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Abstract. Multi-agent path finding with continuous movements and time (de-
noted MAPFR ) is addressed. The task is to navigate agents that move smoothly
between predefined positions to their individual goals so that they do not col-
lide. Recently a novel solving approach for obtaining makespan optimal solu-
tions called SMT-CBSR based on satisfiability modulo theories (SMT) has been
introduced. We extend the approach further towards the sum-of-costs objective
which is a more challenging case in the yes/no SMT environment due to more
complex calculation of the objective. The new algorithm combines collision res-
olution known from conflict-based search (CBS) with previous generation of in-
complete propositional encodings on top of a novel scheme for selecting decision
variables in a potentially uncountable search space. We experimentally compare
SMT-CBSR and previous CCBS algorithm for MAPFR .

Keywords: path finding, multiple agents, robotic agents, logic reasoning, satis-
fiability modulo theory, sum-of-costs optimality

1 Introduction

In multi-agent path finding (MAPF) [15,27,24,30,37,26,25,6] the task is to navigate
agents from given starting positions to given individual goals. The problem takes place
in undirected graph G = (V,E) where agents from set A = {a1,a2, ...,ak} are placed in
vertices with at most one agent per vertex. The navigation task can be then expressed
formally as transforming an initial configuration of agents α0 : A→V to a goal config-
uration α+ : A→V using instantaneous movements across edges assuming no collision
occurs.

To reflect various aspects of real-life applications, variants of MAPF have been in-
troduced such as those considering kinematic constraints [9], large agents [17], general-
ized costs of actions [36], or deadlines [19] - see [18,28] for more variants. Particularly
in this work we are dealing with an extension of MAPF introduced only recently [1,33]
that considers continuous movements and time (MAPFR ). Agents move smoothly along
predefined curves interconnecting predefined positions placed arbitrarily in some con-
tinuous space. It is natural in MAPFR to assume geometric agents of various shapes that
occupy certain volume in the space - circles in the 2D space, polygons, spheres in the
3D space etc. In contrast to MAPF, where the collision is defined as the simultaneous
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occupation of a vertex or an edge by two agents, collisions are defined as any spatial
overlap of agents’ bodies in MAPFR .

The motivation behind introducing MAPFR is the need to construct more realistic
paths in many applications such as controlling fleets of robots or aerial drones [7,10]
where continuous reasoning is closer to the reality than the standard MAPF.

The contribution of this paper consists in generalizing the previous makespan op-
timal approach for MAPFR [31,33] that uses satisfiability modulo theory (SMT) rea-
soning [5,20] for the sum-of-costs objective. The SMT paradigm constructs decision
procedures for various complex logic theories by decomposing the decision problem
into the propositional part having arbitrary Boolean structure and the complex theory
part that is restricted on the conjunctive fragment. Our SMT-based algorithm called
SMT-CBSR combines the Conflict-based Search (CBS) algorithm [8,25] with previ-
ous algorithms for solving the standard MAPF using incomplete encodings [32] and
continuous reasoning.

1.1 Previous Work

Using reductions of planning problems to propositional satisfiability has been coined
in the SATPlan algorithm and its variants [11,12,13,14]. Here we are trying to apply
similar idea in the context of MAPFR . So far MAPFR has been solved by a modified
version of CBS that tries to solve MAPF lazily by adding collision avoidance constraints
on demand. The adaptation of CBS for MAPFR consists in implementing continuous
collision detection while the high-level framework of the algorithm remains the same
as demonstrated in the CCBS algorithm [1].

We follow the idea of CBS too but instead of searching the tree of possible colli-
sion eliminations at the high-level we encode the requirement of having collision free
paths as a propositional formula [4] and leave it to the SAT solver as done in [34].
We construct the formula lazily by adding collision elimination refinements following
[32] where the lazy construction of incomplete encodings has been suggested for the
standard MAPF within the algorithm called SMT-CBS. SMT-CBS works with propo-
sitional variables indexed by agent a, vertex v, and time step t with the meaning that if
the variable is TRUE a in v at time step t. In MAPFR we however face major technical
difficulty that we do not know necessary decision (propositional) variables in advance
and due to continuous time we cannot enumerate them all. Hence we need to select
from a potentially uncountable space those variables that are sufficient for finding the
solution.

The previous application of SMT in MAPFR [33] focused on the makespan opti-
mal solutions where the shortest duration of the plan is required. The sum-of-costs is
another important objective used in the context of MAPF [26,36]. Calculated as the
summation over all agents of times they spend moving before arriving to the goal. Due
to its more complex calculation, the sum-of-costs objective is more challenging to be
integrated in the SMT-based solving framework.
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1.2 MAPF with Continuous Movements and Time

We use the definition of MAPF with continuous movements and time denoted MAPFR

from [1]. MAPFR shares components with the standard MAPF: undirected graph G =
(V,E), set of agents A = {a1,a2, ...,ak}, and the initial and goal configuration of agents:
α0 : A→V and α+ : A→V . A simple 2D variant of MAPFR is as follows:

Definition 1. (MAPFR ) Multi-agent path finding with continuous time and space is
a 5-tuple ΣR = (G = (V,E),A,α0,α+,ρ) where G, A, α0, α+ are from the standard
MAPF and ρ determines continuous extensions:

• ρ.x(v),ρ.y(v) for v ∈V represent the position of vertex v in the 2D plane
• ρ.speed(a) for a ∈ A determines constant speed of agent a
• ρ.radius(a) for a ∈ A determines the radius of agent a; we assume that agents are

circular discs with omni-directional ability of movements

For simplicity we assume circular agents with constant speed and instant accel-
eration. The major difference from the standard MAPF where agents move instantly
between vertices (disappears in the source and appears in the target instantly) is that
smooth continuous movement between a pair of vertices (positions) along the straight
line interconnecting them takes place in MAPFR . Hence we need to be aware of the
presence of agents at some point in the 2D plane at any time.

Collisions may occur between agents in MAPFR due to their volume; that is, they
collide whenever their bodies overlap. In contrast to MAPF, collisions in MAPFR may
occur not only in a single vertex or edge being shared by colliding agents but also
on pairs of edges (lines interconnecting vertices) that are too close to each other and
simultaneously traversed by large agents.

We can further extend the continuous properties by introducing the direction of
agents and the need to rotate agents towards the target vertex before they start to move.
Also agents can be of various shapes not only circular discs [17] and can move along
various fixed curves. For simplicity we elaborate our implementations for the above
simple 2D continuous extension with circular agents. We however note that all devel-
oped concepts can be adapted for MAPF with more continuous extensions.

A solution to given MAPFR ΣR is a collection of temporal plans for individual
agents π = [π(a1), π(a2), ..., π(ak)] that are mutually collision-free. A temporal plan
for agent a ∈ A is a sequence π(a) = [((α0(a),α1(a)), [t0(a), t1(a))); ((α1(a),α2(a)),
[t1(a), t2(a))); ...; ((αm(a)−1(a),αm(a)(a)), [tm(a)−1(a), tm(a)(a)))] whe re m(a) is the
length of individual temporal plan and tm(a) is its duration. Each pair (αi(a),αi+1(a)),
[ti(a), ti+1(a))) corresponds to traversal event between a pair of vertices αi(a) and
αi+1(a) starting at time ti(a) and finished at ti+1(a).

It holds that ti(a)< ti+1(a) for i = 0,1, ...,m(a)−1. Moreover consecutive events in
the individual temporal plan must correspond to edge traversals or waiting actions, that
is: {αi(a), αi+1(a)} ∈ E or αi(a) = αi+1(a); and times must reflect the speed of agents
for non-wait actions.

The duration of individual temporal plan π(a) is called an individual makespan; de-
noted µ(π(a)) = tm(a). The overall makespan of π is defined as maxk

i=1{µ(π(ai))}. The
individual makespan is sometimes called an individual cost. A sum-of-cost for given
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Fig. 1. An example of MAPFR instance with two agents. A feasible makespan/sum-of-costs
sub-optimal solution π (makespan µ(π) = 2.0) and makespan/sum-of-costs optimal solution π∗
(makespan µ(π∗) = 1.980) are shown.

temporal plan π(a) is defined as ∑
k
i=1 µ(π(ai)) An example of MAPFR and makespan/sum-

of-costs optimal solution is shown in Figure 1.
Through straightforward reduction of MAPF to MAPFR it can be observed that

finding a makespan or sum-of-costs optimal solution with continuous time is an NP-
hard problem [22,38].

2 Solving MAPF with Continuous Time

Let us recall CCBS [1], a variant of CBS [25] modified for MAPFR . The idea of CBS
algorithms is to resolve conflicts lazily.

2.1 Conflict-based Search

CCBS for finding the sum-of-costs optimal solution is shown in Algorithm 1. The
high-level of CCBS searches a constraint tree (CT) using a priority queue ordered
according to the sum-of-costs in the breadth first manner. CT is a binary tree where
each node N contains a set of collision avoidance constraints N.cons - a set of triples
(ai,(u,v), [τ0,τ+)) forbidding agent ai to start smooth traversal of edge {u,v} (line) at
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Algorithm 1: CCBS algorithm for solving MAPFR for the sum-of-costs ob-
jective.

1 CBSR (ΣR = (G = (V,E),A,α0,α+,ρ))
2 R.cons← /0

3 R.π← {shortest temporal plan from α0(ai) to α+(ai) | i = 1,2, ...,k}
4 R.ξ← ∑

k
i=1 µ(N.π(ai))

5 OPEN← /0

6 insert R into OPEN

7 while OPEN 6= /0 do
8 N← minξ(OPEN)
9 remove-Minξ(OPEN)

10 collisions← validate-Plans(N.π)
11 if collisions = /0 then
12 return N.π

13 let (mi×m j) ∈ collisions where mi = (ai,(ui,vi), [t0
i , t

+
i )) and

m j = (a j,(u j,v j), [t0
j , t

+
j ))

14 ([τ0
i ,τ

+
i ); [τ

0
j ,τ

+
j ))← resolve-Collision(mi,m j)

15 for each m ∈ {(mi, [τ
0
i ,τ

+
i )),(m j, [τ

0
j ,τ

+
j ))} do

16 let ((a,(u,v), [t0, t+)), [τ0,τ+)) = m
17 N′.cons← N.cons∪{(a,(u,v), [τ0,τ+))}
18 N′.π← N.π
19 update(a, N′.π, N′.cons)
20 N′.ξ← ∑

k
i=1 µ(N′.π(ai))

21 insert N′ into OPEN

any time between [τ0,τ+), a solution N.π - a set of k individual temporal plans, and the
sum-of-costs N.ξ of N.π.

The low-level in CCBS associated with node N searches for individual temporal
plan with respect to set of constraints N.cons. For given agent ai, this is the standard
single source shortest path search from α0(ai) to α+(ai) that at time t cannot start to
traverse any {(u,v)∈ E | (ai,(u,v), [τ0,τ+))∈N.cons∧t ∈ [τ0,τ+)}. Various intelligent
single source shortest path algorithms such as SIPP [21] can be used here.

CCBS stores nodes of CT into priority queue OPEN sorted according to the ascend-
ing sum-of-costs. At each step CBS takes node N with the lowest makespan from OPEN
and checks if N.π represents non-colliding temporal plans. If there is no collision, the
algorithms returns valid solution N.π. Otherwise the search branches by creating a new
pair of nodes in CT - successors of N. Assume that a collision occurred between ai
traversing (ui,vi) during [t0

i , t
+
i ) and a j traversing (u j,v j) during [t0

j , t
+
j ). This collision

can be avoided if either agent ai or agent a j waits after the other agent passes. We can
calculate for ai so called maximum unsafe interval [τ0

i ,τ
+
i ) such that whenever ai starts

to traverse (ui,vi) at some time t ∈ [τ0
i ,τ

+
i ) it ends up colliding with a j assuming a j did

not try to avoid the collision. Hence ai should wait until τ
+
i to tightly avoid the collision

with a j. Similarly we can calculate maximum unsafe interval for a j: [τ0
j ,τ

+
j ). These two
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options correspond to new successor nodes of N: N1 and N2 that inherit set of constraints
from N as follows: N1.cons=N.cons ∪ {(ai,(ui,vi), [τ

0
i ,τ

+
i ))} and N2.cons=N.cons ∪

{(a j,(u j,v j), [τ
0
j ,τ

+
j ))}. N1.π and N1.π inherits plans from N.π except those for agents

ai and a j respectively that are recalculated with respect to the constraints. After this N1
and N2 are inserted into OPEN.

2.2 A Satisfiability Modulo Theory Approach

A recent algorithm called SMT-CBSR [33] rephrases CCBS as problem solving in satis-
fiability modulo theories (SMT) [5,35]. The basic use of SMT divides the satisfiability
problem in some complex theory T into a propositional part that keeps the Boolean
structure of the problem and a simplified procedure DECIDET that decides fragment of
T restricted on conjunctive formulae. A general T -formula Γ being decided for satis-
fiability is transformed to a propositional skeleton by replacing its atoms with propo-
sitional variables. The standard SAT solver then decides what variables should be as-
signed TRUE in order to satisfy the skeleton - these variables tells what atoms hold in Γ.
DECIDET then checks if the conjunction of atoms assigned TRUE is valid with respect
to axioms of T . If so then satisfying assignment is returned. Otherwise a conflict from
DECIDET (often called a lemma) is reported back to the SAT solver and the skeleton
is extended with new constraints resolving the conflict. More generally not only new
constraints are added to resolve the conflict but also new atoms can be added to Γ.

T will be represented by a theory with axioms describing movement rules of MAPFR ;
a theory we will denote TMAPFR . DECIDEMAPFR can be naturally represented by the
plan validation procedure from CCBS (validate-Plans).

2.3 RDD: Real Decision Diagram

The key question in the propositional logic-based approach is what will be the decision
variables. In the standard MAPF, time expansion of G for every time step can be done
resulting in a multi-value decision diagram (MDD) [34] representing possible positions
of agents at any time step. Since MAPFR is no longer discrete we cannot afford to
use a decision variable for every time moment. We show how to restrict the decision
variables on finitely many important moments only without compromising soundness
nor optimality of the approach.

Analogously to MDD, we introduce real decision diagram (RDD). RDDi defines for
agent ai its space-time positions and possible movements. Formally, RDDi is a directed
graph (X i,E i) where Xi consists of pairs (u, t) with u ∈ V and t ∈ R+

0 is time and Ei
consists of directed edges of the form ((u, tu);(v, tv)). Edge ((u, tu);(v, tv)) correspond
to agent’s movement from u to v started at tu and finished at tv. Waiting in u is possible
by introducing edge ((u, tu);(u, t ′u)). Pair (α0(ai),0) ∈ Xi indicates start and (α+(ai), t)
for some t corresponds to reaching the goal position.

RDDs for individual agents are constructed with respect to collision avoidance con-
straints. If there is no collision avoidance constraint then RDDi simply corresponds to
a shortest temporal plan for agent ai. But if a collision avoidance constraint is present,
say (ai,(u,v), [τ0,τ+)), and we are considering movement starting in u at t that inter-
feres with the constraint, then we need to generate a node into RDDi that allows agent
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to wait until the unsafe interval passes by, that is node (u,τ+) and edge ((u,τ0);(u,τ+))
are added.

Similarly for wait constraints (ai,(u,u), [τ0,τ+)) that forbid waiting in u during
[τ0,τ+). In such a case, we need to anticipate the constraint before entering u, that
is we can wait until τ+− tx in the source vertex before entering u where tx is the time
needed to traverse the edge towards u.

The process of building RDDs is described in details in [33]. An example of RDDs
is shown in Figure 2.
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Fig. 2. Real decision diagrams (RDDs) for agents a1 and a2 from MAPFR from Figure 1. Deci-
sions corresponding to shortest paths for agents a1 and a2 moving diagonally towards their goals
are shown: a1 : 1→ 4, a2 : 2→ 3 (left). This however results in a collision whose resolution is
either waiting for agent a1 in vertex 1 from 0.000 until 0.566 or waiting for agent a2 in vertex 2
from 0.000 until 0.566; reflected in the next RDDs (right). Mutex is depicted using dotted line
connecting arcs form RDD1 and RDD2.

2.4 SAT Encoding from RDD

We introduce a decision variable for each node and edge [RDD1, ...,RDDk]; RDDi =
(X i,E i): we have variable X t

u(ai) for each (u, t) ∈ X i and E tu,tv
u,v (ai) for each directed

edge ((u, tu);(v, tv)) ∈ E i. The meaning of variables is that X t
u(ai) is TRUE if and only

if agent ai appears in u at time t and similarly for edges: E tu,tv
u,v (ai) is TRUE if and only

if ai moves from u to v starting at time tu and finishing at tv.
MAPFR rules are encoded on top of these variables so that eventually we want

to obtain formula F (µ) that encodes existence of a solution of makespan µ to given
MAPFR . We need to encode that agents do not skip but move along edges, do not
disappear or appear from nowhere etc. We show below constraints stating that if agent
ai appears in vertex u at time step tu then it has to leave through exactly one edge
connected to u (constraint (2) although Pseudo-Boolean can be encoded using purely
propositional means):
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X tu
u (ai)⇒

∨
(v,tv) | ((u,tu),(v,tv))∈E i

E tu,tv
u,v (ai), (1)

∑
(v,tv) | ((u,tu),(v,tv))∈E i

E tu,tv
u,v (ai)≤ 1 (2)

E tu,tv
u,v (ai)⇒ X tv

v (ai) (3)

Analogously to (2) we have constraint allowing a vertex to accept at most one agent
through incoming edges; plus we need to enforce agents starting in α0 and finishing in
α+. Let us summarize soundness of the encoding in the following proposition (proof
omitted).

Proposition 1. Any satisfying assignment of F (µ) correspond to valid individual tem-
poral plans for ΣR whose makespans are at most µ.

We a-priori do not add constraints for eliminating collisions; these are added lazily
after assignment/solution validation. Hence, F (µ) constitutes an incomplete model for
ΣR : ΣR is solvable within makespan µ then F (µ) is satisfiable. The opposite implication
does not hold since satisfying assignment of F (µ) may lead to a collision.

From the perspective of SMT, the propositional level does not understand geo-
metric properties of agents so cannot know what simultaneous variable assignments
are invalid. This information is only available at the level of theory T = MAPFR

through DECIDEMAPFR . We also leave the bounding of the sum-of-costs at the level
of DECIDEMAPFR .

2.5 Lazy Encoding of Mutex Refinements and Sum-of-Costs Bounds

The SMT-based algorithm itself is divided into two procedures: SMT-CBSR represent-
ing the main loop (Algorithm 2) and SMT-CBS-FixedR solving the input MAPFR for
a fixed maximum makespan µ and sum-of-costs ξ (Algorithm 3).

Procedures encode-Basic and augment-Basic in Algorithm 3 build formula F (µ)
according to given RDDs and the set of collected collision avoidance constraints. New
collisions are resolved lazily by adding mutexes (disjunctive constraints). A collision is
avoided in the same way as in CCBS; that is, one of the colliding agent waits. Collision
eliminations are tried until a valid solution is obtained or until a failure for current µ
and ξ which means to try bigger makespan and sum-of-costs.

For resolving a collision we need to: (1) eliminate simultaneous execution of col-
liding movements and (2) augment the formula to enable avoidance (waiting). As-
sume a collision between agents ai traversing (ui,vi) during [t0

i , t
+
i ) and a j traversing

(u j,v j) during [t0
j , t

+
j ) which corresponds to variables E t0

i ,t
+
i

ui,vi (ai) and E
t0
j ,t

+
j

u j ,v j (a j). The
collision can be eliminated by adding the following mutex (disjunction) to the formula:

¬E t0
i ,t

+
i

ui,vi (ai)∨¬E
t0
j ,t

+
j

u j ,v j (a j). Satisfying assignments of the next F (µ) can no longer lead
to this collision. Next, the formula is augmented according to new RDDs that reflect the
collision - decision variables and respective constraints are added.
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After resolving all collisions we check whether the sum-of-costs bound is satisfied
by plan π. This can be done easily by checking if X t

u(ai) variables across all agents
together yield higher cost than ξ or not. If cost bound ξ is exceeded then corresponding
nogood is recorded and added to F (µ) and the algorithm continues by searching for a
new satisfying assignment to F (µ) now taking all recorded nogoods into account. The
nogood says that X t

u(ai) variables that jointly exceed ξ cannot be simultaneously set to
TRUE.

Formally, the nogood constraint can be represented as a set of variables {X t1
u1(a1),

X t2
u2(a2), ... X tk

uk(ak)}. We say the nogood to be dominated by another nogood {X t ′1
u1(a1),

X t ′2
u2(a2), ... X t ′k

uk(ak)} if and only if t ′i ≤ ti for i = 1,2, ...k and ∃i ∈ {1,2, ...,k} such that
t ′i < ti. To make the nogood reasoning more efficient we do not need to store nogoods
that are dominated by some previously discovered nogood. In such case however, the
single nogood does not forbid one particular assignment but all assignments that could
lead to dominated nogoods.

Algorithm 2: High-level of SMT-CBSR for the sum-of-costs objective.

1 SMT-CBSR (ΣR = (G = (V,E),A,α0,α+,ρ))
2 constraints← /0

3 π← {π∗(ai) a shortest temporal plan from α0(ai) to α+(ai) | i = 1,2, ...,k}
4 µ←maxk

i=1 µ(π(ai)); ξ← ∑
k
i=1 µ(π(ai))

5 while TRUE do
6 (π,constraints,µnext ,ξnext)← SMT-CBS-FixedR (ΣR , constraints, µ, ξ)
7 if π 6= UNSAT then
8 return π

9 µ← µnext ; ξ← ξnext

The set of pairs of collision avoidance constraints is propagated across entire exe-
cution of the algorithm. Constraints originating from a single collision are grouped in
pairs so that it is possible to introduce mutexes for colliding movements discovered in
previous steps.

Algorithm 2 shows the main loop of SMT-CBSR . The algorithm checks if there is
a solution for ΣR of makespan µ and sum-of-costs ξ. It starts at the lower bound for µ
and ξ obtained as the duration of the longest from shortest individual temporal plans
ignoring other agents and the sum of these lengths respectively.

Then µ and ξ are iteratively increased in the main loop following the style of SAT-
Plan [14]. The algorithm relies on the fact that the solvability of MAPFR w.r.t. cumula-
tive objective like the sum-of-costs or makespan behaves as a non decreasing function.
Hence trying increasing makespan and sum-of-costs eventually leads to finding the op-
timum provided we do not skip any relevant value.

We need to ensure important property in the makespan/sum-of-costs increasing
scheme: any solution of sum-of-costs ξ has the makespan of at most µ. The next sum-of-
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costs to try is be obtained by taking the current sum-of-costs plus the smallest duration
of the continuing movement (lines 17-27 of Algorithm 3).

The following proposition is a direct consequence of soundness of CCBS and sound-
ness of the encoding (Proposition 1) and soundness of the makespan/sum-of-costs in-
creasing scheme (proof omitted).

Proposition 2. The SMT-CBSR algorithm returns sum-of-costs optimal solution for
any solvable MAPFR instance ΣR .

Algorithm 3: Low-level of SMT-CBSR

1 SMT-CBS-FixedR (ΣR , cons, µ, ξ)
2 RDD← build-RDDs(ΣR , cons, µ)
3 F (µ)← encode-Basic(RDD,ΣR ,cons,µ)
4 while TRUE do
5 assignment← consult-SAT-Solver(F (µ))
6 if assignment 6=UNSAT then
7 π← extract-Solution(assignment)
8 collisions← validate-Plans(π)
9 if collisions = /0 then

10 while TRUE do
11 nogoods← validate-Cost(π, ξ)
12 if nogoods = /0 then
13 return (π, /0,UNDEF,UNDEF)

14 F (µ)← F (µ)∪nogoods
15 assignment← consult-SAT-Solver(F (µ))
16 if assignment =UNSAT then
17 (µnext ,ξnext)← calc-Next-Bounds(µ,ξ,cons,RDD)
18 return (UNSAT, cons, µnext , ξnext )

19 π← extract-Solution(assignment)

20 else
21 for each (mi×m j) ∈ collisions where mi = (ai,(ui,vi), [t0

i , t
+
i )) and

m j = (a j,(u j,v j), [t0
j , t

+
j )) do

22 F (µ)←F (µ)∧(¬E t0
i ,t

+
i

ui,vi (ai)∨¬E
t0

j ,t
+
j

u j ,v j (a j))

23 ([τ0
i ,τ

+
i ); [τ

0
j ,τ

+
j ))← resolve-Collision(mi,m j)

24 cons← cons∪{[(ai,(ui,vi), [τ
0
i ,τ

+
i )); (a j,(u j,v j), [τ

0
j ,τ

+
j ))]}

25 RDD←build-RDDs(ΣR , cons, µ)
26 F (µ)← augment-Basic(RDD,ΣR ,cons)

27 (µnext ,ξnext)← calc-Next-Bounds(µ,ξ,cons,RDD)
28 return (UNSAT, cons, µnext , ξnext )
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3 Experimental Evaluation

We implemented SMT-CBSR in C++ to evaluate its performance and compared it with
CCBS 1.

SMT-CBSR was implemented on top of Glucose 4 SAT solver [2] which ranks
among the best SAT solvers according to recent SAT solver competitions [3]. The solver
is consulted in the incremental mode if the formula is extended with new clauses. In case
of CCBS, we used the existing C++ implementation [1].

3.1 Benchmarks and Setup

SMT-CBSR and CCBS were tested on benchmarks from the movinai.com collection
[29]. We tested algorithms on three categories of benchmarks:

(i) small empty grids (presented representative benchmark empty-16-16),
(ii) medium sized grids with regular obstacles (presented maze-32-32-4),

(iii) large game maps (presented ost003d, a map from Dragon Age game).

In each benchmark, we interconnected cells using the 2K-neighborhood [23] for
K = 3,4,5 - the same style of generating benchmarks as used in [1] (K = 2 corre-
sponds to MAPF hence not omitted). Instances consisting of k agents were generated
by taking first k agents from random scenario files accompanying each benchmark on
movinai.com. Having 25 scenarios for each benchmarks this yields to 25 instances per
number of agents.
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Fig. 3. Comparison of SMT-CBSR and CCBS on empty-16-16. Left: Success rate (the ratio
of solved instances out of 25 under 120 seconds), the higher plot is better. Right: and sorted
runtimes where the lower plot is better are shown.

Part of the results obtained in our experimentation is presented in this section2. For
each presented benchmark we show success rate as a function of the number of agents.

1 To enable reproducibility of presented results we will provide complete source code of our
solvers on the author’s website: http://users.fit.cvut.cz/surynpav/research/rcai2020.

2 All experiments were run on a system with Ryzen 7 3.0 GHz, 16 GB RAM, under Ubuntu
Linux 18.

http://users.fit.cvut.cz/surynpav/research/rcai2020
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That is, we calculate the ratio out of 25 instances per number of agents where the tested
algorithm finished under the timeout of 120 seconds. In addition to this, we also show
concrete runtimes sorted in the ascending order. Results for one selected representative
benchmark from each category are shown in Figures 3, 4, and 5.
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Fig. 4. Comparison of SMT-CBSR and CCBS on maze-32-32-4. Surprisingly the best perfor-
mance with SMT-CBSR highly connected neighborhoods (K = 4,5 is easier than K = 3).

The observable trend is that the difficulty of the problem increases with increasing
size of the K−neighborhood with notable exception of maze-32-32-4 for K = 4 and
K = 5 which turned out to be easier than K = 3 for SMT-CBSR .

Throughout all benchmarks SMT-CBSR tends to outperform CCBS. The domi-
nance of SMT-CBSR is most visible in medium sized benchmarks. CCBS is, on the
other hand, faster in instances containing few agents. The gap between SMT-CBSR

and CCBS is smallest in large maps where SMT-CBSR struggles with relatively big
overhead caused by the big size of the map (the encoding is proportionally big). Here
SMT-CBSR wins only in hard cases.

4 Discussion and Conclusion

We extended the approach based on satisfiability modulo theories (SMT) for solving
MAPFR from the makespan objective towards the sum-of-costs objective. Our ap-
proach builds on the idea of treating constraints lazily as suggested in the CBS al-
gorithm but instead of branching the search after encountering a conflict we refine the
propositional model with the conflict elimination disjunctive constraint as it has been
done in previous application of SMT in the standard MAPF. Bounding the sum-of-costs
is done in similar lazy way through introducing nogoods incrementally. If it is detected
that a conflict free solution exceeds given cost bound then decisions that jointly induce
cost greater than given bound are forbidden via a nogood (that is, at least one of these
decisions must not be taken).

We compared SMT-CBSR with CCBS [1], currently the only alternative algorithm
for MAPFR that modifies the standard CBS algorithm, on a number of benchmarks. The
outcome of our comparison is that SMT-CBSR performs well against CCBS. The best
results SMT-CBSR are observable on medium sized benchmarks with regular obstacles.
We attribute the better runtime results of SMT-CBSR to more efficient handling of
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Fig. 5. Comparison of SMT-CBSR and CCBS on ost003d. SMT-CBSR is fastest for K = 3 but
for higher K the performance decreases significantly.

disjunctive conflicts in the underlying SAT solver through propagation, clause learning,
and other mechanisms. On the other hand SMT-CBSR is less efficient on large instances
with few agents.

The important restriction which our concept rely on is that agents cannot move
completely freely in the continuous space. We strongly assume that agents only move
on the fixed embedding of finite graph G = (V,E) into some continuous space where
vertices are assigned points and edges are assigned curves on which the definition of
smooth movement is possible. Hence for example using curves other than straight lines
for interconnecting vertices does not change the high-level SMT-CBSR .

We plan to extend the RDD generation scheme to directional agents where we need
to add the third dimension in addition to space (vertices) and time: direction (angle).
The work on MAPFR could be further developed into multi-robot motion planning in
continuous configuration spaces [16].
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