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Abstract

Multi-agent pathfinding (MAPF) is an area of expanding re-
search interest. At the core of this research area, numerous
diverse search-based techniques were developed in the past
6 years for optimally solving MAPF under the sum-of-costs
objective function. In this paper we survey these techniques,
while placing them into the wider context of the MAPF field
of research. Finally, we provide analytical and experimental
comparisons that show that no algorithm dominates all others
in all circumstances. We conclude by listing important future
research directions.

1 Introduction and Overview
The multi-agent path finding (MAPF) problem is specified
by a graph, G = (V,E) and a set of k agents a1 . . . ak,
where each agent ai has a start position si ∈ V and a goal
position gi ∈ V . Time is discretized into time steps and
agent ai is in si at time t0. Between successive time steps
an agent can either move to an adjacent empty location or
wait in its current location. Both move and wait cost 1. A
sequence of individual agent move/wait actions leading an
agent from si to gi is referred to as a path. The term solution
refers to a set of k paths, one for each agent. A conflict be-
tween two paths is a tuple 〈ai, aj , v, t〉 where agent ai and
agent aj are planned to occupy vertex v at time t. The task is
to find a conflict-free solution, also called a valid solution.1

MAPF can model many real-world problems
in games (Silver 2005), traffic control (Dresner
and Stone 2008), robotics (Erdem et al. 2013;
Yu and LaValle 2013a), aviation (Pallottino et al. 2007),
robot warehouses (Wurman et al. 2008) and more. See (Yu
and LaValle 2016) for a comprehensive survey.

MAPF can be categorized into two settings. In a dis-
tributed setting (Grady, Bekris, and Kavraki 2011; Bhat-
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1There are a number of ways to deal with the possibility of a
chain of agents that follow each other. This may not be allowed,
may only be allowed if the first agent of the chain moves to an
unoccupied location or it may be allowed even in a cyclic chain
which does not include any empty location. A special case of this is
a cycle of two agents which might or might not be allowed to cross
the same edge in opposite directions. Most algorithms described in
this paper are applicable across all these variations.

tacharyat and Kumar 2011), each agent has its own com-
puting power and its own decision making protocol which
might be self-interested or cooperative (Bnaya et al. 2013).
Different communication paradigms may be assumed (e.g.,
message passing, broadcasting etc.). The scope of this paper
is limited to the centralized setting, where we assume that
the agents are fully controlled by a single decision-maker.

In MAPF one usually aims at minimizing a global cu-
mulative cost function. One common cost function is sum-
of-costs: the sum, over all agents, of the number of time
steps required to reach their goal, i.e., the sum of the in-
dividual path costs (Standley 2010; Standley and Korf 2011;
Sharon et al. 2013; 2015). Another common MAPF cost
function is makespan (Surynek 2010) which is the time until
all agents have reached their destinations, i.e., the maximum
of the individual path costs.

MAPF was shown to be NP-hard (Yu and LaValle 2013b;
Surynek 2010); as the state-space grows exponentially with
k (# of agents). As a result, optimal solvers are worthy when
the number of agents is relatively small. Nevertheless, opti-
mal solvers can be readily modified to sacrifice optimality in
return for a faster runtime. In addition, research on optimal
solutions sheds light on the theoretical hardness of MAPF
variants and on their attributes and characteristics.

This paper is not intended to be a thorough and balanced
survey on the entire MAPF area. Instead, this paper focuses
on and summarizes a line of work on optimal MAPF solvers
and in particular on search-based solvers which were usu-
ally designed for the sum-of-costs variant. Nevertheless, for
completeness, we will discuss the relationship between the
two cost functions in different contexts and place these al-
gorithms in the proper context of the entire area.

Section 2 examines some suboptimal solvers. In Sec-
tions 3–7 we review various existing optimal algorithms for
MAPF with a focus on search-based algorithms. We then
provide representative theoretical and experimental results
(Sections 8–9) that show that there is no universal winner;
each algorithm may be the best algorithm in different cir-
cumstances. In Section 10 we briefly discuss new research
directions that solve variants of MAPF that model com-
plex real-world scenarios. Finally, we discuss open research
questions and describe the need to better understand and
classify the different existing algorithms.
Example: Figure 1(I) shows an example 3-agent MAPF in-



stance that will be used throughout of the paper. Each agent
(mouse) must plan a full path to its respective goal (piece of
cheese). All three agents have individual paths of length 3:
{S1, A1, D,G1}, {S2, B1, D,G2} and {S3, E, F,G3} re-
spectively. However, the paths of agents a1 and a2 have a
conflict, as they both include state D at time point t2. One
of these agents must wait one time step. Therefore, the opti-
mal solution cost, C∗, is 10 in this example. Throughout this
paper we refer to this example with all 3 agents as EX3, and
refer to the same example with a1 and a2 only as EX2.

2 Suboptimal MAPF Solvers
Since MAPF is NP-hard (Yu and LaValle 2013b; Surynek
2010) suboptimal solvers are needed, especially when k is
large. Most suboptimal solvers aim at quickly finding paths
for all agents. These solvers can be roughly classified into
search-based and rule-based.

2.1 Search-based Solvers
A prominent example of a search-based sub-optimal algo-
rithm is Hierarchical Cooperative A* (HCA*) (Silver 2005).
In HCA* the agents are planned one at a time according to
some predefined order. Once a path to the goal is found for
the first agent, that path (i.e., times and locations) is written
(reserved) into a global reservation table. Any agent search-
ing for a path may not occupy specific locations at specific
times reserved by previous agents. Many enhancements to
HCA* were introduced. Windowed-HCA* (WHCA*) (Sil-
ver 2005) only applies the reservation table within a lim-
ited time window, after which other agents are ignored. Fi-
nally, Bnaya and Felner (2014) dynamically placed the win-
dows only around known conflicts and agents are prioritized
according to an estimation of the likelihood of being in-
volved in a conflict. A heuristic that computes the shortest
single-agent paths is most often used to guide this search.
However, Sturtevant and Buro (2006) abstracted the state-
space to reduce the runtime cost of building the heuristics.
Likewise, Ryan (2008) used abstraction to reduce the size
of the state-space in order to to quickly compute an ab-
stract plan from which a full plan is then derived. Search-
based algorithms usually do not run extremely fast but the
solutions they return are of relatively high quality (typically
near-optimal). It is important to note that some of these al-
gorithms (e.g. HCA*) do not guarantee completeness.

Several MAPF search-based algorithms are bounded sub-
optimal solvers. Given a bound B, they guarantee that the
solution returned is at most B × C∗, where C∗ is the
cost of the optimal solution. Many of these algorithms are
based on modifications or relaxations of optimal MAPF al-
gorithms (Barer et al. 2014; Cohen et al. 2015; 2016).

2.2 Rule-based Solvers
Another class of suboptimal algorithms are rule-based algo-
rithms. These algorithms include specific agent-movement
rules for different scenarios and usually do not include mas-
sive search. Rule-based solvers usually guarantee finding a
solution relatively fast, but the solutions they return are of-
ten far from optimal. They usually require special proper-

ties of the underlying graph in order to work or to guar-
antee completeness. The algorithm by Kornhauser, Miller,
and Spirakis (1984) is complete under all circumstances but
it is complex to implement. TASS (Khorshid, Holte, and
Sturtevant 2011) is complete only for tree graphs. Push-
and-Swap (Luna and Bekris 2011) and its enhanced versions
Parallel Push-and-Swap (Sajid, Luna, and Bekris 2012) and
Push-and-Rotate (de Wilde, ter Mors, and Witteveen 2014),
are desgined to work under the condition that there are at
least two unoccupied vertices in the graph. They introduce
macros to reverse the location of two adjacent agents by
using the two unoccupied locations. Push-and-Rotate (de
Wilde, ter Mors, and Witteveen 2014) was proved to be com-
plete on such graphs.

BIBOX (Surynek 2009a) is complete for bi-connected
graphs and has a version called diBOX that is complete
even for strongly bi-connected digraphs (Botea and Surynek
2015). Similar to Push-and-Rotate it needs at least two un-
occupied vertices. BIBOX decomposes the vertices of the
bi-connected graph into a main cycle and to a sequence of
ears (paths of fresh vertices). It establishes macros that use
these structures to solve the problem. BIBOX-θ (Surynek
2009b) is an enhancement which can work with one unoc-
cupied vertex but it uses precomputed solutions for special
rotations of small groups of agents.

2.3 Hybrid Approaches
Some algorithms are hybrids: they include both movement
rules and massive search (Wang and Botea 2008; Jansen and
Sturtevant 2008). They established flow restrictions similar
to traffic laws that can simplify the problem (Jansen and
Sturtevant 2008). Finally, similar laws can be applied very
efficiently if the graph is a grid with a specific slidable prop-
erty (Wang and Botea 2011).

3 Reduction-based Optimal Solvers
Several recently introduced optimal solvers reduce MAPF
to standard known problems (SAT, CSP, etc.) that, while
NP-hard, have existing high-quality solvers. Many of these
solvers are designed for the makespan variant of MAPF;
they are not easily modified to the sum-of-costs variant and
sometimes a completely new reduction would be needed.

Yu and LaValle (2013a) modeled MAPF as a network
flow problem where depths of the flow are associated with
the different time steps. Then, by using Integer Linear Pro-
gramming (ILP) they provided a set of equations and an
objective function which yield the optimal solution. Erdem
et al. (2013) used the declarative programming paradigm
of Answer Set Programming (ASP) for optimally solving
MAPF. They represent the path finding problem for each
agent and the inter-agent constraints as a program P in ASP.
The answer sets of P correspond to solutions of the prob-
lem. Finally, an effective way to solve MAPF is to reduce
it to SAT (Surynek 2012). The structure of the graph, the
locations of the agents and the constrains of the problem
are all encoded into boolean variables. Then, a SAT formula
is generated from these variables that answers the question
of whether there is a valid solution with cost C. Search



Figure 1: (I) A 3-agent MAPF instance. (II) The respective CT for CBS. (III) 2-agent MAPF. (IV) ICT for 3 agents.

over possible costs C yields the optimal solution. Another
reduction-based method transforms MAPF into CSP (Ryan
2010). However, this reduction is based on an initial abstrac-
tion of the graph into subgraphs of known shapes such as
halls, rings and cliques. Thus, the resulting solution is not
guaranteed to be optimal.

Finally, a number of search-based optimal MAPF solvers
were recently introduced. Most of them are designed for the
sum-of-costs variant of MAPF and they are the main focus of
our paper. Most of these algorithms can be easily modified
to the makespan variant by slightly modifying the definition
of the underlying search space. We now turn to cover these
search-based solvers and begin with A*-based solvers.

4 A*-based Optimal Solvers
A* is a general-purpose algorithm that is well suited to solve
MAPF. A common straight-forward derived state-space is
denoted as the k-agent state-space where the states are the
different ways to place k agents into |V | vertices, one agent
per vertex. In the start and goal states agent ai is located at
vertices si and gi, respectively. Operators between states are
all non-conflicting combinations of actions (including wait)
that can be taken by the agents.

Let bbase denote the branching factor of a single agent. For
example, in a 4-connected grid bbase = 5; an agent can ei-
ther move in four cardinal directions or wait at its current lo-
cation. The effective branching factor for k agents, denoted
by b, is roughly bbase

k; though usually a bit smaller than
bbase

k because many possible combinations of moves result
in immediate conflicts, especially when the environment is
dense with agents.

Admissible Heuristics for MAPF. A simple admissi-
ble heuristic is to sum the individual heuristics of the sin-
gle agents such as Manhattan distance for 4-connected grids
or Euclidean distance for Euclidean graphs (Ryan 2008). A
more-informed heuristic is called the sum of individual costs
heuristic (hSIC). For each agent ai we calculate its opti-
mal path cost from its current state to goali assuming that
other agents do not exist. Then, we sum these costs over
all agents.2 For EX3 hSIC = 3 + 3 + 3 = 9. The SIC
heuristic can be calculated lazily on the fly (Silver 2005)

2Similarly, the maximum of the individual costs is an admissible
heuristic for the makespan variant

or can be fully computed in a pre-processing phase (Stand-
ley 2010; Sharon et al. 2013). More-informed heuristics by
using forms of pattern-databases (Goldenberg et al. 2013;
2014) had limited effectiveness due to the large overhead of
creating these PDBs for each instance-specific goal state.

Drawbacks of A* for MAPF. The main cycle of A* ex-
pands a state from the open-list (denoted OPEN) and adds its
b successors to OPEN. Consequently, A* for MAPF suffers
from two drawbacks. First, the size of the state-space is ex-
ponential in the number of agents (k), meaning that OPEN
cannot be maintained in memory for large problems. Sec-
ond, the branching factor b of a given state may be exponen-
tial in k. Consider a state with 20 agents on a 4-connected
grid. Fully generating all the 520 = 9.53 × 1014 neighbors
of even the start state could be computationally infeasible.
In the remainder of this section we examine enhancements
to A* attempting to overcome these drawbacks.

4.1 Independence Detection (ID)
An exponential speedup can be obtained by reducing the
number of agents in the problem by using the Independence
Detection framework (ID) (Standley 2010). Two groups of
agents are independent if there is an optimal solution for
each group such that the two solutions do not conflict. The
basic idea of ID is to divide the agents into independent
groups, and solve these groups separately. First, every agent
is placed in its own group. A* is executed separately for
each group, returning an optimal solution for that group. The
paths of all groups are then checked for validity with respect
to each other. If a conflict is found, the conflicting groups are
merged into one group and solved optimally using A*. This
process of replanning and merging groups is repeated until
there are no conflicts between the plans of all groups.3 Let k′
denote the number of agents in the largest independent sub-
problem (k′ ≤ k). The runtime of solving MAPF with ID
is dominated by the runtime of solving the largest indepen-
dent subproblem (Standley 2010). Therefore, the runtime is
reduced from O(|V |k) to O(|V |k′

).
A*+ID on EX3 works as follows. The individual optimal

paths (detailed above) are found. When validating the paths
of agents a1 and a2, a conflict occurs at state D and agents

3A number of technical enhancements to ID were also intro-
duced by Standley (2010) and are not covered here.



a1 and a2 are merged into one group. A* is executed on
this group and returns a solution of cost 7. This solution is
now validated with the solution of agent a3. No conflict is
found and the algorithm halts. The largest group was of size
2. Without ID, A* would have to solve a 3-agent problem.

It is important to note that ID can be implemented on top
of any optimal MAPF solver. Therefore, ID can be viewed as
a general framework that utilizes an optimal MAPF solver.

4.2 Avoiding Surplus Nodes
To guarantee optimality A* must expand all states with
f = g + h < C∗ as well as some states with f = C∗.
Nodes generated by A* with f > C∗ are denoted as
surplus nodes (Goldenberg et al. 2014). They will never
be expanded as they are not needed to find an optimal
solution. The number of generated nodes is the number
of expanded nodes times the branching factor b. Thus, in
MAPF, where b is exponential in k, the number of sur-
plus nodes is potentially huge, and avoiding generating them
can yield a substantial speedup (Goldenberg et al. 2014;
2012). Next, we describe existing techniques that attempt
to avoid generating surplus nodes for MAPF.
Operator Decomposition (OD). OD (Standley 2010) ap-
plies an arbitrary but fixed order to the agents. When a reg-
ular A* node is expanded, OD considers and applies only
the moves of the first agent. This introduces an intermedi-
ate node. At intermediate nodes, only the moves of the next
agent without currently assigned moves are considered, thus
generating further intermediate nodes. When an operator is
applied to the last agent, a regular node is generated. Once
the solution is found, intermediate nodes in OPEN are not
developed further into regular nodes, so that the number of
non-intermediate surplus nodes is significantly reduced.
Enhanced Partial Expansion (EPEA*). EPEA* (Golden-
berg et al. 2014) avoids the generation of surplus nodes by
using a priori domain knowledge. When expanding a node n
EPEA* generates only the children nc with f(nc) = f(n).
The other children of n (with f(nc) 6= f(n)) are discarded.
This is done with the help of a domain-dependent operator
selection function (OSF). The OSF returns the exact list of
operators which will generate nodes with the desired f -value
(i.e., f(n)). Node n is then re-inserted into OPEN setting
f(n) to the f -value of the next best child of n. Node n may
be re-expanded later, when the new f(n) becomes the best
in OPEN. EPEA* avoids the generation of surplus nodes
and dramatically reduces the number of generated nodes. An
OSF for MAPF using hSIC can be efficiently built as the
effect on the f -value of moving a single agent in a given di-
rection can be easily computed. For more details see (Gold-
enberg et al. 2014).

4.3 M*
M* (Wagner and Choset 2015) and its enhanced recursive
variant (rM*) are important A*-based algorithms related to
ID. M* dynamically changes the dimensionality and branch-
ing factor based on conflicts. The dimensionality is the num-
ber of agents that are not allowed to conflict. When a node is
expanded, M* initially generates only one child in which

each agent takes (one of) its individual optimal move to-
wards the goal (dimensionality 1). This continues until a
conflict occurs between q ≥ 2 agents at node n. At this
point, the dimensionality of all the nodes on the branch lead-
ing from the root to n is increased to q and all these nodes
are placed back in OPEN. When one of these nodes is re-
expanded, it generates bq children where the q conflicting
agents make all possible moves and the k−q non-conflicting
agents make their individual optimal move. On EX2 a single
branch is generated until the conflict at D occurs. Then, M*
re-inserts all previously expanded nodes back into OPEN
and the dimensionally is increased to 2 for agents a1 and
a2. Recursive M* (rM*) identifies disjoint subsets of con-
flicting agents and solves each of the resulting subproblems
recursively, effectively running a more fine-grained version
of ID. An enhanced variant of M* called ODrM* (Ferner,
Wagner, and Choset 2013) builds rM* on top of Standley’s
OD rather than plain A*. Finally, Wagner and Choset (2015)
report that using the MA-CBS framework (described below)
with rM* as the low-level search yields a very strong solver.

All the above algorithms execute A* on the k-agent state-
space. We now turn to recent algorithms which search a dif-
ferent search space.

5 The Increasing Cost Tree Search
The increasing cost tree search algorithm (ICTS) (Sharon et
al. 2013) is a two-level MAPF solver which is conceptually
different from A*. ICTS works as follows.

High level: At its high level, ICTS searches the increasing
cost tree (ICT). Every node in the ICT consists of a k-ary
vector [C1, . . . Ck] which represents all possible solutions in
which the individual path cost of agent ai is exactly Ci. The
root of the ICT is [opt1, ..., optk], where opti is the optimal
individual path cost for agent ai ignoring other agents, i.e.,
it is the length of the shortest path from si to gi inG. A child
in the ICT is generated by increasing the cost for one of the
agents by 1. An ICT node [C1, .., Ck] is a goal if there is a
complete non-conflicting solution such that the cost of the
individual path for any agent ai is exactly Ci. Figure 1(IV)
illustrates an ICT with 3 agents, all with optimal individual
path costs of 10. Dashed lines mark duplicate children which
can be pruned. The total cost of a node is C1 + . . .+Ck. For
the root this is exactly hSIC(start) = opt1+opt2+. . . optk.
We use ∆ to denote the depth of the lowest cost ICT goal
node. The size of the ICT tree is exponential in ∆. Since all
nodes at the same height have the same total cost, a breadth-
first search of the ICT will find the optimal solution.

Low level: The low level acts as a goal test for the high
level. For each ICT node [C1, .., Ck] visited by the high
level, the low level is invoked. Its task is to find a non-
conflicting complete solution such that the cost of the in-
dividual path of agent ai is exactly Ci. For each agent ai,
ICTS stores all single-agent paths of cost Ci in a special
compact data-structure called a multi-value decision dia-
gram (MDD) (Srinivasan et al. 1990). The low level searches
the cross product of the MDDs in order to find a set of k
non-conflicting paths for the different agents. If such a non-
conflicting set of paths exists, the low level returns true and
the search halts. Otherwise, false is returned and the high



level continues to the next high-level node (of a different
cost combination). For EX2, [3, 3] is the root of the ICT.
The low level returned false for this node and the next node
is [4, 3]. Now the low-level returns true and the search halts.

Pruning rules: A number of pruning techniques were
introduced for high-level ICT nodes (Sharon et al. 2013).
These techniques search for a sub-solution for i agents,
where i < k. If there exists a sub-group for which no valid
solution exists, there cannot exist a valid solution for all k
agents. Thus, the high-level node can be declared as a non-
goal without searching for a solution in the k-agent path
space. A full study of these pruning rules and their connec-
tion to CSP is provided in (Sharon et al. 2013).

6 Conflict Based Search (CBS)
Another optimal MAPF solver not based on A* is Conflict-
based search (CBS) (Sharon et al. 2015). Numerous al-
gorithms for more sophisticated, real-world scenarios (de-
scribed in Section 10) are also based on CBS, therefore CBS
is examined in greater detail below.

In CBS, agents are associated with constraints. A con-
straint for agent ai is a tuple 〈ai, v, t〉 where agent ai is pro-
hibited from occupying vertex v at time step t. A consistent
path for agent ai is a path that satisfies all of ai’s constraints,
and a consistent solution is a solution composed of only con-
sistent paths. Note that a consistent solution can be invalid
if despite the fact that the paths are consistent with the indi-
vidual agent constraints, they still have inter-agent conflicts.

The high-level of CBS searches the constraint tree (CT).
The CT is a binary tree, in which each node N contains: (1)
A set of constraints imposed on the agents (N.constraints),
(2) A single solution (N.solution) consistent with these
constraints, (3) The cost of N.solution (N.cost).

The root of the CT contains an empty set of constraints.
A successor of a node in the CT inherits the constraints of
the parent and adds a single new constraint for one agent.
N.solution is found by the low-level search described be-
low. A CT node N is a goal node when N.solution is valid,
i.e., the set of paths for all agents has no conflicts. The high-
level of CBS performs a best-first search on the CT where
nodes are ordered by their costs (N.cost).

Processing a node in the CT: Given a CT node N , the
low-level search is invoked for individual agents to return
an optimal path that is consistent with their constraints in
N . Any optimal single-agent path-finding algorithm can be
used by the low level of CBS. A simple and effective low-
level solver used in (Sharon et al. 2015) is A* with the true
shortest distance heuristic (ignoring constraints). Ties be-
tween low-level nodes were broken by preferring paths with
fewer conflicts with known paths of other agents.

Once a consistent path has been found (by the low level)
for each agent, these paths are validated with respect to the
other agents by simulating the movement of the agents along
their planned paths (N.solution). If all agents reach their
goal without any conflict, N is declared as the goal node,
and N.solution is returned. If, however, while performing
the validation, a conflict is found for two (or more) agents,
the validation halts and the node is declared as non-goal.

Algorithm 1: High-level of ICBS
1 Main(MAPF problem instance)
2 Init R with low-level paths for the individual agents
3 insert R into OPEN
4 while OPEN not empty do
5 N ← best node from OPEN // lowest solution cost
6 Simulate the paths in N and find all conflicts.
7 if N has no conflict then
8 return N.solution // N is goal

9 C ← find-cardinal/semi-cardinal-conflict(N ) // (PC)
10 if C is semi- or non-cardinal then
11 if Find-bypass(N , C) then // (BP)
12 Continue

13 if should-merge(ai, aj) then // Optional, MA-CBS:
14 aij = merge(ai,aj)
15 if MR active then // (MR)
16 Restart search

17 Update N.constraints()
18 Update N.solution by invoking low-level(aij)
19 Insert N back into OPEN
20 continue // go back to the while statement

21 foreach agent ai in C do
22 A← Generate Child(N, (ai, s, t))
23 Insert A into OPEN

24 Generate Child(Node N , Constraint C = (ai, s, t))
25 A.constraints← N.constraints+ (ai, s, t)
26 A.solution← N.solution
27 Update A.solution by invoking low level(ai)
28 A.cost← SIC(A.solution)
29 return A

Resolving a conflict - the split action: Given a non-goal
CT node, N , whose solution (N.solution) includes a con-
flict, 〈ai, aj , v, t〉, we know that in any valid solution at most
one of the conflicting agents, ai or aj , may occupy vertex v
at time t. Therefore, at least one of the constraints, 〈ai, v, t〉
or 〈aj , v, t〉, must be satisfied. Consequently, CBS splits N
and generates two new CT nodes as children of N , each
adding one of these constraints to the previous set of con-
straints, N.constraints. Note that for each (non-root) CT
node the low-level search is activated only for one agent –
the agent for which the new constraint was added.

CBS Example: Pseudo-code for CBS is shown in Al-
gorithm 1. It is explained on EX2 while also counting the
number of low-level nodes (for each CT node) that are ex-
panded as we aim to compare CBS to A* below. The shaded
lines (9-20) are all optional and include the enhancements
discussed below. The corresponding CT is shown in Fig-
ure 1(II). The root (R) contains an empty set of constraints
and the low-level (A* for individual agents) returns paths
P1 = 〈S1, A,C,G1〉 for a1 and path P2 = 〈S2, B,C,G2〉
for a2 (line 2). Thus,R.cost = 6. Since the length of bothP1

and P2 is 3, a total of 8 low-level nodes were generated for
R. R is then inserted into OPEN and will be expanded next.
When validating the two-agents solution (line 6), a conflict
〈a1, a2, C, 2〉 is found. As a result,R is declared as non-goal.



R is split and two children are generated (via the generate-
child() function, also shown in Algorithm 1) to resolve the
conflict (line 22). The left (right) child U (V ) adds the con-
straint 〈a1, C, 2〉 (〈a2, C, 2〉). The low-level search is now
invoked (line 27) for U to find an optimal path for agent
a1 that also satisfies the new constraint. At U , S1 plus all
m states A1, . . . , Am are expanded by the low-level search
with f = 3. Then, D and G1 are expanded with f = 4 and
the search halts and returns the path {S1, A1, A1, D,G1}.
Thus, at CT node U a total of m+ 3 low-level nodes are ex-
panded. The path for a2, 〈S2, B,C,G2〉, remains unchanged
in U . Since the cost of a1 increased from 3 to 4 the cost of
U is now 7. In a similar way, the right child V is generated,
also with cost 7, and m + 3 low-level nodes are expanded
for V . Both children are added to OPEN (line 23). Next U
is chosen for expansion at the high level, and the underlying
paths are validated. Since no conflicts exist, U is declared as
a goal node (lines 6-8) and its solution is returned. In total,
2m+ 14 low-level states are expanded for EX2.

6.1 Improvements to CBS
Basic CBS arbitrarily chooses conflicts to split and arbitrar-
ily chooses paths in the low-level. CBS is very sensitive to
these choices and poor choices might significantly increase
the size of the high-level search tree (the CT). Four orthogo-
nal improvements to CBS were introduced to improve these
choices. A significant speedup is achieved when all improve-
ments are combined. The latter variant is called Improved
CBS (ICBS) (Boyarski et al. 2015b).
Improvement 1: Meta-agent CBS. MA-CBS (Sharon et al.
2012) generalizes CBS by adding the option to merge the
conflicting agents ai and aj into a meta-agent (Lines 13-20)
instead of the split action. A meta-agent is logically treated
as a single composite agent, whose state consists of a vector
of locations, one for each individual agent. A meta-agent is
never split in the subtree of the CT below the current node;
it may, however, be merged with other (meta-)agents into
new meta-agents. A merge action first unifies the constraints
from the two merged agents (Line 23). Then, the low-level
search is re-invoked for this new meta-agent only (Line 18),
as nothing has changed for the other agents that were not
merged. In fact, the low-level search for a meta-agent of size
M faces an optimal MAPF problem for M agents, and may
be solved with any MAPF solver (e.g., A*).
Merge policy: The optional merge action is performed
only if the should-merge() function returns True (Line 13).
Sharon et al. (2015) presented a simple, experimentally-
effective merge policy. Two agents ai and aj are merged into
a meta-agent aij if the number of conflicts between ai and
aj seen so far during the search exceeds a predefined param-
eter B. Otherwise, a regular split is performed. This merge
policy is denoted by MA-CBS(B). MA-CBS was shown to
outperform CBS (without the merge option).

Boyarski et al. (2015a; 2015b) further added the following
three improvements to CBS.
Improvement 2: Merge and Restart. Had we known that
a pair of agents are due to be merged, significant computa-
tional effort would have been saved by performing the merge

ab-initio, at the root node of the CT. To adopt this observa-
tion in a simple manner, once a merge decision has been
reached for a group of agents G inside a CT node N , we
discard the current CT and restart the search from a new
root node, where these agents in G are merged into a meta
agent at the beginning of the search. This is called the merge
and restart (MR) scheme (Boyarski et al. 2015b). It is op-
tionally applied in lines 15-16 of Algorithm 1. MR is simple
to implement, and saves much computational effort which
otherwise may have been duplicated in multiple CT nodes.
Improvement 3: Preferring Cardinal Conflicts. We clas-
sify conflicts into three types. A conflict C = 〈a1, a2, v, t〉
is cardinal for a CT node N if adding any of the two con-
straints derived from C (〈a1, v, t〉, 〈a2, v, t〉) to N and in-
voking the low-level on the constrained agent, increases the
cost of its path compared to its cost inN . C is semi-cardinal
if adding one of the two constraints derived fromC increases
N.cost but adding the other leaves N.cost unchanged. Fi-
nally, C is non cardinal if adding any of the two constraints
derived from C does not increase N.cost. In EX2 the con-
flict 〈a1, a2, D, 2〉 is cardinal. If the dotted lines in figure 1(I)
are added then agent a1 has a bypass via nodeX . This makes
the conflict 〈a1, a2, D, 2〉 semi-cardinal because agent a2 is
still forced to go via node D.

Based on these definitions, when a CT node N with
N.cost = c is chosen for expansion by CBS, we examine
all its conflicts (Line 9). If one of them is cardinal, it is im-
mediately chosen for splitting (Line 21). This generates two
children with cost > c. This is very beneficial if another
node M in OPEN exists with cost c. M will be chosen for
expansion next without further developing nodes below N .
Improvement 4: bypassing Conflicts (BP). When a semi-
cardinal or non-cardinal conflicts are chosen, it is sometimes
possible to prevent a split action and bypass the conflict by
modifying the chosen path of one of the agents. For a given
CT node N , BP peeks at either of the immediate children
of N in the CT. If the path of a child includes an alternative
path with the same cost but without the conflict this path is
adopted byN without the need to splitN and add new nodes
to the CT. This can potentially save a significant amount of
search due to a smaller size CT. BP is optionally added to
the CBS pseudo code (lines 11-12 in Algorithm 1).

7 Sum-of-Costs SAT Solver
A first reduction-based SAT solver for the sum-of-costs vari-
ant was recently introduced (Surynek et al. 2016). Let ∆
be again the difference between hSIC and the cost of the
optimal sum-of-costs (∆ = C∗ − hSIC), and let µ0 be
the length of the longest path among the shortest individ-
ual paths. The main idea is based on the proposition that
a solution with sum-of-costs C∗ must be achievable within
at most µ = µ0 + ∆ time steps because in the worst-case,
all ∆ moves belong to the agent whose shortest individual
path was µ0. Based on this, a SAT formula is built that an-
swers whether there is a solution with exactly ∆ extra edges
more than µ0, up to time point µ = µ0 + ∆. An outer loop
iterated over different possible values of ∆. Surynek et al.
(2016) also showed that the number of propositional vari-



ables that are used within the SAT formula can be signifi-
cantly reduced with the help of the same MDDs used by the
ICTS algorithm. Their best variant is called MDD-SAT.

8 Analysis on Example Graphs

As we have seen, many novel algorithms and approaches
were introduced recently. Which algorithm is the best? Nat-
urally, every paper on a new algorithm provides experimen-
tal results that support its own approach. Nevertheless, our
experience suggests that there is no universal winner. The
different algorithms have pros and cons and they behave
differently in different circumstances. To exemplify this we
compare CBS and A* on two example graphs.

First, consider EX2. As detailed above, 2m+14 low-level
states are expanded by CBS here. Now, consider A* which
is running in a 2-agent state-space. The root (S1, S2) has
f = 6. It generates m2 nodes, all in the form of (Ai, Bj) for
(1 ≤ i, j ≤ m). All these nodes are expanded with f = 6.
Now, node (A1, D) with f = 7 is expanded (agent a1 waits
atA1). Then, nodes (D,G2) and (G1, G2) are expanded and
the solution is returned. So, a total of m2 + 3 nodes are ex-
panded by A*. For m ≥ 5 this is larger than 2m + 14 and
consequently, CBS will expand fewer nodes. A* must ex-
pand the Cartesian product of the single agent paths with
f = 3. By contrast, CBS only tried two such paths to realize
that no solution of cost 6 is valid.

Now consider figure 1(III). Both agents must cross the
open area in the middle (colored gray). For each agent there
are four optimal paths of length 4 and thus hSIC(start) =
8. However, each of the 16 combinations of these paths have
a conflict in one of the gray cells. Consequently, C∗ = 9
as one agent must wait at least one step to avoid collision.
For this problem A* will expand 5 nodes with f = 8:
((D2, C1),(D3, C2), (D3, B1), (C2, B1), (C3, B2)) and 3
nodes with f = 9 ((B3, B2),(A3, B3),(A3, B4)) until the
goal is found, a total of 8 nodes. By contrast, CBS will build
a CT (not shown) which consists of 5 non-goal CT nodes
with cost 8, each of them adds a new constraint on one of
the conflicts. Only then it would generate 6 CT goal nodes
with cost 9. The root CT node will run the low-level search
for each agent to a total of 8 low-level expansions. Each of
the internal non-goal CT nodes will run the low-level search
for a single agent to a total of 4 low-level expansions. Each
goal CT node will expand 5 low-level nodes. In total, CBS
will expand 8 + 4 · 4 + 6 · 5 = 54 low-level nodes.

9 Experimental Results

We experimentally compared different leading algorithms
that were designed for the sum-of-costs variant. We do not
intend here to provide a full systematic comparison between
all existing algorithms and all their variants (a direction for
future work, see below). The aim of this section is to pro-
vide experimental evidence that different behavior is ob-
tained (with our implementation) by the different algorithms
on different domains. For each family of algorithms the best
variant available to us is reported: EPEA* for the A* family,

Figure 2: Results on DAO map ost003d

ODrM* for the M* family, ICBS(25)4 for the CBS family,
ICTS+p for the ICTS family and MDD-SAT for the SAT-
based solvers designed for the sum-of-costs objective func-
tion. All the algorithms were executed within the ID frame-
work except ICBS which uses a similar internal mechanism.

Figure 2(left) presents the success rate (= % instances
solved) when given 5 minutes for a representative bench-
mark map (ost003d) of the game Dragon Age: Origins from
the movingai repository (Sturtevant 2012). It can be eas-
ily seen that for ≤55 agents ICBS had the best success
rate while for ≥60 agents ICTS was the best. Neverthe-
less, Figure 2(right) presents the CPU time averaged over
all instances that can be solved by all algorithms (excluding
MDD-SAT and ODrM* which were very weak here). On
this set of problems, ICBS was almost always the fastest.
Next, Figure 3(left) shows results on an 8x8 grid with 10%
random obstacles. Here, MDD-SAT significantly outper-
formed all other algorithms. Finally, figure 3(right) presents
results on mazes 512-1-{2,6,9} and 512-2-{2,5,9} from the
repository (Sturtevant 2012) when varying the number of
cells in the width (W ) of the corridors of the mazes. For
W = 1 ODrM* and EPEA* are the best. But, for W = 2
ICBS was the best. These representative results demonstrate
that there is no universal winner, and that a different algo-
rithm is best in different circumstances.

While it is hard to predict the performance of the algo-
rithms in actual domains, based on our experience and on the
above analysis we can give some guidance. If there are more
bottlenecks, CBS will outperform A* as it will quickly rule
out the f -value of the conflicts in the bottleneck and then
find solutions which bypass the bottlenecks. A* variants
have the advantage over CBS in areas dense with agents,
as CBS needs to handle many conflicts. In addition, ICTS
is effective if ∆ is rather small and k is large. MDD-SAT
is strong in hard problems where the SAT-solver is able to
gather enough information on dependencies between its in-
ternal variables. Nevertheless, this improvement should be
attributed to the strength of modern SAT solvers.

10 Real World Scenarios for MAPF
Throughout this paper we treated the MAPF problem un-
der the basic formal definition. However, many real-world

4ICBS is usually robust to the low-level solver. We used
EPEA*. Other low-level solvers (e.g., variants of M*, ICTS, or
even a recursive call to ICBS) were not tried here and are a matter
for future work.



Success rate Runtime (ms)
W EPEA* ICTS ICBS SAT M* EPEA* ICTS ICBS SAT M*
1 84% 43% 51% 7% 87% 3,016 23,535 7,778 >111,805 2,974
2 100% 100% 100% 59% 99% 2,033 2,012 239 >243,045 1,935

Figure 3: Success rate on open grids (left). Results on mazes with varying widths. 50 agents. (right)

scenarios include more sophisticated settings. We briefly
overview preliminary embarking lines of research address-
ing such real-world issues.

Ma and Koenig (2016) addressed the case where agents
are divided into teams and that there is a set of goal loca-
tions for each team. However, the agents within each team
are indistinguishable. A set of non-conflicting paths should
be found such that each agent reaches one of the goal lo-
cations affiliated with its team. Another line of research ad-
dressed the fact that agents operating in continuous environ-
ments may have kinematic constraints. In addition, uncer-
tainty (delay probabilities) might be involved regarding the
time needed to traverse certain edges. Such cases were ad-
dressed by proposing a two-level framework. First, a MAPF
plan is generated. Then, an execution policy of that plan is
activated online (Ma et al. 2016b; Ma, Kumar, and Koenig
2017) to address these settings. Another setting is MAPF
with Payload Transfers (Ma et al. 2016b) where agents are
allowed to switch locations by traversing the same edge in
opposite directions, simulating a payload transfer between
two adjacent agents.

The work described thus far assumed that all agents were
seeking to optimize a global commutative objective func-
tion. However, in many cases agents may be self interested
and thus seek paths that minimize their own cost. This was
addressed by introducing a set of incentives such that the
optimal, single-agent, selfish routes would align with a cen-
tralized solution (Bnaya et al. 2013). In addition, a strategy
proof mechanism for self interested agents has been pro-
posed (Amir, Sharon, and Stern 2015). Finally, in the convoy
movement problem (Thomas, Deodhare, and Murty 2015)
agents are viewed as convoys of varying length where each
convoy moves in a long line and convoys cannot cross each
other. A survey of several of these directions is provided
in (Ma et al. 2016a).

11 Future Challenges
Despite the diverse work in the field, there is much more to
be done. The following research directions are suggested to
advance the study on the MAPF problem.

(1:) Theoretical research is needed to better understand
MAPF and explore the parameters that influence the diffi-
culty of the problem such as the number of agents, the size
of the graph, the density of the agents, and the way conflicts
are distributed. It is not yet known how each of these param-
eters influence the hardness of the problem.

(2:) New algorithms can be developed but many opti-
mizations can also be performed on the algorithms described
above. In particular, hybrid algorithms that migrate different
sub-procedures from other algorithms or that intelligently
(e.g., via meta-reasoning) alternate between algorithms can
be created. In addition, further study is needed on admissi-
ble heuristics for the A* family on a wide range of problem
variants. Finally, optimal MAPF algorithms can be modified
to better trade runtime for solution quality.

(3:) A deep systematic comparison between the various
algorithms should be done in order to better understand the
pros and cons of the different algorithms and which algo-
rithm works best under what circumstances. A useful set of
benchmark instances widely used by all researchers will be
greatly welcomed.

(4:) Currently, there is fragmentation of works between
sum-of-cost variants and makespan variants. A deep unify-
ing research should be done to migrate and compare algo-
rithms for the two cost functions.

(5:) New directions were established recently to handle
more complex real-world scenarios as detailed in Section 10.
But, more research should be done to apply existing algo-
rithms to perform well in real-world domains. New domain
properties may include: directed edges, non-unit edge costs,
uncertainty in actions, indistinguishable agents and agents
that dynamically appear and disappear.
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