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Abstract—Multi-robot path planning (MRPP) is the task of
finding non-conflicting paths for robots via which they can
navigate themselves to specified individual goal positions. MRPP
uses an undirected graph to represent a shared environment
in which the robots move instantaneously between vertices in
discrete time steps. Such discrete formulation enables relatively
simple algorithms, often based on multi-valued decision diagrams
(MDDs) that represent possible paths for each robot, but results
in an inaccurate modeling of the real robotic task. Recently in-
troduced continuous variant of MRPP assumes fixed trajectories
for robots and fully continuous time but is more difficult to be
addressed algorithmically. The set of possible paths for individual
robots in the continuous variant can be represented in real-time
decision diagram (RDD) which however is often too large. An
improvement of RDDs based on sparsification that includes paths
into RDD according to their heuristic prioritization is suggested
in this short paper. We show that sparse RDDs can improve
existing compilation-based algorithms significantly while keeping
their optimality guarantees.

Index Terms—multi-agent path planning, continuous time,
continuous space, decision diagrams, real-time, sparsification,
sum-of-costs optimality

Multi-robot path planning in graphs (MRPP) represents
fundamental problem in combinatorial motion planning in
robotics [1]–[5]. The task is to navigate robots from their initial
positions to specified individual goal positions. The environ-
ment is usually modeled as an undirected graph where vertices
represent positions and robots move between vertices across
edges. The two requirements make the problem challenging:
(1) the robots must not collide with each other, that is they
neither can share a vertex nor they can traverse an edge in
opposite directions and (2) some objective such as the total
number of actions must be optimized.

We address the MRPP problem from the perspective of
knowledge compilation based on decision diagrams. Across
variety of algorithms for MRPP it is needed to represent
a large set of candidate paths for each robot out of which
a specific algorithm selects a non-conflicting collection, one
path for each robot. This representation has been successfully
applied for the discrete variant of MRPP via multi-valued
decision diagrams (MDDs) in both search-based [6], [7] and
compilation-based algorithms [8].

In the continuous variant of MRPP [9], [10], where robots
move smoothly along fixed continuous trajectories, an anal-
ogous concept to MDDs appeared as real-time decision dia-
grams (RDDs) only recently, however it is less efficient in

terms of compression than MDDs [11]. The efficiency of
compression in MDDs for the discrete variant of MRPP is
rooted in the property that a single node in MDD is often
shared by many represented paths since the corresponding
vertex can be visited at discrete times only. This effect is
however less frequent when continuous time is used since a
vertex can be visited at many different continuous times which
results in many nodes in RDD.

Therefore we suggest in this paper a sparsification technique
for RDDs that instead of representing all possible candidate
paths represents only a relevant subset of them. The important
feature of the technique is that optimality guarantees of MRPP
solving algorithms build on top of sparse RDDs are kept.

The paper is organized as follows: first, a continuous variant
of MRPP is introduced. Then, a real-time decision diagrams
(RDD) for MRPP are recalled followed by the new sparsifica-
tion technique. A compilation-based algorithm that compiles
MRPP to propositional satisfiability (SAT) and uses nodes
from RDDs for construction of Boolean decision variables is
introduced as next. Finally, an experimental evaluation that
compares SAT-based algorithm using sparse and full RDDs
and search-based conflict-based search is presented.

I. MULTI-ROBOT PATH PLANNING WITH CONTINUOUS
SPACE AND TIME

We follow the definition of MRPP with continuous space
and time denoted MRPPR from [10]. MRPPR shares compo-
nents with the discrete MRPP: undirected graph G = (V,E),
set of robots R = {r1, r2, ..., rk}, and the initial and goal
configuration of robots: s0 : R → V and s+ : R → V ,
that assign robots vertices of the graph. Various continuous
extensions of MRPP are possible. However the property that
is important for the following concepts and algorithms is
that vertices V are assigned fixed positions in a continuous
space and edges E are assigned fixed continuous trajectories
interconnecting the positions. It is also needed to know how
the robot traverses the trajectory in time to be able to calculate
collisions between robots’ bodies.

In the rest of the text we will use a simple 2D variant of
MRPPR consisting of circular robots with constant speed and
instant acceleration. However it is important to note that all
developed concepts can be generalized for variants of MRPPR



taking place in more complex space and using more complex
kino-dynamic properties of robots.

Definition 1. (MRPPR) Multi-robot path finding with con-
tinuous time and space is a 5-tuple ΣR = (G =
(V,E), R, s0, s+, ρ) where G, R, s0, s+ are from the discrete
MRPP and ρ determines continuous extensions:

• ρ.x(v), ρ.y(v) represent the position of vertex v ∈ V in
the 2D plane

• ρ.speed(r) determines constant speed of robot r ∈ R
• ρ.radius(r) determines the radius of robot r ∈ R;

we assume that robots are circular discs with omni-
directional ability of movements

The major difference from the standard discrete MRPP
where robots move instantly between vertices (disappears in
the source and appears in the target instantly) is that smooth
continuous movement between a pair of vertices (positions)
along the given trajectory (a straight line in the case of 2D
variant) interconnecting the vertices takes place in MRPPR.
Hence we need to be aware of the presence of robots at some
point in the space (2D plane) at any time.
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s0(r1) = 1   s+(a1) = 4 
s0(r2) = 2   s+(a2) = 3 
  
ρ.radius(r1)=0.3  
ρ.speed(r1)=1.0 
 
ρ.radius(r2)=0.1  
ρ.speed(r2)=1.0 

π(s1): 
1 → 3 [0.000, 1.000) 
3 → 4 [1.000, 2.000) 
π(s2): 
2 → 1 [1.000, 1.000) 
1 → 3 [1.000, 2.000) 
 
μ(π) = 2.000  

π*(s1): 
1 → 1 [0.000, 0.566) 
1 → 4 [0.566, 1.980) 
π*(s2): 
2 → 3 [0.000, 1.414) 
3 → 3 [1.414, 1.980) 
 
μ(π*) = 1.980  
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Fig. 1. An example of MRPPR instance with two robots. A feasible
makespan/sum-of-costs sub-optimal solution π (makespan µ(π) = 2.0) and
makespan/sum-of-costs optimal solution π∗ (makespan µ(π∗) = 1.980) are
shown.

Collisions may occur between robots in MRPPR due to their
volume; that is, they collide whenever their bodies overlap.
In contrast to MRPP, collisions in MRPPR may occur not
only in a vertex or edge being shared by colliding robots
but also on pairs of vertices or edges (lines interconnecting
positions assigned to vertices) that are too close to each other
and simultaneously traversed by large robots.

We can further extend the continuous properties by intro-
ducing the direction of robots and the need to rotate robots
towards the target vertex before they start to move. Also robots
can be of various shapes not only circular discs [12] and even
can change their shape in time.

A solution to given MRPPR ΣR is a collection of temporal
plans for individual robots π = [π(r1), π(r2), ..., π(rk)]
that are mutually collision-free. A temporal plan for robot
r ∈ R is a sequence π(r) = [((s0(r), s1(r)), [t0(r), t1(r)));
((s1(r), s2(r)), [t1(r), t2(r))); ...; ((sm(r)−1(r), sm(r)(r)),
[tm(r)−1(r), tm(r)(r)))] where m(r) is the length of in-
dividual temporal plan and tm(r)(r) is its duration. Each
pair (si(r), si+1(r)), [ti(r), ti+1(r))) corresponds to traversal
event between a pair of vertices si(r) and si+1(r) starting at
time ti(r) and finished at time ti+1(r).

It holds that ti(r) < ti+1(r) for i = 0, 1, ...,m(r) − 1.
Moreover consecutive events in the individual temporal plan
must correspond to edge traversals or waiting actions, that is:
{si(r), si+1(r)} ∈ E or si(r) = si+1(r); and times must
reflect the speed of robots for non-wait actions.

The duration of individual temporal plan π(r) is called an
individual makespan; denoted µ(π(r)) = tm(r)(r). The overall
makespan of π is defined as maxki=1{µ(π(ri))}. The individual
makespan is sometimes called an individual cost. A sum-of-
cost for plans π is defined as

∑k
i=1 µ(π(ri)).

An example of MRPPR and makespan/sum-of-costs optimal
solution is shown in Figure 1.

Via reduction of MRPP to MRPPR it can be observed that
finding the makespan as well as the sum-of-costs optimal
solution with continuous time is an NP-hard problem [13],
[14].

II. RDDS: REAL-TIME DECISION DIAGRAMS

We further elaborate the concept of real-time decision
diagram (RDD) in this paper [11]. RDD is analogous to multi-
valued decision diagram (MDD) [6], [7] that in the context of
MRPP is used to represent a set of discrete paths in a compact
way.

MDD is a layered structure where the l-th layer consists of
copies of some vertices from V called nodes, denoted (u, l) for
u ∈ V . Directed edges are introduced to connect nodes from
consecutive layers in MDD and must correspond to edges in
E, that is, whenever nodes (u, l) and (v, l+ 1) are connected
in MDD, there must be a corresponding edge {u, v} ∈ E.
In addition to this, there are directed edges in MDD that
interconnects nodes corresponding to identical vertices from
V , that is, edges from (v, l) and (v, l + 1) for any v ∈ V
and any relevant l. The construction of MDD ensures that any
directed path in MDD starting at the first layer and finishing
at the last layer corresponds to a movement of a robot in G
(a single vertex may be visited multiple times or the robot
may wait in a vertex, which is enabled by the second type of
edges). We will refer to the sequence of vertices visited by
the robot as a path.

The advantage of MDDs for MRPP is that even if a
vertex v is reachable via multiple paths at a given time



step l it is represented only once using single node (v, l) in
MDD. This simple property enables significant compression of
representation of the set of paths. Hence, we usually need only
a small MDD to represent all paths interconnecting starting
position of a robot with its goal position.

In MRPP solving algorithms, MDD is assigned to each
robot ri, denoted MDDi, that represents a set of possible paths
for ri. In a very simplistic sense, algorithms then try to select
paths from individual MDDs of robots so that these paths are
pairwise non-conflicting resulting in a valid joint plan for all
robots from R.

Similarly RDDi defines for a robot ri its possible space-
time positions and movements. However, it no longer makes
sense to speak about layers in RDDs since time is no longer
discretized.

Formally, RDDi is a directed graph (Xi, Ei) where Xi

consists of pairs (u, t) with u ∈ V and t ∈ R+
0 is time and

Ei consists of directed edges of the form ((u, tu); (v, tv)). An
edge ((u, tu); (v, tv)) corresponds to robot’s movement from
u to v started at time tu and finished at time tv (times tu and
tv must be consistent with ri’s speed). Similarly as in MDD,
a directed path from a node (u, t) to a node (v, t′) in RDDi

should correspond to a trajectory of ri in G embedded in 2D
plane.
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Fig. 2. An example of real-time decision diagrams for MRPPR with two
robots.

Similarly as in MDD, waiting in u ∈ V can be expressed
by introducing edge ((u, tu); (u, t′u)) (t′u − tu is the duration
of wait action). A pair (s0(ri), 0) ∈ Xi indicates the start
and (s+(ri), t) for some t corresponds to reaching the goal
position at time t.

RDDs for individual robots can be constructed with respect
to collision avoidance constraints. If there is no collision
avoidance constraint then RDDi simply corresponds to a set
of shortest temporal plans for robot ri. But if a collision
avoidance constraint is present, say (ri, (u, v), [τ0, τ+)), whose
interpretation is that ri cannot start traversing edge (u, v) at
any time t ∈ [τ0, τ+), we need to allow robot ri to wait in

u until the unsafe interval [τ0, τ+) passes. It terms of RDDs,
waiting in u until τ+ corresponds to adding a node (u, τ+)
and edge ((u, τ0); (u, τ+)) to RDDi.

Similarly for wait constraints (ri, (u, u), [τ0, τ+)) that forbid
waiting in u during [τ0, τ+). In such a case, we need to
anticipate the constraint before entering u, that is we can wait
until τ+ − tx in the source vertex before entering u where tx
is the time needed to traverse the edge towards u.

The process of building RDDs is described in details in [11].
A detailed reasoning about unsafe intervals and how paths can
be constructed using wait actions to avoid them is described
in details in [15]. An example of RDDs is shown in Figure 2.

A. Sparsification in RDDs

RDDs can be used to represent candidate paths for individ-
ual robots within the conflict-based search algorithm (CBS)
[16], or to be more precise in CCBS [10], a continuous variant
of CBS. Initially, each robot has a set of candidate paths with
respect to empty set of collision avoidance constraints (there
paths are shortest path connecting robots’ initial and goal
positions). The algorithm selects a path for each robot and
then validates the selected paths with respect to collisions.
If there is no collision, then the algorithm returns a valid
optimal MRPP solution. However if a collision is detected, say
between robots ri and rj , then collision avoidance constraints
are added for colliding robots, calculated using their geometric
and kinematic properties described by ρ - for each robot,
the minimum waiting time to avoid the collision with other
robot is determined and stored as an unsafe interval associated
with the robot and edge traversal (or wait action). A mutex is
stored so that the pair of conflicting movements never occur
simultaneously again. The knowledge of the detected collision
is stored in RDDs and path selection from RDDs is repeated.

As the algorithm proceeds, the set of collision avoidance
constraints for individual robots grows and to keep soundness
of the solving process each RDD must hold all paths with
respect to any subset of collision avoidance constraints since
a-priori it is not known what set of collisions a given robot
will avoid. This could lead to significant growth in the size
of RDDs and as a consequence the high-level path selection
must search large space of candidate paths defined by RDDs.

Therefore we introduce a sparsification technique for
RDDs. The sparsification has been recently introduced for
MDDs [17]. The core idea of sparsification is not to represent
all candidate paths in RDDs with respect to a given set of
collision avoidance constraints but only a subset of them. The
subset of paths can be chosen to prefer paths that are more
likely to be conflict-free. The choice of paths to be represented
in the sparse RDD is a room for integrating MRPP-specific
heuristics. This is especially important for compilation-based
algorithms for solving MRPP as the internal decisions of the
target solver are difficult to influence.

Similar to RDDs called pool of paths has been used in the
context of mixed integer linear programming (MILP)-based
compilation for MRPP [18], [19] which however does not
explicitly focus on sparsification.



B. Candidate Path Selection Heuristic
Preliminary experiments indicate that increasing the number

of conflict avoidance constraints that are taken into account
during construction of RDDs for individual robots is a promis-
ing strategy since often a valid solution distributes collision
avoidances between robots equally while it is not much
frequent that single robot avoids many collisions.

In other words, RDDs are constructed first ignoring collision
avoidance constraints (zero collision avoidance constraints per
path are considered), then 1 collision avoidance constraint per
path is considered, and so on eventually finishing with the full
RDD in which paths with respect to any subset of collision
avoidance constraints are represented.

Sparse RDDs are shown in Figure 3. The right part shows
RDDs after extension via considering new conflict aviodance
constraints.
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Fig. 3. An example of sparse real-time decision diagrams for MRPPR from
Figure 3.

III. COMPILATION VIA RDDS

Representation of paths via RDDs and their sparse variant
has been integrated in the SMT-CBS framework [20]. SMT-
CBS uses a SAT solver [21] for selecting a collection of
non-conflicting paths from candidate paths represented in
individual RDDs. During this, mutexes that model conflicting
pairs of movements are taken into account.

To encode the selection of paths as a SAT problem, we in-
troduce a decision Boolean variable for each node and edge in
RDDs. Having RDDs [RDD1, ..., RDDk]; RDDi = (Xi, Ei):
we have a variable X t

u(ri) for each (u, t) ∈ Xi and Etu,tvu,v (ri)
for each directed edge ((u, tu); (v, tv)) ∈ Ei. The meaning of
the variables is that X t

u(ri) is TRUE if and only if the robot
ri appears in u at time t and similarly for edges: Etu,tvu,v (ri) is
TRUE if and only if ri moves from u to v starting at time
tu and finishing at tv .

MRPPR rules are encoded on top of these variables so that
eventually we want to obtain a formula F(µ) that encodes
existence of a solution of makespan µ to given MRPPR. We
need to encode that robots do not skip but move along edges,
do not disappear or appear from nowhere etc. For details, how
F(µ) is constructed we refer the reader to [11].

We a-priori do not add constraints for eliminating collisions;
these are added lazily after assignment/solution validation.

Algorithm 1: High-level of SMT-CBSR for the sum-
of-costs objective.

1 SMT-CBSR (ΣR = (G = (V,E), A, s0, s+, ρ))
2 constraints ← ∅
3 π ← {π∗(ri) a shortest temporal plan from s0(ri) to

s+(ri) | i = 1, 2, ..., k}
4 µ← maxk

i=1 µ(π(ri))

5 ξ ←
∑k

i=1 µ(π(ri))
6 while TRUE do
7 (π, constraints, µnext, ξnext)←

SMT-CBS-FixedR(ΣR, constraints, µ, ξ)
8 if π 6= UNSAT then
9 return π

10 µ← µnext

11 ξ ← ξnext

Hence, F(µ) constitutes an incomplete model for the in-
put MRPP instance: the MRPP instance is solvable within
makespan µ then F(µ) is satisfiable. The opposite implication
however does not hold since a MRPP solution corresponding
to the satisfying assignment of F(µ) may lead to a collision
between robots.

A. Optimal Algorithm Based on Sparse RDDs

The SMT-CBS algorithm itself is divided into two proce-
dures: SMT-CBSR representing the main loop (Algorithm 1)
and SMT-CBS-FixedR solving the input MRPPR for a fixed
maximum makespan µ and sum-of-costs ξ.

The main loop iteratively increases µ and ξ following the
style of SATPlan [22] - trying plans of increasing length until
sufficient length is reached. The SMT-CBS algorithm relies
on the fact that the solvability of MRPPR w.r.t. cumulative
objective like the sum-of-costs or makespan behaves as a non
decreasing function. Hence trying increasing makespan and
sum-of-costs eventually leads to finding the optimum provided
we do not skip any relevant value [11].

A formula F(µ) according to the given sparse RDDs
with respect to collected collision avoidance constraints is
constructed in SMT-CBS-FixedR. New collisions are resolved
lazily by adding mutexes (disjunctive constraints). A collision
is avoided in the same way as in CCBS; that is, one of the
colliding robot waits. Collision eliminations are tried until a
valid solution is obtained or until a failure for current RDDs
is encountered.

In the case of a failure, an attempt to extend RDDs is
done by allowing for considering more conflict avoidance con-
straints for individual robots (or by using any other heuristics).
If RDDs are successfully extended, the process is repeated
with these new RDDs. Otherwise, that is when we already
have the full RDDs for current µ, it means there is no solution
for current µ and we need to try greater µ in the next iteration
of the main loop (lines 6-11 of SMT-CBSR).

For resolving a collision we need to: (1) eliminate simul-
taneous execution of colliding movements and (2) augment
the formula to enable avoidance (waiting). Assume a col-
lision between robots ri traversing (ui, vi) during [t0i , t

+
i )



and rj traversing (uj , vj) during [t0j , t
+
j ) which corresponds

to variables Et
0
i ,t

+
i

ui,vi (ri) and Et
0
j ,t

+
j

uj ,vj (rj). The collision can be
eliminated by adding the following mutex (disjunction) to

the formula: ¬Et
0
i ,t

+
i

ui,vi (ri)∨¬E
t0j ,t

+
j

uj ,vj (rj) (line 22 of SMT-CBS-
FixedR). Satisfying assignments of the next F(µ) can no
longer lead to this collision. Next, the formula is augmented
according to new RDDs that reflect the collision - decision
variables and respective constraints are added.

After resolving all collisions we check whether the sum-of-
costs bound is satisfied by plan π. This can be done easily by
checking if X tu

u (ri) variables across all robots together yield
higher cost than ξ or not. If cost bound ξ is exceeded then
corresponding nogood is recorded and added to F(µ) (lines
11-14 of SMT-CBS-FixedR) and the algorithm continues by
searching for a new satisfying assignment to F(µ). The
nogood says that X tu

u (ri) variables that jointly exceed ξ cannot
be simultaneously set to TRUE .

The set of pairs of collision avoidance constraints is prop-
agated across entire execution of the algorithm. Constraints
originating from a single collision are grouped in pairs so that
it is possible to introduce mutexes for colliding movements
discovered in previous steps.

Algorithm 2: Low-level of SMT-CBSR

1 SMT-CBS-FixedR(ΣR, cons, µ, ξ)
2 RDD ← build-RDDs(ΣR, cons, µ)
3 F(µ)← encode-Basic(RDD,ΣR, cons, µ)
4 while TRUE do
5 assignment← consult-SAT-Solver(F(µ))
6 if assignment 6= UNSAT then
7 π ← extract-Solution(assignment)
8 collisions← validate-Plans(π)
9 if collisions = ∅ then

10 while TRUE do
11 nogoods ← validate-Cost(π, ξ)
12 if nogoods = ∅ then
13 return (π, ∅,UNDEF ,UNDEF )

14 F(µ)← F(µ) ∪ nogoods
15 assignment ← consult-SAT-Solver(F(µ))
16 if assignment = UNSAT then
17 (µnext, ξnext)←

calc-Next-Bounds(µ, ξ, cons, RDD)
18 return (UNSAT, cons, µnext, ξnext)

19 π ← extract-Solution(assignment)

20 else
21 for each (mi ×mj) ∈ collisions where

mi = (ai, (ui, vi), [t
0
i , t

+
i )) and

mj = (aj , (uj , vj), [t0j , t
+
j )) do

22 F(µ)←F(µ)∧(¬Et
0
i ,t

+
i

ui,vi (ai)∨¬E
t0j ,t

+
j

uj ,vj (aj))

23 ([τ0i , τ
+
i ); [τ0j , τ

+
j ))←

resolve-Collision(mi,mj )
24 cons← cons ∪ {[(ai, (ui, vi), [τ0i , τ

+
i ));

(aj , (uj , vj), [τ0j , τ
+
j ))]}

25 RDD ←build-Sparse-RDDs(ΣR, cons, µ)
26 F(µ)← augment-Basic(RDD,ΣR, cons)

27 (µnext, ξnext)← calc-Next-Bounds(µ, ξ, cons, RDD)
28 return (UNSAT, cons, µnext, ξnext)

IV. EXPERIMENTAL EVALUATION

We integrated sparse RDDs in a C++ implementation of
SMT-CBSR 1. The competitive evaluation has been done with
respect to original SMT-CBSR using full RDDs and CCBS, a
search-based algorithm. SMT-CBSR was implemented on top
of the Glucose 3 SAT solver [21].

Benchmarks from the movinai.com collection [23] have
been used. In each benchmark, we interconnected cells using
the 2K-neighborhood [24] for K = 3, 4, 5 - the same style of
generating benchmarks as used in [10]. Instances consisting
of k robots were generated by taking first k robots from
the random scenario files accompanying each benchmark on
movinai.com. Having 25 scenarios for each benchmark this
yields to 25 instances per number of robots.
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Fig. 4. Comparison of Sparse-SMT-CBSR, SMT-CBSR and CCBS on
empty-16-16 (small benchmark).
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Fig. 5. Comparison of Sparse-SMT-CBSR, SMT-CBSR and CCBS on maze-
32-32-4 (medium benchmark).

Part of the results obtained in our experimentation is pre-
sented here 2. For each presented benchmark we show success
rate as a function of the number of robots. That is, we calculate
the ratio out of 25 instances per number of robots where the
tested algorithm finished under the timeout of 120 seconds. In
addition to this, we also show the concrete runtimes sorted in
the ascending order. We used three categories of benchmarks
according to the size of the map: (i) small, (ii) medium, and
(iii) large. Results for one selected representative benchmark
from each category are shown in Figures 4, 5, and 6.

Throughout all benchmarks SMT-CBSR with sparse RDDs
dominates over the other two tested algorithms. The domi-
nance of sparse RDDs is surprisingly most visible in small

1To enable reproducibility of presented results we provide complete source
code of our solver in our github repository: https://github.com/surynek/boOX.

2All experiments were run on system consisting of Xeon 2.8 GHz cores,
32 GB RAM, running Ubuntu Linux 18.

https://github.com/surynek/boOX
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Fig. 6. Comparison of Sparse-SMT-CBSR, SMT-CBSR and CCBS on
ost003d (large benchmark).

sized maps however the improvement over full RDDs is
observable across all setups.

V. CONCLUSION

Sparsification of real-time decision diagrams (RDDs) rep-
resents new level of laziness in compilation-based algorithms
for continuous multi-robot path planning. We have shown
that even in its vanilla variant where sparsification is done
according to a simple heuristic, in which the growing number
of collision avoidance constraints are considered, the tech-
nique provides significant performance gains in the SMT-CBS
scheme.

Secondarily, sparse RDDs opens room for integrating more
advanced heuristics in compilation-based MRPPR solving
which before this technique represents rather a black-box
scheme which internal operation can be hardly influenced.

For the future work we plan to develop more advanced
heuristics for path selection into RDDs that for example prefer
deconflicting between robots at the level of RDD generation.
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