Unifying Search-based and Compilation-based Approaches to Multi-agent Path Finding through Satisfiability Modulo Theories

Pavel Surynek
Faculty of Information Technology
Czech Technical University in Prague

Multi-Agent Path Finding

MAPF

- a task to **relocate agents** to their goals in a non-colliding way
- agents move over undirected graph

CPF
$$\Sigma$$
=(G, {a₁,a₂,a₃}, α_0 , α_+)

Motivation

- rearranging containers (agent = container)
- heavy traffic control (agent = car)
- ship avoidance at sea (agent = ship)
- data transfer planning (agent = data packet)

Time Expanded Graph

- positions of all agents at all time-steps are represented in the time expanded graph – TEG
- introduce a **propositional** variable for each node in TEGs
 - TRUE iff agent is in the vertex at the given time-step
 - introduce constraints for valid movements etc.

SMT-CBS vs. CBS

- building encoding F(m,c) lazily
 - ignore collisions in $F(m,c) \rightarrow H(m,c)$
- no branching at the high level

- Boolean decision variables X(a,v,t)
 - agent a in vertex v at discrete time step t

Reducing MAPF to SAT

- expand the graph modeling the environment in time
 - number of expansions *m* is specified
 - total cost bound c is specified
- **encode** relocation of agents through expanded graphs as a propositional formula F(m,c)
 - ask **SAT solver** whether F(m,c) is solvable

• c_0 = sum of lengths of shortest paths

• m_0 = length of the longest of shortest paths

connecting starts and goals

 $m=m_0$ $c=c_0$ $C=c_$

Experiments Runtime | Star (16) Runtime | Random (16) **Runtime** 10,0 1 10,0 1 10,0 1 0,01 Instance **B** 0,001 0,01 Instance Instance 20 40 60 80 100120 -MDD-SAT —SMT-CBS -MDD-SAT -SMT-CBS -MDD-SAT Brc202d | MAPF **Runtime Ost003d Runtime Den520d** 1000 Runtime (seconds) 100 10 —CBS —MDD-SAT —SMT-CBS Instance Instance 0,01 200 300 Instance