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Abstract—The At-Most-One (AMO) constraint is a special case
of cardinality constraint that requires at most one variable from
a set of Boolean variables to be set to TRUE . AMO is important
for modeling problems as Boolean satisfiability (SAT) from
domains where decision variables represent spatial or temporal
placements of some objects that cannot share the same spatial
or temporal slot. The AMO constraint can be used for more
efficient representation and problem solving in mutex networks
consisting of pair-wise mutual exclusions forbidding pairs of
Boolean variable to be simultaneously TRUE . An on-line method
for automated detection of cliques for efficient representation of
incremental mutex networks where new mutexes arrive using
AMOs is presented. A comparison of SAT-based problem solving
in mutex networks represented by AMO constraints using various
encodings is shown.

Index Terms—mutex networks, at-most-one constraint, in-
cremental mutex, Boolean satisfiability, cardinality constraints,
Boolean encodings, clique detection

I. INTRODUCTION

We address the problem of representing the incremental
mutex network efficiently using the At-Most-One (AMO)
constraint [1]–[5]. The problem is addressed in the context
of Boolean satisfiability (SAT) [6]–[10] where the task is to
decide whether there exists a truth value assignment satisfying
a given Boolean formula. Usually we assume that formula F
is specified using the conjunctive normal form (CNF) [11] as a
finite list of clauses where each clause is a (finite) disjunction
of literals and literal is either a variable or a negation of a
variable. Let us denote a set of Boolean decision variables on
top of which F is expressed V ar(F) = X = {x1, x2, ..., xn}.

A mutex network over set of variables X is defined as a
set of pair wise mutual exclusions that forbid a pair of propo-
sitional variables to be simultaneously TRUE . Formally the
mutex network of size k ∈ N denoted Mk is a set of clauses{
(¬xui

∨ ¬xvi) | ui, vi ∈ {1, 2, ..., n} ∀i = 1, 2, ..., k
}

.
Mutex network Mk can be regarded as a subset of clauses of
given Boolean formula F (in such case all binary clauses of
the formula are included in Mk).

Mutex networks appear in many problems expressed
through the means of SAT. Many difficult problems that arise
in circuit design [12], scheduling [13], classical planning [14]–
[17] or various cases of domain dependent planning [18],
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[19] can be expressed using networks of mutual exclusions.
Generally mutex networks are often a product of spatial and
temporal constraints between some objects. In real physical
domains, objects usually cannot share the same spatial or
temporal slot which directly leads to mutual exclusions of
occurence of different objects in the same slot or the same
object in multiple slots. Using common direct encodings
[20] is which decision Boolean variables are used directly
to represent some object relations (for example xA

1 and xB
1

represent occurrence of object A and object B in slot 1
respectively) can often give rise to complex mutex network
(consisting of clauses like ¬xA

1 ∨ ¬xB
1 saying that objects A

and B cannot appear simultaneously in slot 1).

A. Contribution

We contribute by a method for automated detection of the
AMO constraint in mutex networks. We propose algorithms
for detecting cliques in mutex networks that can operate in
an on-line mode which means that mutexes are processed as
they arrive into the mutex network. Such feature is of great
interest in domains where lazy Boolean encodings are used.
Several Boolean encodings of the AMO constraint are recalled.
After detecting cliques in mutex network these cliques can be
substituted by the AMO constraint using the encoding of user’s
choice.

The paper is organized as follows: first we introduce existing
encodings of the AMO constraint. Then an on-line clique
detection algorithms are introduced: one exact and one relaxed.
Both algorithms are theoretically analyzed. Finally, we imple-
ment and evaluate the suggested AMO substitution method on
a set of benchmarks including various difficult SAT instances.

II. BACKGROUND

The At-Most-One constraint (AMO) over Boolean variables
X≤ = {xij}mj=1 with ij ∈ {1, 2, ..., n} for j = 1, 2, ...,m
denoted ≤1{xi1 , xi2 , ...xim} or ≤1{xij}mj=1 requires that at
most one Boolean variable from xij variables can be set to
TRUE . AMO is a special case of more general cardinality
constraints [3], [4] denoted ≤c{xi1 , xi2 , ...xim} with c ∈ N
requiring that at most c variables from X≤ are assigned
TRUE .

Cardinality constraints have wide use in problem modeling
since they enable bounding various numeric values in inside



the yes/no environment of Boolean formulae. This is a sig-
nificant contribution that brings SAT towards practical use in
problem solving [21].

Definition 1: (clique clustering). Given an undirected graph
G = (V,E), a clique clustering of G is a collection of subsets
of vertices, C = {K ⊆ V } such that each K ∈ C induces a
complete sub-graph of G and each edge of G is covered by
C, that is, ∀{u, v} ∈ E(∃K ∈ C such that u, v ∈ K).

The concept of clique clustering can be naturally converted
for mutex networks by substituting of indices Boolean vari-
ables from X instead of V and the set of binary clauses of
Mk instead of E (that is, clause (¬xui

∨ ¬xvi) represents
edge {ui, vi}).

A. Encodings of the At-Most-One Constraint

The At-Most-One constraint can be expressed by various
encodings often using additional auxiliary Boolean variables.
The set of auxiliary variables is denoted A≤ in this context.
The basic encoding of AMO often called pairwise can simply
use the mutex network of size m·(m−1)

2 consisting of clauses{
¬xui ∨ ¬xvi | ui, vi ∈ {i1, i2, ..., im} ∧ ui < vi

}
. Even

though this encodings supports achieving arc-consistency [22]
through unit propagation [23], [24] it lacks any understanding
of the global structure of the constraint [25]. It has been
experimentally shown that different encodings of the At-Most-
One constraint significantly outperform the pairwise encoding
in a number of benchmarks [1].

We illustrate the process of encoding on two AMO rep-
resentations below: the binary encoding and the commander
encoding.

Binary Encoding: The binary encoding [26] uses the idea
of mapping m possible settings of exactly one variable in
set X≤ to TRUE to m possible different settings of bits
in a bit vector of length dlog2 me. The binary encoding
uses dlog2 me auxiliary variables: A≤ = {b1, b2, ..., bdlog2 me}
to represent the bit vector. Whenever xij is set to TRUE
the bit vector variables must be set following the binary
encoding to represent value j in the bit vector. Let j

l ={
bl if l-th bit of binary encoding of j is 1

¬bl if l-th bit of binary encoding of j is 0
Specifically we have the following formula to represent

≤1{xij}mj=1 using the binary encoding:
(¬xi1 ∨ 1

1) ∧ ...(¬xi1 ∨ 1
dlog2 me)∧

(¬xi2 ∨ 2
1) ∧ ...(¬xi2 ∨ 2

dlog2 me)∧
...

(¬xim ∨ m
1 ) ∧ ...(¬xim ∨ m

dlog2 me)

Commander Encoding: The commander encoding [27] par-
titions X≤ into disjoint subsets Y1 = {y11 , ...y1g1}, Y2 =
{y21 , ..., y2g2}, ... Yd = {yd1 , ..., ydgd}. For each group of vari-
ables Yi we introduce an auxiliary commander variable ci. The
interpretation is that ci set to TRUE selects a candidate from
group Yi. In other words, commander variables introduce a
hierarchical structure for selecting at most one variable from
the original set X≤: at most one commander variable can be

set to TRUE while it permits to select at most one variable
from its group; no other variable in other groups can be set to
TRUE . Following clauses need to be introduces to carry out
the encoding:

(¬c1 ∨ y11 ∨ y12 ∨ ...y1g1) ∧ ...(¬cd ∨ yd1 ∨ yd2 ∨ ...ydgd)

In addition to this following AMO constraints need to be
introduced: ≤1{¬c1 ∨ y11 ∨ y12 ∨ ...y1g1}, ≤1{¬c2 ∨ y21 ∨ y22 ∨
...y2g2}, ..., ≤1{¬cd ∨ yd1 ∨ yd2 ∨ ...ydgd}. Finally, we need to
enforce that at most one commander variable is selected by:
≤1{c1 ∨ c2 ∨ ...cd}.

The number of groups partitioning X≤ is set to d = d
√
me

which is a good compromise between the number of groups
and their size.

III. ON-LINE CLIQUE DETECTION IN MUTEX
NETWORKS

We present here techniques for detecting cliques (complete
sub-graph) in mutex networks. Having cliques detected on
top of set of mutexes one can introduce AMO constraints
using some more advanced encoding instead the set of mutex
clauses. Finding cliques in an undirected graph is an NP-
hard problem hence certain trade-offs between the quality of
discovered cliques and the complexity of method must be
adopted. Despite progress in algorithms for clique detection
[28], [29] simple on-line algorithms are currently missing.

We therefore present an exact exponential time/space algo-
rithm for finding all possibly overlapping cliques in the input
mutex network. Then we will show how to relax the algorithm
to reduce its complexity to acceptable polynomial level while
keeping its original idea.

A. Exact Algorithm

The exact algorithm for clique detection in mutex network
is presented using pseudo-code as Algorithm 1. The algorithm
relies on the idea of merging variables into clusters while
valued meta-edges between clusters are maintained. The meta-
edge between clusters corresponds to the set of edges inter-
connecting the two clusters. The value of meta-edge is the
number of edges connecting the clusters.

When new mutexes arrive to the mutex network the algo-
rithm updates (increments) the value of meta-edges between
all pairs of clusters the mutex variables participate in (line 8
in EXACT-CLIQUES). If this value of the meta-edge reaches
the size of the complete graph between the pair of cluster,
the clusters are merged together to form a new cluster (the
original pair of clusters is maintained). This is done in the
INCREMENT-CLUSTER-LINK procedure.

Without proof let us state that the EXACT-CLIQUES algo-
rithm is sound and complete and returns clique clustering of
the input mutex network. All cliques contained in the input
mutex network are detected by the algorithm, that is, if a subset
of variables X ⊆ X≤ induces a clique of mutexes w.r.t. Mk

then X ∈ C.
To provide deeper insight into how the algorithm proceeds

we summarize its complexity in the following proposition.



Algorithm 1: Exact clique detection algorithm.
1 EXACT-CLIQUES(Mk =

{
(¬xui ∨ ¬xvi ) | ui, vi ∈

{1, 2, ..., n} ∀i = 1, 2, ..., k
}

)
2 let E(Kv ,Ku) = 0 for any Ku,Kv ⊆ {1, 2, ..., n}
3 for each i = 1, 2, ..., n do
4 C ← {{i}}
5 for each (¬xui ∨ ¬xvi ) ∈Mk do
6 for each Ku ∈ C such that ui ∈ Ku do
7 for each Kv ∈ C such that vi ∈ Kv do
8 INCREMENT-CLUSTER-LINK(Ku, Kv)

9 return C
10 INCREMENT-CLUSTER-LINK(Ku,Kv)
11 E(Ku,Kv)← E(Ku,Kv) + 1
12 if E(Ku,Kv) = |Ku \ (Ku ∩Kv)| × |Kv \ (Kv ∩Kv)| then
13 for each K ∈ C such that

E(K,Ku) > 0 ∨ E(K,Kv) > 0 do
14 E(K,Ku ∪Kv)←

E(K,Ku) + E(K,Kv)− E(K,Ku ∩Kv)

15 C ← C ∪ {Ku ∪Kv}

Proposition 1: (EXACT-CLIQUES complexity). The
EXACT-CLIQUES algorithm for mutex network Mk over set
of variables X = {x1, x2, ..., xn} has the worst case time
complexity O(k · 23n) and the worst case space complexity
O(22n).
Proof. Let us first calculate the complexity of the procedure
for incrementing the number of links between a pair of clusters
Ku and Kv (INCREMENT-CLUSTER-LINK). The determining
factor is updating the number of links of the newly created
cluster with existing clusters (lines 13-14). This consumes time
of O(2n) since there is up to 2n clusters that need to update
their number of links towards the new cluster.

The dominating factor in the overall space complexity is
the structure for keeping the number of links between variable
clusters represented by E . As the number of clusters is at most
2n, the number of links connecting clusters is bounded by 22n.
Hence the overall space complexity of O(22n).

To calculate time complexity we need to observe that single
variable can participate in as many as 2n clusters. Hence line
8 in EXACT-CLIQUES where the number of links between
clusters is incremented can be executed as many as 22n times
per one mutex which gives altogether k · 22n execution across
entire mutex network. Taking into account the O(2n) time
required by the single link increment we obtain that the
algorithm needs time O(k · 23n) steps in the worst case. �

The algorithm of such high complexity is impractical how-
ever our preliminary experiments indicate that it can be well
used for detecting cliques in small mutex networks.

Observe that the EXACT-CLIQUES algorithm can operate
in an on-line mode where new mutexes arrive piece by piece
while the clique clustering is still kept up to date. This is
important in many applications such as planning where the
SAT model of a problem is often incrementally modified (that
is new constraints including mutexes are added) so we do not
need to search for cliques from scratch but only update recent

Algorithm 2: Relaxed clique detection algorithm.
1 RELAXED-CLIQUES(Mk =

{
(¬xui ∨ ¬xvi ) | ui, vi ∈

{1, 2, ..., n} ∀i = 1, 2, ..., k
}

)
2 let E(Kv ,Ku) = 0 for any Ku,Kv ⊆ {1, 2, ..., n}
3 for each i = 1, 2, ..., n do
4 C ← {{i}}
5 for each (¬xui ∨ ¬xvi ) ∈Mk do
6 K∗u ← argmaxKu∈C|ui∈Ku

|Ku|
7 K∗v ← argmaxKv∈C|vi∈Kv

|Kv |
8 INCREMENT-CLUSTER-LINK(K∗u, K∗v )
9 C ← C ∪ {{ui, vi}}

10 return C

changes.
We will use the algorithm as a starting point for a relaxed

version which will keep the on-line functionality.

B. Relaxation of the Exact Algorithm

We relax the exact clique detection algorithm while keeping
its high level structure of merging the variable clusters. We do
this by restricting the set of pair of clusters for which merging
attempt is made. Intuitively, as we aim on finding large cliques,
it seems to be promising to focus on merging of large clusters
together while smaller clusters are omitted.

The method presented using pseudo-code in Algorithm 2
attempts to merge only the largest pair of clusters. That is, for
an arriving mutex (¬xui ∨ ¬xvi) we identify largest cluster
K∗u containing ui and similarly largest cluster K∗v containing
vi (lines 6-7). The attempt to merge clusters is done only for
K∗u and K∗v .

Proposition 2: (RELAXED-CLIQUES complexity). The
RELAXED-CLIQUES algorithm for mutex network Mk over
set of variables X = {x1, x2, ..., xn} has the worst case time
complexity O(k2) and the worst case space complexity O(k2).
Proof. We first need to observe that single mutex being
processed Mk in the main loop (lines 6-8) can give rise to at
most one new cluster of variables. Hence the total number of
clusters is bounded by k. The remaining calculation of the
complexity relies on this bound (we assume that n < k).
Incrementing the number of links between a pair of clusters
then takes k steps since we need to update connection of the
new cluster towards at most k existing clusters (lines 13-14 of
INCREMENT-CLUSTER-LINK).

For each of k mutexes in input mutex network Mk we
take the largest cluster in which its variables participate and
increment the number of links between the pair of largest
clusters. Assuming O(k) the worst case time complexity of
incrementing the main loop of RELAXED-CLIQUES (lines 5-
8) yields time O(k2) altogether.

The worst case space complexity is determined by the need
to represent number of links between clusters E which can be
done using space O(k2). �

It is a question now if such dramatic reduction of time
and space complexity through restricting the link incrementing
only on largest clusters keeps ability of the algorithm to detect
cliques reasonably. The example show in Figure 1 illustrates



that the restriction on largest clusters does not compromise
finding important clique in the network.
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} 
 
E({1,2},{3,4}) = 4 
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(i) (ii) (iii) 
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Fig. 1. The process of clique clustering construction by the RELAXED-
CLIQUES algorithm. Mutexes of a network consisting of single clique
on 4 variables {x1, x2, x3, x4} are processed following the ordering:
{1, 2}, {2, 3}, {3, 4}, {1, 3}, {2, 3} and {1, 4}. Eventually the original
clique covering all 4 variables is detected in step (vi).

An intuitive insight into how the relaxed clique clustering
works suggests that it is important to add mutexes participating
in a single clique in a sequence not much interrupted by
additions of other mutexes. In such case, clusters have chance
to grow to cover the clique and do not grow outside the
clique. Practical applications suggests that this property is
often the case since for example all objects related to given
spatial slot that are spatially excluded are processed in a single
uninterrupted block.

C. The At-Most-One Constraint Substitution in Mutex Net-
works

After detecting cliques in mutex network we can convert the
encoding so that instead of the basic pair-wise representation
of AMOs different encodings can be used. The soundness
of substitution of AMO constraints relies on the property of
clique clustering (proof omitted):

Proposition 3: Assume a clique clustering C of mutex
network Mk. Representing each clique C ∈ C using some
encoding of the AMO constraint results in an equivalent
instance as that represented by Mk.

The equivalence here is defined as having identical set of
satisfying assignments, that is the set of satisfying assignments
of the conjunction of AMOs for cliques is the same as the set
of satisfying assignment for the original set of mutexes Mk

(auxiliary variables are ignored).
Moreover it is easy to see that if there are cliques C ′ ∈ C

and C ∈ C such that C ⊆ C ′ then it is sufficient to represent
C ′ using the AMO constraint to keep the above equivalence
valid.

IV. EXPERIMENTAL EVALUATION

We evaluated the suggested approach of AMO substitution
in mutex networks experimentally. The approach can be used
both in eager SAT encodings of problems where the target
formula is first constructed in advance and then consulted with
the SAT solver as well as in the lazy setup where the target
formula is constructed incrementally piece by piece and the
SAT solver is consulted multiple times during the process of
construction [30].

A. Benchmarks and Setup

The experimental evaluation is based on the GLUCOSE 3.0
SAT solver [31] which has been used as a library linked to
the testing program. The test itself is implemented in C++ 1.

The AMO substitution is implemented for all discussed
encodings: binary, sequential, product, and commander
encodings while the pair-wise is kept as the baseline encoding
for reference comparison. We divided the experiments in three
tests:

1) evaluation of AMO substitution in random mutex for-
mulae and

2) evaluation of clique detection in random mutex network
3) evaluation of AMO substitution in standard SAT bench-

marks consisting of difficult instances [12]

B. Comparison of Mutex Network Representations Using
AMOs

In all tests we compared representation mutex network using
detected AMO constraints and the base-line representation
where mutexes are kept in their original form as pair-wise
encoding. The test runs in three phases:

1) Clique clustering. This phase processes the input SAT
instance in CNF that is ether generated synthetically
or read from the input file. All clauses from the input
representing mutexes (clauses of the form (¬x∨¬y)) are
treated as being part of mutex network Mk and are not
declared to the SAT solver; other clauses, that is those
of higher arity than 2 and those not representing mutual
exclusion of TRUE assignment to a pair of variables
are directly declared to the SAT solver. Mk consisting
of collected mutexes is processed by the RELAXED-
CLIQUES algorithm which produces clique clustering C.

2) AMO encoding phase. The clique clustering C is
converted to actual AMO encoding so that the resulting
formula is equivalent to the original one. We start from
largest cliques in C and continue down to cliques of
size 3. Each clique C ∈ C is checked if it is subsumed
by any larger already processed clique. If not then C
is encoded using selected AMO encoding and resulting
clauses are recorded. If C is subsumed by some C ′ ∈ C
then C is simply ignored as its meaning is already
captured by C ′. The remaining cliques of size 2 (simple
mutual exclusions) are declared as clauses if they are
not subsumed by any larger clique.

3) SAT solving phase. This phase corresponds to con-
sulting the SAT solver with encoded instance. Encoded
clauses are all declared to the SAT solver and the solver
is started using its default setting.

In the SAT solving phase, various performance character-
istics of the SAT solver were measured such as runtime. The

1To enable reproducibility of presented results we provide the
source code and supporting experimental data on the author’s website:
http://users.fit.cvut.cz/surynpav/research/mutexAMO2020. The source code
of presented algorithms is also available in author’s Git repository:
http://github.com/surynek/mutEX.

http://users.fit.cvut.cz/surynpav/research/mutexAMO2020
http://github.com/surynek/mutEX
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Fig. 2. Absolute and relative improvement by AMOs using various encodings
in random mutex network with N = 256 variables, disjunctions of size
D = 8, and probability of mutexes p = 0.121 (higher plot means better
performance).

SAT solver has been given the time limit of 8000 seconds (ap-
prox. 2 hours 13 minutes). Preliminary experiments indicate
that the runtime of the clique clustering and AMO encoding
phases is negligible, hence there is no time limit of these
phases. 2.

Random Mutex Formulae: A random mutex formula is
characterized by three parameters: N , the number of variables,
D, the size of disjunctive clauses, and p, the probability of
a mutex. The formula is denoted mutex-net(N,D, p). The
formula is constructed by declaring N Boolean variables. Then
each of possible N ·(N−1)

2 mutexes is added with probability of
p. Such a formula is trivially satisfiable by setting all variables
to FALSE . To make the formula more interesting we divide
the set variables into dND e disjoint subsets consisting of D
variables (the last group may consist of fewer variables) and
a disjunction over the variables in D is added.
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Fig. 3. Absolute and relative improvement by AMOs using various encodings
in random mutex network with N = 256 variables, disjunctions of size D =
12, and probability of mutexes p = 0.205.

Mutex formulae tend to be relatively easy except set-
ting of p in certain narrow analogy of phase transition re-
gion. Runtime comparison for different encodings of detected

2All runtime measurements were done a system with a Ryzen 7 3GHz CPU
cores and 32GB RAM running under Ubuntu Linux 19.

AMO constraints on mutex formulae are presented in Figures
2 and 3 showing results for mutex-net(256, 8, 0.121) and
mutex-net(256, 12, 0.205) respectively.

The probability of mutexes p is selected to belong to the
phase transition region; 60 random instances were generated
for each parameter setting. The detected AMOs are encoded
using all discussed encodings and compared to the baseline
representation using the pair-wise encoding.

The sorted absolute and relative differences from the run-
time of the base-line pair-wise encoding is shown. Generally,
we cannot say there is universal improvement across all tested
instances. Often the performance worsens with using the AMO
constraints. The improvement is however in some cases up to
50% compared to the runtime of the pair-wise encoding. We
can also observe that using the commander and sequential
encodings often results in worsening of performance. On the
other hand the binary encoding and the product encoding tend
to improve the situation.

Comparing the two classes of random mutex formulae we
can observe that AMO substitution yields better results on
mutex-net(256, 8, 0.121) while on mutex-net(256, 12, 0.205)
worse performance after AMO substitution occur more fre-
quently.

It is important to note that random mutex formulae are not
especially suitable for finding large cliques. We used these
instances to test the potential of AMO substitution under not
very promising circumstances. The size of cliques identified
in this experiments is usually 3 or 4 rarely 5. Still such small
discovered cliques are shown to have potential for the AMO
substitution.

C. Clique Detection in Random Mutex Networks

We also evaluated the performance of the relaxed clique
detection separately from the SAT solving process. We focused
on the size of cliques detected by the algorithm in this test.
Random mutex networks mutex-net(N,D, p) as defined in the
previous section were used. The difference from the previous
tests is that we take into account only the mutex clauses from
mutex-net(N,D, p) while larger disjunctions (those of size D)
are ignored.
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Fig. 4. A histogram showing distribution of sizes of detected cliques in
mutex-net(256, 8, 0.121) where no cliques are explicitely introduced.

Since the RELAXED-CLIQUES algorithm is sensitive to
the ordering in which new mutexes arrive into the mutex



network, the test is divided in two cases. In the first case,
mutexes arrive in the lexicographic ordering of pairs indices
of mutex variables - we refer to this case as an original
ordering. In the second case, mutexes are permuted randomly
- we refer to this case as a random ordering. Results for
mutex-net(256, 8, 0.121) and mutex-net(256, 12, 0.205) whose
parameters are selected to belong to the aforementioned phase
transition are shown in Figures 4 and 5. The figures shows
histogram of clique sizes across 100 randomly generated
mutex-net(N,D, p). Each of the figures shows results for the
original (left part) and random ordering (right part) of the
arrival of mutexes into the mutex network.
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Fig. 5. A histogram showing distribution of sizes of detected cliques in
mutex-net(256, 12, 0.205) where no cliques are explicitly introduced.

It can be observed in both types of mutex networks that
most of cliques are relatively small of sizes 3 or 4. Rarely
a larger clique can be discovered - cliques of sizes up to 7
or 8 can be discovered. Moreover, the results clearly indicate
that ordering of arrival of mutexes has a significant impact
on what cliques are eventually discovered. Most of discovered
cliques are of size 4 if the original ordering is used while most
of cliques is of size 3 in the case of random ordering which
can be again observed in both mutex-net(256, 8, 0.121) and
mutex-net(256, 12, 0.205). On the other hand random ordering
provides opportunity for a larger clique to grow.
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Fig. 6. A histogram showing distribution of sizes of detected cliques in
mutex-net(256, 8, 0.121) where hidden cliques of size 8 are present.

The explanation for this behavior is that the original (lexico-
graphic) ordering supports the growth of clique cluster around
a variable that is shared across a sub-sequence of mutexes
within the input mutex sequence. Such opportunity is less

likely to occur when the ordering of mutexes is completely
random. The explanation of detecting larger cliques with
random ordering is that clusters in such case are more evenly
distributed hence the chance of merging a pair large clusters
is higher.
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Fig. 7. A histogram showing distribution of sizes of detected cliques in
mutex-net(256, 12, 0.205) where hidden cliques of size 12 are present.

The next test is focused on evaluation of discover-
ing large cliques in random mutex networks. We use
mutex-net(N,D, p) as a basis but parameter D is used for
generating cliques. Instead of introducing a disjunction of
size D a clique of mutexes of size D is introduced. The
clique can be regarded as hidden in the mutex network. The
resulting network will be denoted mutex-netC(N,D, p). Again
we use the following setups: mutex-netC(256, 8, 0.121) and
mutex-netC(256, 12, 0.205) - the results are shown in Figures
6 and 7. The original ordering corresponds first to adding
mutexes randomly followed by adding cliques 3. The random
ordering adds all mutexes from random phase and from cliques
in a random order.

We can see in the results that clique of larger size can be
detected in the networks compared to the case with no hidden
cliques. However original cliques can be hardly recovered all.
In mutex-netC(256, 8, 0.121) we can recover approximately 8
in 32 hidden cliques of size 8 when the original ordering is
used. When the random ordering is used the chance is slightly
lower. In mutex-netC(256, 12, 0.205) only 1 clique of size 12
can be recovered from 20 such cliques hidden in the network.

The explanation for the observed behavior is that
mutex-netC(256, 8, 0.121) is not as densely populated by
random mutexes so there is still chance that the clique cluster
grows around originally hidden cliques. This contrasts to
the mutex-netC(256, 12, 0.205) where two factors decrease
chances to find the hidden cliques. First, these cliques are
larger hence more successful steps are needed to detect them
and second, the cliques are more overlaid by random mutexes.
Hence harder to be detected by the relaxed clique algorithm.
Despite not discovering all hidden cliques we cannot say the
algorithm to be unsuccessful as it can find many smaller
cliques and occasionally even larger ones.

3Adding cliques as first would lead to their exact discovery as by example
in Figure 1. Adding random mutexes before leads to hiding the cliques in the
network.



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

ID 

Pigeon Hole (seconds) – original ordering 

Pair Wise Sequential Product Binary Command 
Clique 
cluster 

hole6 0.01 0.01 0.01 0.01 0.01 <0.01 

hole7 0.06 0.01 0.02 0.01 0.01 <0.01 

hole8 1.49 0.04 0.03 0.05 0.04 0.01 

hole9 16.56 0.12 0.13 0.24 0.07 0.01 

hole10 359.13 0.85 0.51 1.05 0.19 0.02 

hole11 3488.19 1.11 2.20 3.85 0.77 0.02 

 

ID 

Quasi Group (seconds) – original ordering 

Pair Wise Sequential Product Binary Command 
Clique 
cluster 

qg1-8 0.34 0.27 0.27 0.21 0.11 <0.01 

qg2-8 0.53 1.26 0.20 0.53 0.18 <0.01 

qg3-9 2.25 1.66 2.39 2.01 2.46 0.02 

qg5-13 4.73  3.78 2.45 2.66 2.58 0.04 

qg6-12 0.85 1.25 0.67 0.65 0.61 0.04 

qg7-13 0.13   0.18 0.18 0.12 0.08 0.01 

 

ID 

Pigeon Hole (seconds) – random ordering 

Pair 
Wise 

Sequential Product Binary Command 
Clique 
cluster 

hole6 0.01 0.01 0.01 0.01 0.01 <0.01 

hole7 0.06 0.16 0.14 0.11 0.15 <0.01 

hole8 1.49 0.91 0.57 1.28 0.11 0.01 

hole9 16.56 3.97 5.27 1.35 1.47 0.01 

hole10 359.13 424.90 300.55 596.19 9.07 0.02 

hole11 3488.19 4748.95 4238.59 4600.02 260.59 0.02 

 

ID 

Quasi Group (seconds) – random ordering 

Pair Wise Sequential Product Binary Command 
Clique 
cluster 

qg1-8 0.34 1.52 1.42 0.34 1.85 <0.01 

qg2-8 0.53 1.65 1.06 1.09 0.99 <0.01 

qg3-9 2.25 0.18 0.14 0.15 0.20 0.02 

qg5-13 4.73  7.20 5.02 4.21 8.32 0.04 

qg6-12 0.85 1.08 0.81 1.81 1.83 0.04 

qg7-13 0.13   0.08 0.08 0.04 0.17 0.01 

 

Fig. 8. Runtime results for instances encoding the Pigeon hole priciple and
Quasi group completion [32].

D. Classical Benchmarks

The third test is focused on SAT solving of hard instances
with relatively large mutex cliques hidden inside. The aim
of this experiment is to verify if the RELAXED-CLIQUES
algorithm is able to detect large enough mutex cliques so
that their substitution by the AMO constraints results in a
significant performance gain of the SAT solving phase.

We used standard benchmarks encoding the pigeon hole
principle (denoted hole) where the question is whether K+1
pigeons can be placed in K holes so that no two of them share
a hole. This problem is known to be difficult for SAT solvers
when the direct encoding is used [25]. In the direct encoding,
there are variables xj

i encoding that i-th pigeon is placed in
the j-th hole and a mutex network is introduced on top of
these variables. Similarly various circuit routing problems are
known to define difficult SAT instances containing cliques in
their mutex networks [12] (denoted chnl and S3). Circuit
routing problems often encode sub-problems similar to the
pigeon hole principle. Finally, Quasi Group (qg) instances
encode construction of Latin squares [32].

Runtime results are presented in Tables 8 and 9. We test
the original ordering of mutexes and the random ordering.
The former directly corresponds to the ordering of clauses in
the input instance while the latter takes random permutation
of mutex clauses in the input instance and performs relaxed
clique detection with respect to this random permutation.

It can be observed for the original ordering that significant
performance improvement is achieved for hole and chnl
instances where the base-line pair-wise encoding often exceeds
runtime of 1000 seconds while all encodings of the AMO
constraint lead to runtimes in terms of seconds. The most
significant improvement is achieved by using the commander
encoding. This is quite surprising as in random mutex formulae
the commander encoding has the worst performance. We need
however to take into account that the size of cliques in hole
and chnl instances is much larger (more than 10 variables)
than in random mutex networks.

In qg and S3 instances, the performance gain with the orig-
inal ordering is less significant however using AMO substitu-
tion generally leads to better performance. The best runtime
is almost in all cases achieved by some AMO encoding other

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

ID 

CHNL (seconds) – original ordering  

Pair wise Sequential Product Binary Command 
Clique 
cluster 

chnl10-11 515.24 0.62 0.56 3.51 0.26 0.01 

chnl10-12 684.66 1.26 0.51 1.27 0.36 0.01 

chnl10-13 945.08 0.63 0.73 1.28 0.31 0.02 

chnl11-12 3149.47 1.73 0.78 8.91 0.77 0.02 

chnl11-13 2589.76 2.36 0.97 6.33 1.16 0.02 

chnl11-20 >8000.00 2.76 4.05 10.82 5.59 0.03 

 

ID 

S3 (seconds) – original ordering  

Pair 
wise 

Sequential Product Binary Command 
Clique 
cluster 

s3-3-3-1 0.04 0.08 0.34 0.11 0.43 0.01 

s3-3-3-3 0.49 0.35 0.33 0.29 0.09 0.02 

s3-3-3-4 0.92 0.17 0.07 0.13 0.37 0.01 

s3-3-3-8 0.37 0.06 0.11 0.31 0.48 0.02 

s3-3-3-10 0.58 0.37 0.54 0.25 0.81 0.03 

 

ID 

CHNL (seconds) – random ordering  

Pair wise 
Sequen-

tial 
Product Binary Command 

Clique 
cluster 

chnl10-11 515.24 244.57 238.54 175.18 23.08 0.01 

chnl10-12 684.66 61.60 126.72 226.43 17.82 0.01 

chnl10-13 945.08 803.63 1083.69 888.48 153.13 0.02 

chnl11-12 3149.47 2092.57 3648.75 1632.64 3801.56 0.02 

chnl11-13 2589.76 >8000.00 5222.13 >8000.00 319.72 0.02 

chnl11-20 >8000.00 >8000.00 >8000.00 7893.84 1834.13 0.03 

 

ID 

S3 (seconds) – random ordering  

Pair 
wise 

Sequential Product Binary Command 
Clique 
cluster 

s3-3-3-1 0.04 0.29 0.19 0.17 0.25 0.01 

s3-3-3-3 0.49 0.57 0.30 0.08 0.31 0.02 

s3-3-3-4 0.92 0.44 0.46 0.44 0.65 0.01 

s3-3-3-8 0.37 0.20 0.87 0.23 0.27 0.02 

s3-3-3-10 0.58 0.25 0.87 0.38 0.26 0.03 

  

Fig. 9. Runtime results for instances encoding the Channel routing and the
Global routing instnaces [12].

than the pair-wise. If we compare individual encodings then
the commander encoding and the binary encoding seem to
provide the most consistent results. This is more in line with
observations for random mutex networks where the binary
encoding performs as best.

The results for random ordering of mutexes show generally
worse performance of AMO substitution. The random ordering
often leads to finding other cliques than those originally
encoded in the input instance. Although the original clique
covering is not detected, still relatively large cliques can be
discovered. The performance gain, despite being less impres-
sive than for the original ordering, can still be worthwhile.

We attribute the relatively good performance of AMO
substitution in these classical benchmarks to two factors. First,
the instances are difficult and hence there is room to improve
the runtime (it is usually not good to use AMO substitution
in quickly solvable instances as in such cases the overhead of
clique clustering could play a role). Second, cliques in these
instances are relatively large which gives chance the AMO
encodings to significantly differ from the pair-wise encoding.

V. RELATED WORK

Currently there seems to be a gap between works dealing
with encodings of cardinality constraints and their automated
detection. The notable exceptions are [33] and [34] where
methods for automated rediscovering previously encoded
AMOs using different encodings is presented. The difference
from our work is that we are trying to detect AMOs in on-
line mode and do not assume explicit presence of the AMO
constraints in the encoding - even partial presence is valuable.

Various works deal with efficient encodings of cardinality
constraints and specially at-most-one constraints [2]–[4]. The
common effort is to find compact encoding (small size) that
provides good support of unit propagation. As mentioned in
[20] good propagation is often supported in direct encodings
while small size is supported by logarithmic (log-space) en-
codings. Both factors are represented in our selection of AMO
encodings.

Special focus on different encodings of the AMO constraint
is given in [1]. More encodings such as the ladder encoding
and the bimander encoding are discussed and evaluated in this
work. The difference from our work is that AMO constraints



are identified in the mutex network manually. Automated
detection of cliques in mutex network is done in [25] where a
greedy algorithm is presented. The limitation of the greedy
algorithm is that it is applicable in unsatisfiable case only
where it can detect unsatisfiability by counting arguments
without solving the formula. In the satisfiable case however,
the method is not able to infer any new information.

VI. CONCLUSION

We presented a method for on-line automated detection
of At-Most-One constraints in mutex networks. Our AMO
substitution method consists of a clique detection algorithm
that is based on growing clusters that represent cliques. Any
time a new mutex arrives, clique clusters are attempted to
merge together to form a larger cluster, that is, a larger
clique. The second major part of the AMO substitution method
is encoding of detected cliques in mutex network as AMO
constraints using one of the existent encodings.

We implemented the proposed method and performed ex-
perimental evaluation which indicates that even in random
mutex networks containing small cliques, using more advanced
encodings of the AMO constraint for automatically detected
cliques has a potential to improve solving runtime. In hard
instances containing large mutex cliques the method brings
significant improvement in orders of magnitude. Moreover the
clique detection and AMO encoding has negligible overhead
according to our tests. Additional tests show that our method
is able to find relatively large cliques even if the ordering
of arriving mutexes is completely random (that is, mutexes
forming a signle clique do not arrive together).

Future work include investigation of generalized mutex
networks in which not only mutual exclusion between Boolean
variables is considered but also mutual exclusion between
literals. Hence any binary clause in such view will be treated
as a mutex and included in the mutex network. While at the
level of clique detection and AMO encoding the approach will
not differ significantly. Different performance results may be
expected.

REFERENCES

[1] V. Nguyen and S. T. Mai, “A new method to encode the at-most-
one constraint into SAT,” in Proceedings of the Sixth International
Symposium on Information and Communication Technology, Hue City,
Vietnam, December 3-4, 2015. ACM, 2015, pp. 46–53.

[2] J. Silva and I. Lynce, “Towards robust CNF encodings of cardinality
constraints,” in CP, 2007, pp. 483–497.

[3] O. Bailleux and Y. Boufkhad, “Efficient CNF encoding of boolean
cardinality constraints,” in CP, 2003, pp. 108–122.

[4] C. Sinz, “Towards an optimal CNF encoding of boolean cardinality
constraints,” in CP, 2005.

[5] P. Barahona, S. Hölldobler, and V. Nguyen, “Efficient sat-encoding of
linear CSP constraints,” in Proceedings of ISAIM 2014, 2014.

[6] S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-
ceedings of the 3rd Annual ACM Symposium on Theory of Computing.
ACM, 1971, pp. 151–158.

[7] I. P. Gent and T. Walsh, “The satisfiability constraint gap,” Artif. Intell.,
vol. 81, no. 1-2, pp. 59–80, 1996.

[8] T. Walsh, “SAT vs CSP: a commentary,” CoRR, vol. abs/1910.00128,
2019. [Online]. Available: http://arxiv.org/abs/1910.00128

[9] ——, “SAT v CSP,” in CP 2000, ser. LNCS, vol. 1894. Springer, 2000,
pp. 441–456.

[10] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook
of Satisfiability. IOS Press, 2009.

[11] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” Structures in Constructive Mathematics and Mathematical Logic,
pp. 115–125, 1968.

[12] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah, “Solving
difficult instances of boolean satisfiability in the presence of symmetry,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 22, no. 9,
pp. 1117–1137, 2003.

[13] F. A. Aloul, S. Z. H. Zahidi, A. Al-Farra, B. Al-Roh, and B. Al-Rawi,
“Solving the employee timetabling problem using advanced SAT & ILP
techniques,” JCP, vol. 8, no. 4, pp. 851–858, 2013.

[14] H. A. Kautz and B. Selman, “Unifying sat-based and graph-based
planning,” in Proceedings of IJCAI 1999, 1999, pp. 318–325.

[15] ——, “Pushing the envelope: Planning, propositional logic and stochas-
tic search,” in Proceedings of AAAI 1996, 1996, pp. 1194–1201.

[16] J. Rintanen, “Engineering efficient planners with SAT,” in Proceedings
of ECAI 2012, vol. 242. IOS Press, 2012, pp. 684–689.

[17] N. C. Froleyks, T. Balyo, and D. Schreiber, “PASAR - planning as
satisfiability with abstraction refinement,” in Proceedings of SOCS 2019.
AAAI Press, 2019, pp. 70–78.

[18] P. Surynek, “A sat-based approach to cooperative path-finding using all-
different constraints,” in Proceedings of the Fifth Annual Symposium on
Combinatorial Search, SOCS 2012. AAAI Press, 2012.

[19] B. Pandey and J. Rintanen, “Planning for partial observability by SAT
and graph constraints,” in Proceedings of ICAPS 2018. AAAI Press,
2018, pp. 190–198.

[20] J. Petke, Bridging Constraint Satisfaction and Boolean Satisfiability, ser.
Artificial Intelligence: Foundations, Theory, and Algorithms. Springer,
2015.

[21] J. Marques-Silva, “Practical applications of boolean satisfiability,” in
2008 9th International Workshop on Discrete Event Systems, 2008, pp.
74–80.

[22] A. K. Mackworth, “Consistency in networks of relations,” Artif. Intell.,
vol. 8, no. 1, pp. 99–118, 1977.

[23] W. F. Dowling and J. H. Gallier, “Linear-time algorithms for testing the
satisfiability of propositional horn formulae.” J. Log. Program., vol. 1,
no. 3, pp. 267–284, 1984.

[24] I. P. Gent, “Arc consistency in SAT,” in Proceedings of ECAI 2002.
IOS Press, 2002, pp. 121–125.

[25] P. Surynek, “Solving difficult SAT instances using greedy clique decom-
position,” in Proceedings of SARA 2007, ser. LNCS, vol. 4612. Springer,
2007, pp. 359–374.

[26] A. M. Frisch, T. J. Peugniez, A. J. Doggett, and P. Nightingale, “Solving
non-boolean satisfiability problems with stochastic local search: A
comparison of encodings,” J. Autom. Reasoning, vol. 35, no. 1-3, pp.
143–179, 2005.

[27] W. Klieber and G. Kwon, “Efficient cnf encoding for selecting 1 from n
objects,” in Proceedings of the Fourth Workshop on Constraint in Formal
Verification (CFV), 2007.

[28] S. Pang, C. Chen, and T. Wei, “A realtime clique detection algorithm:
Time-based incremental label propagation,” in 2009 Third International
Symposium on Intelligent Information Technology Application, vol. 3,
2009, pp. 459–462.

[29] D. Duan, Y. Li, R. Li, and Z. Lu, “Incremental k-clique clustering in
dynamic social networks,” Artif. Intell. Rev., vol. 38, no. 2, pp. 129–147,
2012.

[30] D. Kroening and O. Strichman, Decision Procedures - An Algorithmic
Point of View, Second Edition, ser. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2016.

[31] G. Audemard, J. Lagniez, and L. Simon, “Improving glucose for incre-
mental SAT solving with assumptions: Application to MUS extraction,”
in SAT, 2013, pp. 309–317.
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