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Abstract. In the multi-agent path finding (MAPF) the task is to find
non-conflicting paths for multiple agents. In this paper we present
the first SAT-solver for the sum-of-costs variant of MAPF which was
previously only solved by search-based methods. Using both a lower
bound on the sum-of-costs and an upper bound on the makespan, we
are able to have a reasonable number of variables in our SAT en-
coding. We then further improve the encoding by borrowing ideas
from ICTS, a search-based solver. Experimental evaluation on sev-
eral domains shown that there are many scenarios where the new
SAT-based method outperforms the best variants of previous sum-
of-costs search solvers - the ICTS and ICBS algorithms.

1 Introduction and Background
The multi-agent path finding (MAPF) problem consists a graph,
G = (V,E) and a set A = {a1, a2, . . . am} of m agents. Time
is discretized into time steps. The arrangement of agents at time-step
t is denoted as αt. Each agent ai has a start position α0(ai) ∈ V and
a goal position α+(ai) ∈ V . At each time step an agent can either
move to an adjacent empty location4 or wait in its current location.
The task is to find a sequence of move/wait actions for each agent
ai, moving it from α0(ai) to α+(ai) such that agents do not conflict,
i.e., do not occupy the same location at the same time. Formally, an
MAPF instance is a tuple Σ = (G = (V,E), A, α0, α+). A solution
for Σ is a sequence of arrangements S(Σ) = [α0, α1, ..., αµ] such
that αµ = α+ where αt+1 results from valid movements from αt for
t = 1, 2, ..., µ− 1. An example of MAPF and its solution are shown
in Figure 1.

MAPF has practical applications in video games, traffic control,
robotics etc. (see [17] for a survey). The scope of this paper is lim-
ited to the setting of fully cooperative agents that are centrally con-
trolled. MAPF is usually solved aiming to minimize one of the two
commonly-used global cumulative cost functions:

(1) sum-of-costs (denoted ξ) is the summation, over all agents, of the
number of time steps required to reach the goal location [8, 23, 18,
17]. Formally, ξ =

∑m
i=1 ξ(ai), where ξ(ai) is an individual path

cost of agent ai.

(2) makespan: (denoted µ) is the total time until the last agent
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Figure 1. Example of MAPF for agents a1, a2, and a3 over a 4-connected
grid (left) and its optimal solution (right)

reaches its destination (i.e., the maximum of the individual costs) [25,
27, 30].

It is important to note that in any solution S(Σ) it holds that µ ≤
ξ ≤ m · µ Thus the optimal makespan is usually smaller than the
optimal sum-of-costs.

Finding optimal solutions for both variants is NP-Hard [34, 25].
Therefore, many suboptimal solvers were developed and are usually
used when m is large [15, 6, 20, 14, 12, 32]

1.1 Optimal MAPF Solvers

The focus of this paper is on optimal solvers which are divided into
two main classes:

(1) Reduction-based solvers. Many recent optimal solvers reduce
MAPF to known problems such as CSP [15], SAT [26], Induc-
tive Logic Programming [33] and Answer Set Programming [9].
These papers mostly prove a polynomial-time reduction from MAPF
to these problems. These reductions are usually designed for the
makespan variant of MAPF; they are not applicable for the sum-of-
costs variant.

(2) Search-based solvers. By contrast, many recent optimal MAPF
solvers are search-based. Some are variants of the A* algorithm on
a global search space – all different ways to place m agents into V
vertices, one agent per vertex [23, 31]. Other employ novel search
trees [18, 17, 5]. These search-based solvers are usually designed for
the sum-of-costs MAPF variant.

A major weaknesses is that connection/comparison between dif-
ferent algorithms was usually done only within a given class of algo-
rithms and cost variant but not across these two classes.
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Figure 2. An example of time expansion graph.

1.2 Contributions

This paper aims to start and close the gap. Most of the search-based
algorithms can be easily modified to the makespan variant by mod-
ifying the cost function and the way the state-space is represented.
Some initial directions are given by [17]. By contrast, the reduction-
based algorithms are not trivially modified to the sum-of-costs vari-
ant and sometimes a completely new reduction is needed.

In this paper we develop the first SAT-based solvers for the
sum-of-costs variant which is based on adding cardinality con-
straints [3, 19] for bounding the sum-of-costs. We show how to use
known lower bounds on the sum-of-costs to reduce the number of
variables that encode these cardinality constraints so as to be practi-
cal for current SAT solvers. We then present an enhanced SAT-solver
which adapts ideas from the ICTS algorithm [18] and uses multi-
value decision diagrams (MDDs) [22] to further reduce the encod-
ing. This demonstrates the potential of combining ideas from both
classes of approaches (search-based and SAT solvers). Experimen-
tal results show that our enhanced SAT solver outperforms the best
existing search-based solvers for the sum-of-costs variant on many
scenarios.

2 SAT Encoding for Optimal Makespan

SAT solvers encompass boolean variables and answer binary ques-
tions. The challenge is to apply SAT for MAPF where there is a cu-
mulative cost function. This challenge is stronger for the sum-of-
costs variant where each agent has its own cost. We first describe
existing SAT encodings for makespan. Then, we present our SAT
encoding for sum-of-costs.

A time expansion graph (denoted TEG) is a basic concept used
in SAT solvers for makespan [27]. We use it too in the sum-of-costs
variant below. A TEG is a directed acyclic graph (DAG). First, the
set of vertices of the underlaying graphG are duplicated for all time-
steps from 0 up to the given bound µ. Then, possible actions (move
along edges or wait) are represented as directed edges between suc-
cessive time steps. Figure 2 shows a graph and its TEG for time steps
0, 1 and 2 (vertical layouts). It is important to note that in this ex-
ample (1) horizontal edges in TEG correspond to wait actions. (2)
diagonal moves in TEG correspond to real moves. Formally a TEG
is defined as follows:

Definition 1 Time expansion graph of depth µ is a digraph (V,E)
where V = {utj |t = 0, 1, ..., µ∧uj ∈ V } andE ⊆ {(utj , ut+1

k )|t =
0, 1, ..., µ− 1 ∧ ({uj , uk} ∈ E ∨ j = k)}.

The encoding for MAPF introduces propositional variables and
constraints for a single time-step t in order to represent any possi-
ble arrangement of agents at time t. Given a desired makespan µ,
the formula represents the question of whether there is a solution in
the TEG of µ time steps. The search for optimal makespan is done
by iteratively incrementing µ (=0, 1, 2...) until a satisfiable formula
is obtained. This ensures optimality in case of a solvable MAPF in-
stance. More information on SAT encoding for the makespan variant
can be found, e.g. in [27, 28, 29]

3 Basic-SAT for Optimal Sum-of-costs

The general scheme described above for finding optimal makespan
is to convert the optimization problem (finding minimal makespan)
to a sequence of decision problems (is there a solution of a given
makespan µ). We apply the same scheme for finding optimal sum-
of-costs, converting it to a sequence of decision problems – is there
a solution of a given sum-of-costs ξ.

However, encoding this decision problem is more challenging than
the makespan case, because one needs to both bound the sum-of-
costs, but also to predict how many time expansions are needed.
We address this challenge by using two key techniques described
next: (1) Cardinality constraint for bounding ξ and (2) Bounding the
Makespan.

3.1 Cardinality Constraint for Bounding ξ

The SAT literature offers a technique for encoding a cardinality con-
straint [3, 19], which allows calculating and bounding a numeric cost
within the formula. Formally, for a bound λ ∈ N and a set of propo-
sitional variables X = {x1, x2, ..., xk} the cardinality constraint
≤λ {x1, x2, ..., xk} is satisfied iff the number of variables from the
set X that are set to TRUE is ≤ λ.

In our SAT encoding, we bound the sum-of-costs by mapping ev-
ery agent’s action to a propositional variable, and then encoding a
cardinality constraint on these variables. Thus, one can use the gen-
eral structure of the makespan SAT encoding (which iterates over
possible makespans), and add such a cardinality constraint on top.
Next we address the challenge of how to connect these two factors
together.

3.2 Bounding the Makespan for the Sum of Costs

Next, we compute how many time expansions (µ) are needed to guar-
antee that if a solution with sum-of-costs ξ exists then it will be
found. In other words, in our encoding, the values we give to ξ and
µ must fulfill the following requirement:

R1: all possible solutions with sum-of-costs ξ must be possible for a
makespan of at most µ.

To find a µ value that meets R1, we require the following defini-
tions. Let ξ0(ai) be the cost of the shortest individual path for agent
ai, and let ξ0 =

∑
ai∈A ξ0(ai). ξ0 was called the sum of individual

costs (SIC) [18]. ξ0 is an admissible heuristic for optimal sum-of-
costs search algorithms, since ξ0 is a lower bound on the minimal
sum-of-costs. ξ0 is calculated by relaxing the problem by omitting
the other agents. Similarly, we define µ0 = maxai∈A ξ0(ai). µ0 is
length of the longest of the shortest individual paths and is thus a
lower bound on the minimal makespan. Finally, let ∆ be the extra
cost over SIC (as done in [18]). That is, let ∆ = ξ − ξ0.



Algorithm 1: SAT consult
1 MAPF-SAT(MAPF Σ = (G = (V,E), A, α0, α+))
2 µ0 = maxai∈A ξ0(ai) ;∆← 0
3 while Solution not found do
4 µ← µ0 + ∆;
5 for each agent ai do
6 build TEGi(µ);
7 end
8 Solution=Consult-SAT-SOLVER(Σ, µ,∆);
9 if Solution not found then

10 ∆++;
11 end
12 end
13 return (Solution);
14 end

Proposition 1 For makespan µ of any solution with sum-of-costs ξ,
R1 holds for µ ≤ µ0 + ∆.

Proof outline: The worst-case scenario, in terms of makespan, is that
all the ∆ extra moves belong to a single agent. Given this scenario,
in the worst case, ∆ is assigned to the agent with the largest shortest-
path. Thus, the resulting path of that agent would be µ0 + ∆, as
required. 2

Using Proposition 1, we can safely encode the decision problem of
whether there is a solution with sum-of-costs ξ by using µ = µ0 +∆
time expansions, knowing that if a solution of cost ξ exists then it
will be found within µ = µ0 + ∆ time expansions. In other words,
Proposition 1 shows relation of both parameters µ and ξ which will
be both changed by changing ∆. Algorithm 1 summarizes our op-
timal sum-of-costs algorithm. In every iteration, µ is set to µ0 + ∆
(Line 4) and the relevant TEGs (described below) for the various
agents are built. Next a decision problem asking whether there is a
solution with sum-of-costs ξ and makespan µ is queried (Line 8).
The first iteration starts with ∆ = 0. If such a solution exists, it is
returned. Otherwise ξ is incremented by one, ∆ and consequently µ
are modified accordingly and another iteration of SAT consulting is
activated.

This algorithm clearly terminates for solvable MAPF instances
as we start seeking a solution of ξ = ξ0 (∆ = 0) and increment
∆ (which increments ξ and µ as well) to all possible values. The
unsolvability of an MAPF instance can be checked separately by
a polynomial-time complete sub-optimal algorithm such as PUSH-
AND-ROTATE [7].

3.3 Efficient Use of the Cardinality Constraint

The complexity of encoding a cardinality constraint depends linearly
in the number of constrained variables [19, 21]. Since each agent ai
must move at least ξ0(ai), we can reduce the number of variables
counted by the cardinality constraint by only counting the variables
corresponding to extra movements over the first ξ0(ai) movement ai
makes. We implement this by introducing a TEG for a given agent ai
(labeled TEGi).
TEGi differs from TEG (Definition 1) in that it distinguishes be-

tween two types of edges: Ei and Fi. Ei are (directed) edges whose
destination is at time step≤ ξ0(ai). These are called standard edges.
Fi denoted as extra edges are directed edges whose destination is at
time step> ξ0(ai). Figure 3 shows an underlying graph for agent a1

(left) and the corresponding TEG1. Note that the optimal solution of
cost 2 is denoted by the diagonal path of the TEG. Edges that belong
to Fi are those that their destination is time step 3 (dotted lines). The
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Figure 3. A TEG for an agent that needs to go from u1 to u3.

key in this definition is that the cardinality constraint would only be
applied to the extra edges, that is, we will only bound the number of
extra edges (they sum up to ∆) making it more efficient.

3.4 Detailed Description of the SAT Encoding

Agent ai must go from its initial position to its goal within TEGi.
This simulates its location in time in the underlying graphG. That is,
the task is to find a path from α0

0(ai) to αµ+(ai) in TEGi. The search
for such a path will be encoded within the Boolean formula. Addi-
tional constraints will be added to capture all movement constraints
such as collision avoidance etc. And, of course, we will encode the
cardinality constraint that the number of extra edges must be exactly
∆.

We want to ask whether a sum-of-costs solution of ξ exist. For this
we build TEGi for each agent ai ∈ A of depth µ0 +∆. We use Vi to
denote the set of vertices in TEGi that agent ai might occupy during
the time steps. Next we introduce the Boolean encoding (denoted
BASIC-SAT) which has the following Boolean variables:

1:) X tj (ai) for every t ∈ {0, 1, ..., µ} and utj ∈ Vi – Boolean vari-
able of whether agent ai is in vertex vj at time step t.

2:) Etj,k(ai) for every t ∈ {0, 1, ..., µ − 1} and (utj , u
t+1
k ) ∈

(Ei∪Fi) — Boolean variables that model transition of agent ai from
vertex vj to vertex vk through any edge (standard or extra) between
time steps t and t+ 1 respectively.

3:) Ct(ai) for every t ∈ {0, 1, ..., µ−1} such that there exist utj ∈ Vi
and ut+1

k ∈ Vi with (utj , u
t+1
k ) ∈ Fi — Boolean variables that

model cost of movements along extra edges (from Fi) between time
steps t and t+ 1.

We now introduce constraints on these variables to restrict illegal
values as defined by our variant of MAPF. Other variants may use a
slightly different encoding but the principle is the same. Let Tµ =
{0, 1, ..., µ − 1}. Several groups of constraints are introduced for
each agent ai ∈ A as follows:

C1: If an agent appears in a vertex at a given time step, then it must
follow through exactly one adjacent edge into the next time step.
This is encoded by the following two constraints, which are posted
for every t ∈ Tµ and utj ∈ Vi

X tj (ai)⇒
∨

(ut
j ,u

t+1
k

)∈Ei∪Fi

Etj,k(ai), (1)



∧
(ut

j ,u
t+1
k

),(ut
j ,u

t+1
l

)∈Ei∪Fi∧k<l

¬Etj,k(ai) ∨ ¬Etj,l(ai) (2)

C2: Whenever an agent occupies an edge it must also enter it before
and leave it at the next time-step. This is ensured by the following
constraint introduced for every t ∈ Tµ and (utj , u

t+1
k ) ∈ Ei ∪ Fi:

Etj,k(ai)⇒ X tj (ai) ∧ X t+1
k (ai) (3)

C3: The target vertex of any movement except wait action must be
empty. This is ensured by the following constraint introduced for ev-
ery t ∈ Tµ and (utj , u

t+1
k ) ∈ Ei ∪ Fi such that j 6= k.

Etj,k(ai)⇒
∧

al∈A∧al 6=ai∧ut
j∈Vl

¬X tj (al) (4)

C4: No two agents can appear in the same vertex at the same time
step. That is the following constraint is added for every t ∈ Tµ and
pair of of agents ai, al ∈ A such that i 6= l:∧

ut
j∈Vi∩Vl

¬X tj (ai) ∨ ¬X tj (al) (5)

C5: Whenever an extra edge is traversed the cost needs to be accu-
mulated. In fact, this is the only cost that we accumulate as discussed
above. This is done by the following constraint for every t ∈ Tµ and
extra edge (utj , u

t+1
k ) ∈ Fi.

Etj,k(ai)⇒ Ct(ai) (6)

C6: Cardinality constraint. Finally the bound on the total cost
needs to be introduced. Reaching the sum-of-costs of ξ corresponds
to traversing exactly ∆ extra edges from Fi. The following cardinal-
ity constrains ensures this:

≤∆

{ Ct(ai)|i = 1, 2, ..., n ∧ t = 0, 1, ..., µ− 1
∧{(utj , ut+1

k ) ∈ Fi} 6= ∅

}
(7)

Final formula. The resulting Boolean formula that is a conjunction
of C1 . . . C6 will be denoted as FBASIC(Σ, µ,∆) and is the one
that is consulted by Algorithm 1 (line 4).

The following proposition summarizes the correctness of our en-
coding.

Proposition 2 MAPF Σ = (G = (V,E), A, α0, α+) has a sum-of-
costs solution of ξ if and only if FBASIC(Σ, µ,∆) is satisfiable.
Moreover, a solution of MAPF Σ with the sum-of-costs of ξ can be
extracted from the satisfying valuation ofFBASIC(Σ, µ,∆) by read-
ing its X tj (ai) variables.

Proof: The direct consequence of the above definitions is that a
valid solution of a given MAPF Σ corresponds to non-conflicting
paths in the TEGs of the individual agents. These non-conflicting
paths further correspond to satisfying the variable assignment of
FBASIC(Σ, µ,∆), i.e., that there are ∆ extra edges in TEGs of
depth µ = µ0 + ∆. 2
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Figure 4. MDDs for agents a1, a2, and a3 for the MAPF from Figure 1
for sum of individual cost ξ ≤ 11.

Proposition 3 Let D be the maximal degree of any vertex in G and
let m be the number of agents. If m · |E| ≥ ∆ and m ≥ D then the
number of clauses in FBASIC(Σ, µ,∆) is O(µ ·m2 · |E|), and the
number of variables is O(µ · |E| ·m).

Proof: The components of FBASIC(Σ, µ,∆) is described in equa-
tions 1– 7. Equation 1 introduces at most O(m · µ · |E|) clauses.
Equation 2 introduces at most O(m · µ|E| ·D) clauses. Equation 3
introduces at most O(m · µ · |E|) clauses. Equation 4 introduces at
most O(m2 · µ · |E|) Equation 5 introduces at most O(m2 · µ · |V |)
clauses. Equation 6 introduces at most O(m ·µ · |E|) clauses. Equa-
tion 7 introduces at mostO(m·µ·(ξ−ξ0)) clauses, since a cardinality
constraint checking that n variables has a cardinality constraint of m
requires O(n ·m) clauses [21]. Summing all the above results in a
total of O(µ ·m · (|E| · (D + m) + (ξ − ξ0))). If we assume that
m > D and that m · |E| > (ξ − ξ0) then the number of clauses
is O(µ ·m2 · |E|). The number of variables is easily computed in a
similar way. 2

4 Improving Basic SAT by Adding MDDs

A major parameter that affects the speed of solving of Boolean for-
mulae is their size [13]. The size of formulae in the BASIC-SAT
encoding is affected mostly by the size of the TEGs (this is embod-
ied in the |E| factor in the encoding size). To obtain a significant
speedup we reduce the size of TEGi for agent ai in terms of num-
ber of vertices while the soundness of encoding is preserved. To do
this we borrow the ideas of multi-value Decision Diagram (MDD)
from the search-based MAPF algorithm ICTS [18]. This shows the
advantage of combining techniques from both classes of approaches
(search-based and SAT).

Let TEGµi denote TEGi for µ time expansions. We set µ =
µ0 + ∆ in our solution. The data structure we use for reducing
TEGµi is a multi-value Decision Diagram (MDD). MDDs were al-
ready used in the search-based MAPF algorithm ICTS [18]. In our
context, MDDµ

i is a digraph that represents all possible valid paths
from α0(ai) to α+(ai) of cost µ for agent ai. MDDµ

i has a single
source node at level 0 and a single sink node at level µ. Every node
at depth t of MDDµ

i corresponds to a possible location of ai at time
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Figure 6. An illustration of MDD-SAT encoding using MDDs from Figure
5. Mutual exclusion constraints (C4) that prevent multiple agent occurrence

in the same vertex are shown using dashed edges.

t, that is on a path of cost µ from α0(ai) to α+(ai). It is easy to
see that MDDµ

i is subgraph of TEGi. While TEGµi includes all
vertices of G at each time step, MDDµ

i includes only those vertices
and edges that represent possible valid paths, and thus vertices not in
MDDµ

i can be ignored.
Moreover, the maximum cost that can be consumed by single

agent ai under given sum-of-costs bound ξ is ξ0(ai) + ∆ where,

as defined above, ξ0(ai) is the shortest path connecting α0(ai)
with α+(ai) in G (assuming no other agent exist). Thus, it is suf-
ficient to replace TEGµi with MDD

ξ0(ai)+∆
i , which is useful since

ξ0(ai) + ∆ ≤ µ0 + ∆ = µ.
MDDs for the agents of Figure 1 are shown in Figures 4 and 5.

Indeed, the size of the MDDs is much smaller than the corresponding
TEGs which include all states for all time steps. Though the increase
in size caused by ability to reach more vertices under given sum-of-
costs bounds is observable between Figures 4 and 5.

Grid 8x8 
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Table 1. The effect of using MDDs in the encoding in terms of the number
of variables and clauses.

The encoding that uses MDD-based time expansion will be called
MDD-SAT and the corresponding formulae will be denoted as
FMDD(Σ, µ,∆). FMDD(Σ, µ,∆) are similar to BASIC-SAT. The
only different is that in BASIC-SAT there is a variable for all ver-
tices and edges of the TEGs while in MDD-SAT, only variables for
the vertices and edges of the MDDs are needed. This difference can
be significant. Table 1 presents the number of propositional variables
and clauses accumulated over all the constructed formulae for a given
MAPF instance for BASIC-SAT and for MDD-SAT over 8 × 8 grid
with 10% obstacles. The average values out of 10 random instances
per number of agents is shown. Up to two orders of magnitude re-
duction is shown.

An illustration of the FMDD(Σ, µ,∆) formula is shown in Fig-
ure 6. It is particularly observable that MDDs reduce the number of
mutual exclusion constraints (dashed edges) by omitting unreachable
vertices (and all the constraints incident with them).

5 Experimental Evaluation

We experimented on 4-connected grids with randomly placed ob-
stacles [20, 23] and on Dragon Age maps [17, 24]. Both settings
are a standard MAPF benchmarks. The initial position of the agents
was randomly selected. To ensure solvability the goal positions were
selected by performing a long random walk from the initial arrange-
ment.

We compared our SAT solvers to several state-of-the-art search-
based algorithms: the increasing cost tree search - ICTS [18], En-
hanced Partial Expansion A* - EPEA* [10] and improved conflict-
based search - ICBS [5]. For all the search algorithms we used the
best known setup of their parameters and enhancements suitable for
solving the given instances over 4-connected grids.

The SAT approaches were implemented in C++. The implementa-
tion consists of a top level algorithm for finding the optimal sum-of-
costs ξ and CNF formula generator [4] that prepares input formula
for a SAT solver into a file. The SAT solver is an external module
our this architecture. We used Glucose 3.0 [2, 1] which is a top
performing SAT solver in the SAT Competition [11, 27].

The cardinality constraint was encoded using a simple standard
circuit based encoding called sequential counter [21]. In our initial
testing we considered various encodings of the cardinality constrain
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Figure 7. Results on 8× 8 grid (left). Number of solved instances in the given runtime on 16× 16 and 32× 32 grids. (right)

such as those discussed in [3, 19]. However, it turned out that chang-
ing the encoding has a minor effect.5

ICTS and ICBS were implemented in C#, based on their origi-
nal implementation (here we used a slight modification in which the
target vertex of a move must be empty). All experiments were per-
formed on a Xeon 2Ghz, and on Phenom II 3.6Ghz, both with 12 Gb
of memory.

5.1 Square Grid Experiments

We first experimented on 8 × 8, 16 × 16, and 32 × 32 grids with
10% obstacles while varying the number of agents from 1 up to the
number where at least one solver was able to solve an instance (in
case of the 8 × 8 grid this is 20 agents; and 32 and 58 in case of
16× 16 and 32× 32 grids respectively). For each number of agents
10 random instances were generated.

Figure 7 presents results where each algorithm was given a time
limit of 300 seconds (as was done by [18, 5, 16]). The leftmost plot
(Plot (a)) shows the success rate (=percentage out of given 10 ran-
dom instances solved within the time limit) as a function of the num-
ber of agents for the 8 × 8 grid (higher curves are better). The next
plot (Plot (b)) reports the average runtime for instances that were
solved by all algorithms (lower curves are better). Here, we required
100% success rate for all the tested algorithms to be able to calculate
average runtime; this is also the reason why the number of agents
is smaller. The two right plots visualize the results on 16 × 16 grid
(Plot (c)) and 32 × 32 grid (Plot (d)) but in a different way. Here,
we present the number of instances (out of all instances for all num-
ber of agents) that each method solved (y-axis) as a function of the
elapsed time (x-axis). Thus, for example Plot (c) says that MDD-SAT
was able to solve 145 instances in time less than 10 seconds (higher
curves are better).

The first clear trend is that MDD-SAT significantly outperforms
BASIC-SAT in all aspects. This shows the importance of developing
enhanced SAT encodings for the MAPF problem. The performance
of the BASIC-SAT encoding compared to the search-based algorithm
degrades as the size of the grids grow larger: in the 8x8 grids it is
second only to MDD-SAT, in the 16x16 grid it is comparable to most
search-based algorithms, and in the 32x32 grid it is even substantially
worse. For the rest of the experiments we did not activate BASIC-
SAT.

5 Due to the knowledge of lower bounds on the sum-of-costs, the number of
variables involved in the cardinality constraint is relatively small and hence
the different encoding style has not enough room to show its benefit.
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Figure 8. Success rate and runtime on the 8× 8 grid with increasing
number of obstacles (out of 64 cells).

In addition, a prominent trend observed in all the plots is that
MDD-SAT has higher success rate and solves more instances than
all other algorithms. In particular, in on highly constrained instances
(containing many agents) the MDD-SAT solver is the best option.

However, on the 32×32 grid (rightmost figure) for easy instances
when the available runtime was less than 10 seconds, MDD-SAT was
weaker than the search-based algorithms. This is mostly due to the
architecture of the MDD-SAT solver which has an overhead of run-
ning the external SAT solver and passing input in the textual form
to it. This effect is also seen in the 8x8 plot (Plot (b)) as these were
rather easy instances (solved by all algorithms) and the extra over-
head of activating the external SAT solver did not pay off.

Next, we varied the number of obstacles for the 8× 8 grid with 10
agents to see the impact of shrinking free space and increasing the
frequency of interactions among agents. Results are shown in Fig-
ure 8. Again, MDD-SAT clearly solves more instances over all set-
tings. MDD-SAT was always faster except for some easy instances
(that needed up to 1 second) where ICBS was slightly faster which is
again due to the overhead in setup of the SAT solving by an external
solver. Interestingly, increasing the number of obstacles reduces the
number of open cells. This is an advantage for the SAT formula gen-
erator in MDD-SAT as the formula has less variables and constraints.
By contrast, the combinatorial difficulty of the instances increases
with adding obstacles for all the solvers as it means that the graphs
gets denser and harder to solve.



 

 

 

 

 

 

 

brc202d den520d ost003d 

Figure 9. Three structurally diverse Dragon-Age maps used in the
experimental evaluation. This selection includes: narrow corridors in
brc202d, large open space in den520d, and open space with almost

isolated rooms in ost003d.

5.2 Results on the Dragon Age Maps

Next, we experimented on three structurally different Dragon-Age
maps - ost003d, den520d, and brc202d, that are commonly
used as testbeds [18, 10, 5] - see Figure 9. On these maps we only
evaluated the most efficient algorithms, namely, MDD-SAT, ICTS,
and ICBS. Generally, in these maps there is a large number of open
cells but the graph is sparse with agents but there are topological
differences. brc202d has many narrow corridors. ost003d con-
sists of few open areas interconnected by narrow doors. Finally,
den520d has wider open areas.

To obtain instances of various difficulties we varied the distance
between start and goal locations. Ten random instances were gener-
ated for each distance in the range: {8, 16, 24, . . . , 320} in order to
have instances of different difficulties (total of 400 instances). With
larger distances, the problems are more difficult as the the probability
for interactions (avoidance) among agents increases as they need to
travel through a larger part of the graph.

The results for the three Dragon-Age maps are shown in Figure 10
(brc202d), Figure 11 (den520d), and Figure 12 (ost003d). Two
setups were used for each map - one with 16 agents, the other with
32 agents. The left plot of each figure shows the number of solved
instances (y-axis) as a function of the elapsed time (x-axis). Again,
higher curves correspond to better performance). The right plot is
interpreted as follows. For each solver the 400 instances are ordered
in increasing order of their solution time (this has strong correlation
with the distance between the start and goal configurations). Thus,
the numbers in the x-axis give the relative location (out of the 400)
in this sorted order. The y-axis gives the actual running time for each
instance. Here, lower curves correspond to better performance.

All these figures show a similar clear trend with the exception of
ost003d with 32 agents (discussed below). On the easy instances
where little time is required (left of the figures), MDD-SAT is not the
best. But, for the harder instances that need more time (right of the
figures), MDD-SAT clearly outperform all the other solvers.

Intuitively, one might think that the search-based solvers will have
an advantage in these domains since they contain many open spaces
(low combinatorial difficulty) while the MDD-SAT approach will
suffer here as it will need to generate a large number of formulae
(as the domains are large). This might be true for the easy instances.
Nevertheless, the effectiveness of MDD-SAT was clearly seen on the
harder instances where generating the formulae and the external time
to activate the architecture of the SAT solver seemed to pay off. This
trend was also seen in in the case of small densely occupied grids
discussed above.
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Figure 10. Results for dragon age map brc202d with 16 and 32 agents.
The left part shows the number of instances (y-axis) a solver manages to

solve in the given timeout (x-axis). The right part shows all the runtimes for
a given solver sorted in the ascending order.
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Figure 11. Results for dragon age map den520d with 16 and 32 agents.
MDD-SAT is the best option on hard instances with more agents.

The ost003d map with 32 agents is the only case where MDD-
SAT was outperformed by ICTS. This is probably due to the specific
structure of ost003d which has a number of isolated open spaces.
This gives an advantage to ICTS with relatively many agents (32)
as conflicts mostly occur at the exits/doors of the open areas. ICTS
handles this on a per-agent cost basis while the other solvers are less
effective here.
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Figure 12. Results for dragon age map ost003d with 16 and 32 agents.
Although MDD-SAT performs as best with 16 agents, it gets outperformed

in the case with 32 agents by ICTS. This case shows that there is no
universal winner among the tested algorithms.

The entire set of experiments show a clear trend. For the easy in-
stances when a small amount of time is given the search-based algo-
rithm may be faster. But, given enough time MDD-SAT is the correct
choice, even in the large maps where it has an initial disadvantage.
One of the reasons for this is modern SAT solvers have the ability to
learn and improve their speed during the process of answering a SAT
question. But, this learning needs sufficient time and large search
trees to be effective. By contrast, search algorithms do not have this
advantage.

5.3 Size of the Formulae

Concrete runtimes for 10 instances of ost003d are given in Table 2.
MDD-SAT solves the hardest instance (#1) while other solvers ran
out of time. The right part of the table illustrates the cumulative size
of the formulae generated during the solving process. Although the
map is much larger than the square grids, the size of formulae is com-
parable to the densely occupied grid (see Figure 1). This is because
ξ0 is a good lower bound of the optimal cost in the sparse maps.

The observation from this experiments is that the large underlay-
ing graph does not necessarily imply generating of large Boolean
formulae in the MDD-SAT solving process. Though in harder sce-
narios (where start and goals are far apart) large formulae are eventu-
ally generated but still do not represent any significant disadvantage
for the MDD-SAT solver according to presented measurements. We
observed that generating large formulae takes considerable portion
of the total runtime (up to 10%-30%) within the MDD-SAT solver.
Hence efficient implementation of this part of the solver has signifi-
cant impact on the overall performance.

6 Summary and Conclusions

We introduced the first state-of-the-art SAT-based solver for the sum-
of-costs variant of MAPF. The resulting enhanced encoding, called
MDD-SAT migrates ideas from the search-based methods to use
with SAT solvers. was experimentally compared to the state-of-the-
art search-based solvers over a variety of domains - we tested 4-
connected grids with random obstacles and large maps from com-
puter games. We have seen that MDD-SAT is a better option in hard
scenarios while the search-based solvers may perform better in easier
cases.

Nevertheless, as previous authors mentioned [17, 5] there is no
universal winner and each of the approaches has pros and cons and
thus might work best in different circumstances. For example, ICTS
was best on ost003d with 32 agents. This calls for a deeper study
of various classes of MAPF instances and their characteristics and
how the different algorithms behave across them. Not too much is
known at present to the MAPF community on these aspects.

There are several factors behind the performance of the SAT-based
approach: clause learning, constraint propagation, good implementa-
tion of the SAT solver. On the other hand, the SAT solver does not un-
derstand the structure of the encoded problem which may downgrade
the performance. Hence, we consider that implementing techniques
such as learning directly into the dedicated MAPF solver may be a
future direction. Finally, migrating of other ideas from both classes
of approaches might further improve the performance.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAPF 
Ost003d (seconds) 

16 agents, distance=168 
MDD-SAT ICBS ICTS 

1 101.4 N/A N/A 
2 12.8 9.7 2.4 
3 13.2 4.4 2.4 
4 3.8 0.6 1.2 
5 13.5 9.6 3.2 
6 22.7 10.7 N/A 
7 N/A N/A N/A 
8 36.9 49.6 2.5 
9 12.0 2.6 1.4 

10 N/A N/A N/A 

 

m 

Distance 

MDD-SAT, 16 agents 

Variables Clauses 

8 758.0 1 169.7 
64 34 648.7 120 961.1 

128 932 440.9 9 128 568.8 

 
m 

Distance 

MDD-SAT, 32 agents 

Variables Clauses 

8 2 377.6 3 751.3 
64 571 915.1 3 672 249.3 

128 5 163 157.0 49 201 960.0 

 

Table 2. Runtime for 10 instances (left) and the average size of the
MDD-SAT formulae for ost003d (right)
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[14] G. Röger and M. Helmert, ‘Non-optimal multi-agent pathfinding is
solved (since 1984).’, in SOCS), (2012).

[15] M. Ryan, ‘Constraint-based multi-robot path planning’, in ICRA, pp.
922–928, (2010).

[16] G. Sharon, R. Stern, A. Felner, and N. Sturtevant, ‘Conflict-based
search for optimal multi-agent pathfinding’, Artif. Intell., 219, 40–66,
(2015).

[17] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, ‘Conflict-based
search for optimal multi-agent pathfinding’, Artif. Intell., 219, 40–66,
(2015).

[18] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, ‘The increasing cost
tree search for optimal multi-agent pathfinding’, Artificial Intelligence,
195, 470–495, (2013).

[19] J. Silva and I. Lynce, ‘Towards robust CNF encodings of cardinality
constraints’, in CP, pp. 483–497, (2007).

[20] D. Silver, ‘Cooperative pathfinding’, in AIIDE, pp. 117–122, (2005).
[21] C. Sinz, ‘Towards an optimal CNF encoding of boolean cardinality con-

straints’, in CP, pp. 827–831, (2005).
[22] A. Srinivasan, T. Ham, S. Malik, and R. Brayton, ‘Algorithms for dis-

crete function manipulation’, in (ICCAD, pp. 92–95, (1990).
[23] T. Standley, ‘Finding optimal solutions to cooperative pathfinding prob-

lems.’, in AAAI, pp. 173–178, (2010).
[24] Nathan R. Sturtevant, ‘Benchmarks for grid-based pathfinding’, Com-

putational Intelligence and AI in Games, 4(2), 144–148, (2012).
[25] P. Surynek, ‘An optimization variant of multi-robot path planning is

intractable’, in AAAI, (2010).
[26] P. Surynek, ‘Towards optimal cooperative path planning in hard setups

through satisfiability solving’, in PRICAI, 564–576, (2012).
[27] P. Surynek, ‘Compact representations of cooperative path-finding as

SAT based on matchings in bipartite graphs’, in ICTAI, pp. 875–882,
(2014).

[28] P. Surynek, ‘A simple approach to solving cooperative path-finding
as propositional satisfiability works well’, in PRICAI, pp. 827–833,
(2014).

[29] P. Surynek, ‘Simple direct propositional encoding of cooperative path
finding simplified yet more’, in MICAI, pp. 410–425, (2014).

[30] P. Surynek, ‘Reduced time-expansion graphs and goal decomposition
for solving cooperative path finding sub-optimally’, in IJCAI, pp. 1916–
1922, (2015).

[31] G. Wagner and H. Choset, ‘Subdimensional expansion for multirobot
path planning’, Artif. Intell., 219, 1–24, (2015).

[32] K. Wang and A. Botea, ‘MAPP: a scalable multi-agent path planning al-
gorithm with tractability and completeness guarantees’, JAIR), 42, 55–
90, (2011).

[33] J. Yu and S. LaValle, ‘Planning optimal paths for multiple robots on
graphs’, in ICRA, pp. 3612–3617, (2013).

[34] J. Yu and S. M. LaValle, ‘Structure and intractability of optimal multi-
robot path planning on graphs’, in AAAI, (2013).


