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Abstract—We study practical approaches to solving the to-
ken swapping (TSWAP) problem optimally in this paper. In
TSWAP, we are given an undirected graph with colored vertices.
A colored token is placed in each vertex. A pair of tokens
can be swapped between adjacent vertices. The goal is to
perform a sequence of swaps so that token and vertex colors
agree across the graph. The minimum number of swaps is
required in the optimization variant of the problem. We observed
similarities between the TSWAP problem and multi-agent path
finding (MAPF) where instead of tokens we have multiple agents
that need to be moved from their current vertices to given
unique target vertices. The difference between both problems
consists in local conditions that state transitions (swaps/moves)
must satisfy. We developed two algorithms for solving TSWAP
optimally by adapting two different approaches to MAPF -
conflict-based search (CBS) and SAT-based approach that uses
multi-value decision diagrams (MDD-SAT). This constitutes the
first attempt to design optimal solving algorithms for TSWAP.
Experimental evaluation on various types of graphs shows that
the reduction to SAT scales better than CBS in optimal TSWAP
solving. It has been also demonstrated that TSWAP instances are
easier to solve than corresponding similar MAPF instances.

Index Terms—token swapping, multi-agent path finding,
conflict-based search, SAT, optimality, multi-value decision di-
agrams, graphs

I. INTRODUCTION

The token swapping problem (TSWAP) (also known as sort-
ing on graphs) [1]–[3] represents a generalization of sorting
problems a fundamental task in computer science [4]. While
in the classical sorting problem we need to obtain linearly or-
dered sequence of elements by swapping any pair of elements,
in the TSWAP problem we are allowed to swap elements at
selected pairs of positions only. Usually the minimum number
of swaps is desirable both in the classical sorting and in the
TSWAP problem.

Using a modified notation from [5] the TSWAP problem
is given by an undirected graph G = (V,E) with vertex set
V and edge set E. Each vertex in G is assigned a color in
C = {c1, c2, ..., ch} via τ+ : V → C. A token of a color in
C is placed in each vertex. The task is to transform a current
token placement into the one such that colors of tokens and
respective vertices of their placement agree. Desirable token
placement can be obtained by swapping tokens on adjacent
vertices in G. See Figure 1 for an example instance of TSWAP.

Many practical problems from logistics, robotics, and ma-
nipulation can be interpreted as token swapping. Examples
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Fig. 1. A TSWAP instance. A solution consisting of two swaps is shown.

include discrete multi-robot navigation and coordination [6],
item rearrangement in automated warehouses [7], ship colli-
sion avoidance [8], or formation maintenance and maneuvering
of aerial vehicles [9].

These motivating applications are closely related to another
related problem studied in artificial intelligence - multi-agent
path finding (MAPF).

The (MAPF) problem [10]–[14] is similar to TSWAP.
MAPF consists of an undirected graph G = (V,E) and a
set of agents A = {a1, a2, ..., ak} such that |A| < |V |. Each
agent is placed in a vertex so that at most one agent resides in
each vertex. The placement of agents is denoted α : A→ V .
The task is to move agents in a non-conflicting way so that
each agent reaches its goal vertex. An agent can move into
adjacent unoccupied vertex provided no other agent enters the
same target vertex. An example of MAPF instance is shown
in Figure 2.

The TSWAP problem has been introduced recently. So far
theoretical results concerning computational complexity [3]
and approximations [15], [16] have appeared. To our best
knowledge there is no study dealing with practical solving
of TSWAP optimally. We would like to start to fill in this gap
in this paper.
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Fig. 2. A MAPF instance with three agents a1, a2, and a3.



The similar MAPF problem has been studied longer and
many theoretical results [17] as well as practical solving
algorithms exist for MAPF [18]–[21]. Hence we would like
to advance knowledge in solving both problems by initiating
their cross-fertilization. Our current contribution consists in
adapting optimal MAPF solvers for the TSWAP problem. We
adapted Conflict-Based Search (CBS) [20] and MDD-SAT [22]
based on reduction to propositional satisfiability [23] that uses
multi-value decision diagrams.

The paper is organized as follows: We introduce TSWAP
and MAPF problems formally and describe their theoreti-
cal properties first. Then we develop modifications of CBS
and MDD-SAT algorithms called CBS(TSWAP) and MDD-
SAT(TSWAP) for the TSWAP problem. We thoroughly discuss
differences between TSWAP and MAPF and how they are
reflected in the modifications of algorithms. Finally an exper-
imental evaluation of CBS(TSWAP) and MDD-SAT(TSWAP)
on a diverse set of synthetic TSWAP and MAPF benchmarks
is presented.

II. BACKGROUND

We denote by τ : V → C colors of tokens placed in vertices
of G. That is, τ(v) for v ∈ V is a color of a token placed
in v. Starting placement of tokens is denoted as τ0; the goal
token placement corresponds to τ+. Transformation of one
placement to another is captured by the concept of adjacency
defined as follows [5], [16]:

Definition 1: Token placements τ and τ ′ are said to be
adjacent if there exist a subset of non-adjacent edges F ⊆ E
such that τ(v) = τ ′(u) and τ(u) = τ ′(v) for each {u, v} ∈ F
and for all other vertices w ∈ V \

⋃
{u,v}∈F {u, v} it holds

that τ(w) = τ ′(w). 1

The task in TSWAP is to find a swapping sequence of token
placements [τ0, τ1, ..., τm] such that τm = τ+ and τi and τi+1

are adjacent for all i = 0, 1, ...,m − 1. It has been shown
that for any initial and goal placement of tokens τ0 and τ+
respectively there is a swapping sequence transforming τ0 and
τ+ containing O(|V |2) swaps [24]. The proof is based on
swapping tokens on a spanning tree of G. Let us note that the
above bound is tight as there are instances consuming Ω(|V |2)
swaps. It is also known that finding swapping sequence that
has as few swaps as possible is an NP-hard problem.

Similarly in MAPF we are given initial configuration of
agents α0 and goal configuration α+. At each time step an
agent can either move to an adjacent location or wait in its
current location. The task is to find a sequence of move/wait
actions for each agent ai, moving it from α0(ai) to α+(ai)
such that agents do not conflict, i.e., do not occupy the same
location at the same time.

Definition 2: Configuration α′ results from α if and
only if the following conditions hold: (i) α(a) = α′(a)
or {α(a), α′(a)} ∈ E for all a ∈ A (agents wait or
move along edges); (ii) for all a ∈ A it holds that if

1The presented version of adjacency is sometimes called parallel while a
term adjacency is reserved for the case with |F | = 1.

α(a) 6= α′(a) ⇒ α′(a) 6= α(a′) for all a′ ∈ A (target vertex
must be empty); and (iii) for all a, a′ ∈ A it holds that if
a 6= a′ ⇒ α′(a) 6= α′(a′) (no two agents enter the same target
vertex).

Solving the MAPF instance is to search for a sequence
of configurations [α0, α1, ..., αµ] such that αi+1 results using
valid movements from αi for i = 1, 2, ..., µ−1, and αµ = α+.

MAPF is usually solved aiming to minimize one of the two
commonly-used global cumulative cost functions: (1) Sum-of-
costs is the summation, over all agents, of the number of time
steps required to reach the goal location [21]. (2) Makespan:
is the time until the last agent reaches its destination (i.e., the
maximum of the individual costs) [19].

III. RELATED WORK

In contrast to the upper bound complexity result for the
TSWAP problem, it can be shown that any solvable MAPF
instance can be solved using O(|V |3) moves [25], [26].
Moreover this a tight bound again as there as instances that
need Ω(|V |3) moves. As MAPF is of great practical interest
many optimal, sub-optimal, and bounded sub-optimal solvers
have been developed for MAPF. Our scope here is limited to
optimal solvers. Optimal solvers for MAPF can be divided
to two classes. (1) Search-based solvers. These algorithms
consider MAPF as a graph search problem. Some of these
algorithms are variants of the A* algorithm that search in a
global search space – all different ways to place k agents into
V vertices, one agent per vertex [18], [27]. Others algorithms
such as ICTS [21] and CBS [20] search different search
spaces and employ novel (non-A*) search tree. (2) Reduction-
based solvers. By contrast, many recent optimal solvers reduce
MAPF to known problems such as CSP [28], SAT [19],
[29], [30], Inductive Logic Programming [31] and Answer Set
Programming [32].

IV. ADAPTING ALGORITHMS FOR TSWAP

We modified two optimal MAPF algorithms: CBS [20] and
MDD-SAT [22] for the TSWAP problem. Both algorithms
require modifications in handling of state transitions but their
high level structure will be preserved.

A. Adapting the CBS Algorithm

The first algorithm undergoing our modifications is CBS.
The algorithm is based on resolving collisions between agents
via adding constraints that forbid occurrence of resolved
collisions. The top level search of CBS uses priority queue
that stores partial solutions together with a set of conflicts.
The priority is determined by the value of objective for a
partial solution. In addition to this, CBS has a low level search
that basically finds shortest paths connecting agent’s initial
positions and goals while ignoring collisions between agents.
The low level search uses a set of conflicts that the path has
to avoid. Conflicts are triples (a, v, t) with a ∈ A, v ∈ V , and
timestep t which means that the path being searched for agent
a must avoid v at timestep t.



Initially, we use shortest paths without considering any
conflicts as an initial partial solution and store it into the
priority queue. The top level search always takes the partial
solution N with the lowest value of the objective and set
of constraints forbidding conflicts N.constraints associated
with N . N is then checked for collisions between agents. If
there are no collisions, then we can return N.paths as an
optimal solution. Otherwise we take the first collision; let
this collision happened between agents ai and aj in vertex
v at timestep t. Collision (ai, aj , v, t) will be resolved via
branching at the top level search. One or the other involved
agent must avoid v at t. This is carried out by adding two new
states into the priority queue: partial solutions obtained by the
low level search with respect to N.constraints ∪ {(ai, v, t)}
and P.constrains∪{(aj , v, t)} associated with their extended
conflict sets. For details on CBS we refer the reader to [20].

Considering TSWAP Specific Collisions: In TSWAP colli-
sions between tokens are understood differently than in MAPF.
A collision between tokens ti and tj occurs in the following
cases:
• tokens ti and tj both attempt to occupy vertex v at time

step t (the analogical collision appears in MAPF too)
• token ti traverses edge {u, v} from vertex u to v at

timestep t but tj appearing in v at timestep t does not
traverse {u, v} from v to u at timestep t (this type of
collision is unique to TSWAP)

Above cases represent collisions (ti, tj , v, t) and
(ti, tj , {u, v}, t) that are resolved by introducing conflicts
(ti, v, t) and (tj , v, t) or (ti, {u, v}, t) and (tj , {u, v}, t) and
by updating partial solutions accordingly. The collision of the
second type as unique to TSWAP - it is a collision across
edge {u, v} that is resolved in a similar way as a standard
vertex collision. That is, either ti or tj is forbidden to traverse
{u, v} at timestep t.

Complete CBS(TSWAP) is shown in pseudo-code as Algo-
rithm 1. The difference from the standard CBS consists in the
use of N.constraintsE that forbids traversal of edges at given
timesteps.

B. Adapting the MDD-SAT Algorithm

The second algorithm we adapted is a compilation-based
MDD-SAT [22]. This algorithm reduces an instance of MAPF
to a series of decision Boolean satisfiability (SAT) [23] in-
stances. Versions of MDD-SAT optimizing various objectives
such as the makespan or the sum-of-costs in MAPF exist. The
crucial step of the approach builds on formulating the decision
of whether there is a solution to given MAPF of a specified
value of the objective as an instance of SAT. Our major task
when adapting MDD-SAT for TSWAP is hence to modify
the SAT formulation to reflect different state transitions of
TSWAP.

The SAT model of MAPF in MDD-SAT relies on a time
expansion of G. That is we have a copy of G for every
timestep [30]. Search for plans for individual agents can then
be interpreted as a search for non-conflicting paths in the time
expanded graph (an agent can visit a vertex multiple times

Algorithm 1: CBS(TSWAP) algorithm - a modification
of CBS for the TSWAP problem

1 CBS(TSWAP) (G = (V,E), A, α0, α+)
2 R.constraintsV ← ∅
3 R.constraintsE ← ∅
4 R.paths← {shortest path from α0(ai) to

α+(ai)|i = 1, 2, ..., k}
5 R.ξ ←

∑k
i=1 ξ(N.paths(ai))

6 insert R into OPEN
7 while OPEN 6= ∅ do
8 N ← min(OPEN)
9 remove-Min(OPEN)

10 collisionsV ← validateVertices(N.paths)
11 collisionsE ← validateEdges(N.paths)
12 if collisionsV = ∅ and collisionsE = ∅ then
13 return N.paths
14 else
15 if collisionsV 6= ∅ then
16 let (ai, aj , v, t) ∈ collisionsV
17 for each a ∈ {ai, aj} do
18 N ′.constraintsV ←

N.constraintsV ∪ {(a, v, t)}
19 CBS(TSWAP)-New-Node(a,N,N ′)

20 else
21 if collisionsE 6= ∅ then
22 let (ai, aj , {u, v}, t) ∈ collisionsE
23 for each a ∈ {ai, aj} do
24 N ′.constraintsE ←

N.constraintsE ∪ {(a, {u, v}, t)}
25 CBS(TSWAP)-New-Node(a,N,N ′)

26 CBS(TSWAP)-New-Node(a,N,N ′)
27 N ′.paths← N.paths
28 N ′.paths(a)← update(a,N ′.constraintsV ,N ′.cstraintsE )
29 N ′.ξ ←

∑k
i=1 ξ(N

′.paths(ai))
30 insert N ′ into OPEN

hence plans for individual agents cannot be easily expressed
as simple paths in unexpanded graph).

Boolean variables X (a)tv for each v ∈ V , a ∈ A and
each timestep t modeling occurrence of agent a in vertex v at
timestep t are introduced. Auxiliary Boolean variables E(a)tu,v
representing traversal of edge {u, v} by agent a at timestep
t are typically used for easier expressing of constraints.
Constraints are introduced to restrict possible assignments of
values to X (a)tv and E(a)tu,v variables so that assignments
represent only valid solutions to MAPF - see for details [22].

We will follow similar scheme in the TSWAP problem. We
introduce Boolean variable Y(c)tv representing occurrence of
a token of color c in vertex v at time step t and analogically
S(c)tu,v for c ∈ C representing swap at edge {u, v} involving
color c (color c starts in u). Most of constraints such as those
enforcing that only one color can assigned to each vertex can
be taken directly from the MAPF encoding, since analogical
properties must hold for agents. However there are some
differences in TSWAP that need to be treated specifically.

Considering TSWAP Specific Constraints: For instance,
swapping tokens along edge {u, v} at time step t is slightly
different as in MAPF we move an agent into a vacant vertex
while in TSWAP we need to replace an outgoing token with



that from the target vertex:

S(c)tu,v ⇒ Y(c)tv ∧ ¬Y(c)t+1
v (1)

S(c)tu,v ⇒
∨
d∈C

S(d)tv,u

At any time step t assignment of variables must encode a
valid placement of tokens in vertices of the graph. So at most
one color is assigned to each vertex ensured by the following
constraint for each vertex v and timestep t.∑

c∈C
Y(c)tv ≤ 1

To illustrate other constraints we show how to enforce non-
conflicting swaps of tokens. This can be expressed by at-most-
one constraint over edge variables for a fixed vertex u and
color c as follows. This constraint ensures that at most one
swap occurs in a vertex a given timestep.∑

{u,v}∈E

S(c)tu,v ≤ 1

The suggested encoding permits multiple non-conflicting
swaps per single timestep (that is, |F | > 1 in the Definition
1). Observe that rotations of tokens over non-trivial cycles (a
swap is a trivial rotation over an edge) consisting of at least
three edges, that is common in some variants of MAPF, is
forbidden by the encoding as it would violate constraint (1).
Chain like movements from MAPF, where only the leader of
a chain of agents need to enter vacant vertex while all other
agents of the chain enter a vertex being simultaneously vacated
by the preceding agent, are also forbidden.

Considering TSWAP Specific Objective: In TSWAP, we
minimize the number of swaps which is an objective different
from both the makespan and the sum-of-costs being imple-
mented in MDD-SAT. As the SAT-based approach always
answers a given formula in a yes/no manner we need to
translate the minimization of the number of swaps in TSWAP
to a series of queries to the SAT-solver. We always build
a formula using above constructs that encodes a question
whether there is a solution to TSWAP using specified number
of swaps σ. By posting queries for σ = 1, 2, 3... one can obtain
the minimum number of swaps as σ corresponding to the first
satisfiable formula.

The high-level optimization of the number of swaps within
the MDD-SAT framework is shown in pseudo-code as Algo-
rithm 2.

In our practical implementation we do not start with σ = 1
but with a lower bound estimation corresponding to the sum
of lengths of shortest paths connecting the starting and target
token positions divided by 2 (a single swap can move 2 tokens
towards their target vertices each by one step forward).

Encoding the σ bound can be done through various car-
dinality constraints in the formula [33]–[35] on top of edge
variables S(c)tu,v . Once an edge variable is set to True a
corresponding swap is to be made. The following constraint

Algorithm 2: Main loop of MDD-SAT(TSWAP) - a
modification of the MDD-SAT algorithm for TSWAP

1 CBS (G = (V,E), A, α0, α+)
2 paths← {shortest path from α0(ai) to

α+(ai)|i = 1, 2, ..., k}
3 σ ←

∑k
i=1 length(N.paths(ai))/2

4 while True do
5 F(σ)← encode(σ,G,A, α0, α+)
6 assignment← consult-SAT-Solver(F(σ))
7 if assignment 6= UNSAT then
8 paths← extract-Solution(assignment)
9 return paths

10 σ ← σ + 1

hence need to be encoded in the formula through cardinality
constraints.

∑
{u,v}∈E,c∈C,c<d,t=1,2,...,σ

S(c)tu,v ≤ σ

As multiple token swaps can occur within the suggested
encoding per single timestep, it is not necessary to make
expansions for all steps up to σ. However careful setting of
the number of time expansions with respect to given σ need
to be done. We need to use sufficient number of expansions
to ensure that if there is a swapping sequence of length σ we
can find it within the given number of expansions. Precise
calculation of the number of expansions depending on the
cost parameter in MAPF has been done in [22]. We omit the
analogical calculation for TSWAP here for the sake of brevity.

Reducing the Number of Variables: A common approach to
reduce the number of decision variables in solving approaches
to MAPF is the use of multi-value decision diagrams (MDDs)
[21]. The basic observation that holds both for MAPF and
TSWAP is that a token/agent can reach vertices in the distance
d (distance of a vertex is measured as the length of the shortest
path) from the current position of the agent/token no earlier
than in the d-th time step. Analogical observation can be made
with respect to the distance from the goal position.

Above observations can be utilized when making the time
expansion of G. For a given token, we do not need to consider
all vertices at time step t but only those that are reachable
by the token in t timesteps from its initial position and that
ensure that token’s goal can be reached in the remaining
σ − t timesteps. This idea can reduce the size the expanded
graph significantly and consequently can reduce the size of the
Boolean formula by eliminating Y(c)tv and S(c, d)tu,v variables
correspoding to unreachable vertices.

An example of MDD expansion for orange token (c1) from
Figure 1 in shown in Figure 3. The standard expansion taking
copies of entire G for each timestep is shown for comparison
too. As each vertex and edge in the time expansion corre-
spond to Y(c)tv or S(d)tv,u propositional variable respectively,
MDD expansion can reduce the size of the Boolean formula
significantly.
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Fig. 3. A comparison of the standard time expansion of G and MDD-based
expansion for token of color c1 from the instance in Figure 1.

V. EXPERIMENTAL EVALUATION

Results of our evaluation of the performance of presented
solving approaches to TSWAP are presented in this section.
To provide broader picture of difficulty of solving of related
problems we also include tests with MAPF instances. We im-
plemented suggested modifications of CBS and MDD-SAT for
the TSWAP problem - we call our modification CBS(TSWAP)
and MDD-SAT(TSWAP) respectively. The CBS algorithm for
TSWAP has been implemented from scratch in C++ since the
original implementation written in Java does support only grids
but not general graphs [20]. To obtain MDD-SAT applicable
on TSWAP we modified the existing C++ implementation [22],
[36]. The underlying SAT solver in MDD-SAT is Glucose 3
[37], [38] 2

Our implementations of both CBS(TSWAP) and MDD-
SAT(TSWAP) support fully occupied graphs with tokens of
different colors. To obtain more relevant comparison with
MAPF solving where it is common that the graph is not fully
occupied with agents we also added handling of empty vertices
in both CBS(TSWAP) and MDD-SAT(TSWAP). Empty vertex
is a vertex not containing any agent/token. 3

A. Experimental Setup

All experiments were run on an i7 CPU 2.6 Ghz under
Kubuntu linux 16 with 8GB RAM. 4 Tests were focused
on collecting runtimes and other characteristics on various
synthetic benchmarks. The timeout of 1 minute (60 seconds)
was used in all tests.

 

Fig. 4. Example of regular 4-connected grid, star, path/bubblesort, and clique.

2Technically Glucose and the MDD-SAT high-level control loop are com-
piled together as a single executable.

3In case of the TSWAP problem, empty vertices may be understood as those
containing a special color representing the empty space. The implementations
of CBS(TSWAP) and MDD-SAT(TSWAP) do not support multiple tokens of
the same color, hence empty vertices are treated explicitly not using the special
color. However, it is important to note that presented algorithms themselves
can be implemented in a way to support multiple tokens of the same color.

4To enable reproducibility of presented results we provide complete
source code of our TSWAP solvers on: http://users.fit.cvut.cz/
∼surynpav/research/ictai2018.

The experimental evaluation has been done on diverse
instances consisting of grid graphs of sizes 8× 8 and 16× 16
which is a common benchmark for evaluation of MAPF
solving [39], [40]. In addition to this we used random graphs
containing 50% of random edges, star graphs, path graphs and
cliques (see Figure 4) - these types of graphs have been already
addressed by special rule-based algorithms in the literature
[2]. Initial and goal configurations of tokens/agents have been
generated randomly in all tests. To ensure solvability in MAPF,
goal configurations were obtained by long random walks from
initial configurations where random steps correspond to valid
agent movements. Solvability was does not need to be treated
in TSWAP tests as any TSWAP instance on a connected graph
is solvable [1].

B. Comparison TSWAP Algorithms

Our first test has been focused on comparison of
CBS(TSWAP) and MDD-SAT(TSWAP) on TSWAP instances.
We used random graphs, stars, paths, and cliques in two
orthogonal series of tests: (1) we varied number of vertices
of the graph from 4 to 16 vertices while the graph was fully
occupied and (2) the size of the graph was fixed to 16 vertices
and we varied number of tokens from 4 up to 16. For each
graph size and number of tokens we generated 10 random
instances and measured runtime of CBS(TSWAP) and MDD-
SAT(TSWAP). The number of swaps has been collected too.
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Fig. 5. Comparison of CBS(TSWAP) and MDD-SAT(TSWAP) algorithms on
random TSWAP instances having 50% of random edges (varying size of G -
left part; varying the number of tokens in graph with |V | = 16 - right part).

Mean values out of the 10 instances for runtime are pre-
sented in Figures 5, 6, 7, and 8.

The general observation is that for smaller instances (that is,
those with small graph or containing few tokens) the perfor-
mance comparison of CBS(TSWAP) and MDD-SAT(TSWAP)
has no clear winner. On larger instances however MDD-
SAT(TSWAP) tends to dominate. In all types types of tested
graphs the time consumption grows quicker in CBS(TSWAP)
as the size of TSWAP instance increases. We attribute this
to worse performance of CBS when dealing with too many
conflicts in densely occupied instances. TSWAP over tested
graphs often represent an extreme case in this regards as its
graph is close to fully occupied with tokens.

A close look at the individual types of graphs revels that
on random graphs the performance of both tested algorithms
is better than on stars, paths, and cliques. That is, larger
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Fig. 6. Comparison of CBS(TSWAP) and MDD-SAT(TSWAP) algorithms on
star TSWAP instances (varying size of G - left part; varying the number of
tokens in graph with |V | = 16 - right part).

instances and more tokens can be solver in random graphs than
in other three types. The difference in performance between
CBS(TSWAP) and MDD-SAT(TSWAP) is smaller in random
graphs too. We attribute this to a high connectivity in random
graphs compared to stars and paths and to a limited parallelism
of swaps compared to cliques. While the high connectivity
helps tokens to reach their goals, high parallelism increases
difficulty of solving because CBS(TSWAP) need to handle
many conflicts and MDD-SAT(TSWAP) need to satisfy many
constraints.

TABLE I
MEAN NUMBER OF SWAPS ON RANDOM GRAPHS (50%) AND CLIQUES

|V | 4 6 8 10 12 14 16
Random(50%) 9 11 14 27 26 33 39
Clique 9 11 14 24 - - -

The mean number of swaps is shown in Tables I and II. The
number of swaps in optimal solutions is relatively high if we
consider the small size of input instances. This is especially
true for star and path graphs. The size of solutions is one
of the factors causing difficulty of solving TSWAP on star
and path graphs - the larger the optimal solution is the more
difficult it is to find it.
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Fig. 7. Comparison of CBS(TSWAP) and MDD-SAT(TSWAP) algorithms on
path TSWAP instances.

TABLE II
MEAN NUMBER OF SWAPS ON STAR AND PATHS GRAPHS

|V | 4 5 6 7 8 9 10 11 12 13
Star 9 34 32 34 38 54 66 60 - -
Path 20 14 26 35 33 64 47 94 97 101
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Fig. 8. Comparison of CBS(TSWAP) and MDD-SAT(TSWAP) algorithms on
clique TSWAP instances.

C. Comparison of Difficulty of TSWAP and MAPF

We also compared difficulty of TSWAP and MAPF solving.
This has been done with both CBS(TSWAP) and MDD-
SAT(TSWAP). We used grids 8 × 8 and 16 × 16 in this
test. For a fixed graph we gradually increased the number
of tokens/agents and measured runtimes of CBS(TSWAP) and
MDD-SAT(TSWAP). Again, for each number of agents/tokens
10 random instances were generated. Mean values out of these
10 instances are reported in Figures 9 and 10.

The evaluation on grids shows almost the order of magnitute
speedup for the TSWAP problem compared to MAPF. This is
a result in line with theoretical results for TSWAP, namely
with the fact that TSWAP requires fewer swaps than MAPF
moves (O(|V |2) in TSWAP against O(|V |3) in MAPF).
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Fig. 9. Comparison of MAPF and TSWAP solving on a grid of size 8 × 8
by the MDD-SAT and CBS algorithms.
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Fig. 10. Comparison of MAPF and TSWAP solving on a grid of size 16×16
by the MDD-SAT and CBS algorithms.

VI. CONCLUSION

We observed similarities between two important problems
being addressed in computer science - the multi-agent path
finding (MAPF) and token swapping problem (TSWAP) in
graphs. We focused on optimal TSWAP solving in terms of
the number of swaps. We demonstrated how to modify existing
MAPF algorithms for TSWAP: search-based CBS and SAT-
based MDD-SAT. The literature so far focused on theoretical
properties of TSWAP but not on its optimal solving. To our
best knowledge this is the first attempt to solve TSWAP
optimally from the practical solving point of view.

We performed series of tests with our modified algorithms
CBS(TSWAP) and MDD-SAT(TSWAP) on a diverse set of syn-
thetic benchmarks. Our experimental results indicate that mod-
ifications of CBS and MDD-SAT represent a viable options
for TSWAP solving while MDD-SAT(TSWAP) exhibits better
performance. Better performance of the MDD-SAT(TSWAP)
algorithm on TSWAP instances can be explained by the fact
that highly constrained small instances suit better to the SAT
solver than to CBS that was primarily designed for large
instances with limited interaction among agents.

Results also indicate that TSWAP instances are easier than
corresponding MAPF instances. This is in line with theoretical
results for TSWAP and MAPF saying that solutions of TSWAP
are shorter.

The obvious limitation of presented approaches is that they
are not applicable on larger structured instances containing
patterns like paths or stars that may appear in practice. It

is also rarely the case in practice that we need all tokens to
have distinct colors. Hence a viable step towards practically
interesting large structured instances may be consideration of
multiple tokens sharing a color. We plan to investigate this in
our future work. Treating of meta-tokens - a group consisting
of tokens of the same color analogically to how single tokens
are treated in current algorithms may lead to new algorithmic
concepts. For example shortest paths for meta-tokens may
be searched as network flows [41] which eventually has the
potential to stop the combinatorial explosion at the level of
meta-tokens.

REFERENCES

[1] K. Yamanaka, E. D. Demaine, T. Ito, J. Kawahara, M. Kiyomi,
Y. Okamoto, T. Saitoh, A. Suzuki, K. Uchizawa, and T. Uno, “Swapping
labeled tokens on graphs,” in FUN 2014 Proceedings, ser. LNCS, vol.
8496. Springer, 2014, pp. 364–375.

[2] J. Kawahara, T. Saitoh, and R. Yoshinaka, “The time complexity of the
token swapping problem and its parallel variants,” in WALCOM 2017
Proceedings., ser. LNCS, vol. 10167. Springer, 2017, pp. 448–459.
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