

Automated Classification of Bitmap Images Using Decision Trees

Pavel Surynek

Faculty of Mathematics and Physics Charles University in Prague Czech Republic

Graduate School of Maritime Sciences

Kobe University

Japan

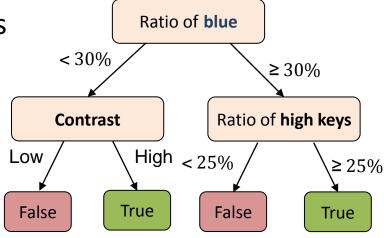
Ivana Lukšová

Faculty of Mathematics and Physics Charles University in Prague Czech Republic

Bitmap Classification

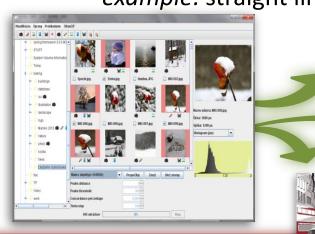
- the task is to automatically classify bitmap images into predefined classes
 - finite set of bitmap images $\mathcal J$
 - finite set of classification classes \mathcal{K}
- for each $t \in \mathcal{K}$ a **characterization** d(t) of the class t in the natural language is given (example: "image depicting landscape")
- the correct classification of the set of images $\mathcal J$ is defined with respect to a **fixed user** using a function c:
 - $c: \mathcal{J} \to 2^{\mathcal{K}}$ such that $\forall I \in \mathcal{J} \ \forall t \in c(I) \ d(t)$ characterizes I well
- we need to learn $c': \mathcal{J} \to 2^{\mathcal{K}}$ such that it gives the same answer as \boldsymbol{c} on as many as possible images
 - c is not known explicitly
 - the condition cannot be checked for all the images
 - training/testing sets are used

New Method


 the concept of decision tree is used as underlying technology

 it is crucial to propose a set of good characterizing attributes and attribute extraction techniques

different classification classes


have different important characteristics

example: straight lines are characteristic for images of buildings

successful classification of several classes of images

- photography
- drawings
- macro objects
- buildings

