running Ubuntu Linux
18. 3

The experimental evaluation has been done on diverse
instances consisting of 4-connected grid of size 8×8, random
graphs containing 20% of random edges, star graphs, and
cliques. Initial and goal configurations of tokens/robots have
been generated randomly .
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Fig. 3. Runtime comparison of CBS, MDD-SAT, and SMT-CBS on small
graph instances of MRPP.

We varied the number of robots to obtain instances of
various difficulties; that is, the underlying graph was not fully
occupied - which in MRPP has natural meaning while in
token problems we use one special color ⊥ ∈ C that stands
for an empty vertex (that is, we understand v as empty if
and only if τ(v) = ⊥). For each number of robots/tokens
we generated 10 random instances.

The timeout in all test was set to 1000 seconds. Presented
results were obtained from instances solved within this
timeout.

A. Evaluation on Small Graphs

Our tests were focused on the runtime comparison and
evaluation of the size of encodings in case of MDD-SAT
and SMT-CBS. Part of results we obtained in small graphs
is presented in Figures 3 and 4.

CBS performs well in easy instances but its performance
degrades quickly. Both MDD-SAT and SMT-CBS are faster
for instances containing more robots. For hardest instances
solvable under the timeout (in the 8 × 8 grid the hardest

3To enable reproducibility of presented results we provide
complete source code of our solvers on author’s web:
http://users.fit.cvut.cz/∼surynpav/iros2019.
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Fig. 4. Runtime comparison of CBS, MDD-SAT, and SMT-CBS on small
graph instances of TSWAP and TROT.

instance contains 20 robots) the performance of MDD-SAT
and SMT-CBS is roughly the same.

The most interesting situation can be observed in the
middle with instances of say medium difficulty - here SMT-
CBS dominates over MDD-SAT by factor of 2 to 10.

These results are in the line with expectations. When
robots interacts too much, SMT-CBS produces the same
formula as MDD-SAT does, that is why we see the similar
performance for hardest instances. With less interacting
robots SMT-CBS does not need to deal with all potential
conflicts and is faster than MDD-SAT.

B. Evaluation on Large Graphs

The second group of tests was focused on the performance
of CBS, MDD-SAT and SMT-CBS on large 4-connected
maps taken from Dragon Age [23], [28]. In contrast to small
instances, these were only sparsely populated with agents.
Initial and goal configuration were generated at random
again. In the three structurally different maps up to 50 agents
were placed randomly. Again we had 10 random instances
per each number of agents.

Sorted runtimes are reported in Figures 5 and 6 with
MRPP and TSWAP respectively. There is no significant
difference between CBS and SMT-CBS in easier cases but
MDD-SAT lags behind. The situation changes after going
into medium difficulty region where runtimes of CBS go
quickly up while SMT-CBS maintains significant advantage
(factor 2 to 5) over MDD-SAT. Eventually however the
performance of SMT-CBS and MDD-SAT meets in the hard
region.

In addition to runtime comparison, we compared the
number of clauses generated by MDD-SAT and SMT-CBS.
Sorted numbers of clauses are shown in Figure 7 from
which we can clearly see that SMT-CBS generates order of
magnitudes fewer clauses than MDD-SAT. This is directly
reflected in smaller memory consumption by SMT-CBS
when compared to MDD-SAT.
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Fig. 5. Runtime comparison of CBS, MDD-SAT and SMT-CBS on large
instances of MRPP.
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Fig. 6. Runtime comparison of CBS, MDD-SAT and SMT-CBS on large
instances of TSWAP.

VII. CONCLUSIONS

We introduced a general framework for reasoning about
robot path planning problems in graphs based on concepts
from SMT. In addition to two known problems MRPP and
TSWAP we introduced two derived variants TROT and
TPERM in this context. We modified the recent algorithm
SMT-CBS for TROT and TPERM. Experimental evaluation
showed that SMT-CBS significantly outperforms previous
state-of-the-art SAT-based solver MDD-SAT in instances of
medium difficulty across all variants of the MRPP problem.
Comparison of individual variants of the problem indicated
that TPERM is the easiest, TROT in the middle, and TSWAP
together with MRPP represent the hardest variants.
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