

An Optimization Variant of Multi-robot Path Planning is Intractable

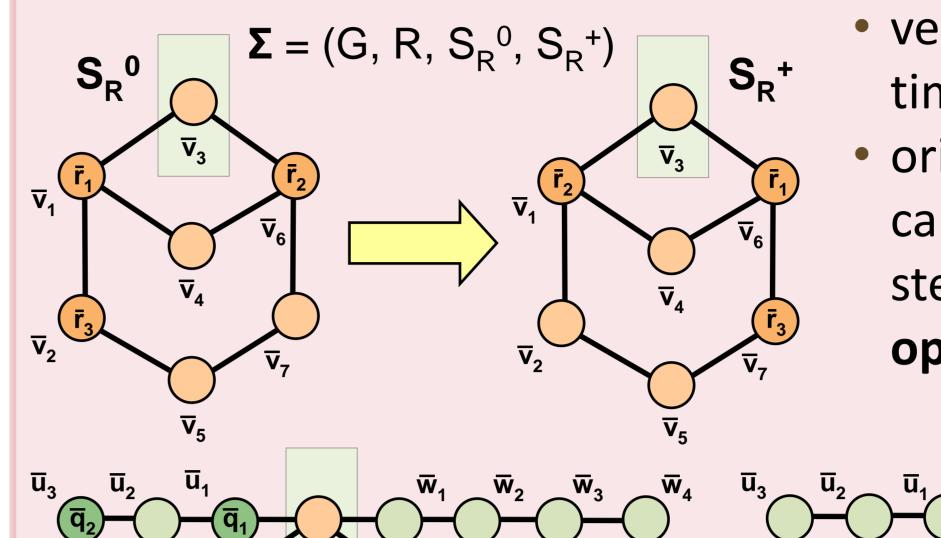
Pavel Surynek

Department of Theoretical Computer Science and Mathematical Logic Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

Problem of Multi-robot Path Planning

- Input: $\Sigma = (G, R, S_R^0, S_R^+)$
 - an undirected graph G = (V,E)
 - a set of robots $\mathbf{R} = \{\bar{r}_1, \bar{r}_2, \dots, \bar{r}_v\}$, where |V| > v
 - a uniquely invertible function S_R^0 : R \rightarrow V determining an initial arrangement of robots in vertices of G
 - another uniquely invertible function S_{R}^{+} : R \rightarrow V determining a goal arrangement of robots
- Dynamicity:
- a move into a **currently** unoccupied vertex is **allowed**

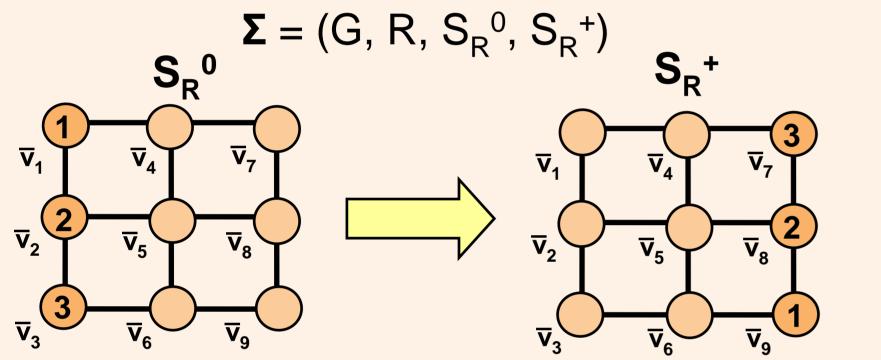
Vertex Locking Mechanism



- vertex $\overline{\mathbf{v}}_3$ will be **locked** for time steps 1 and 3
- original robots $\bar{\mathbf{r}}_1$, $\bar{\mathbf{r}}_2$, and $\bar{\mathbf{r}}_3$ cannot enter $\overline{\mathbf{v}}_{3}$ at time steps 1 and 3 in any optimal solution

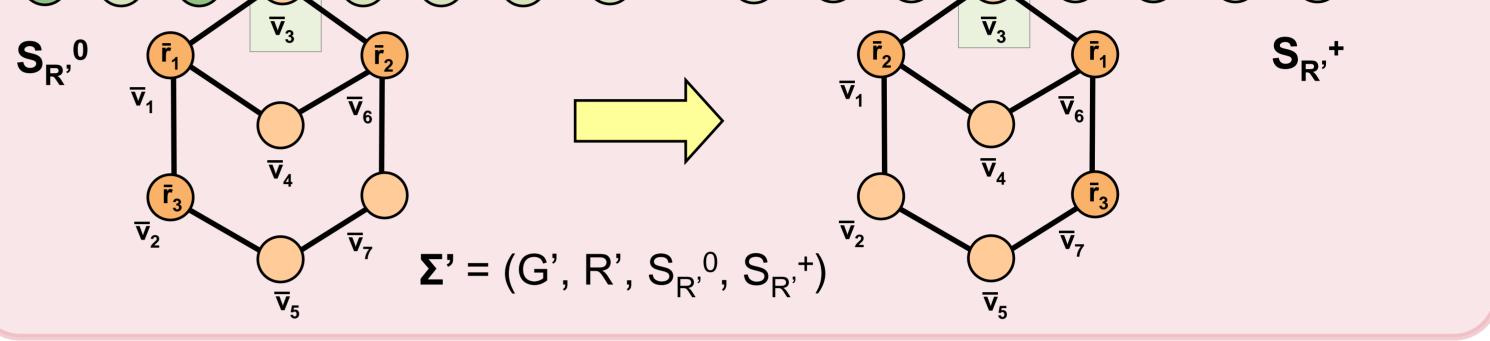
- a move into a vertex currently vacated by an allowed move is *allowed*
- **Output:** $[S_R^0, S_R^1, S_R^2, ..., S_R^{\zeta} = S_R^+]$
 - $S_{R^{i}}$: $R \rightarrow V$ is a uniquely invertible function $\forall i \in \{0, 1, ..., \zeta\}$
 - S_{R}^{i+1} is obtained from S_{R}^{i} by allowed moves $\forall i \in \{0, 1, ..., \zeta 1\}$
 - ζ is the **makespan** of the solution

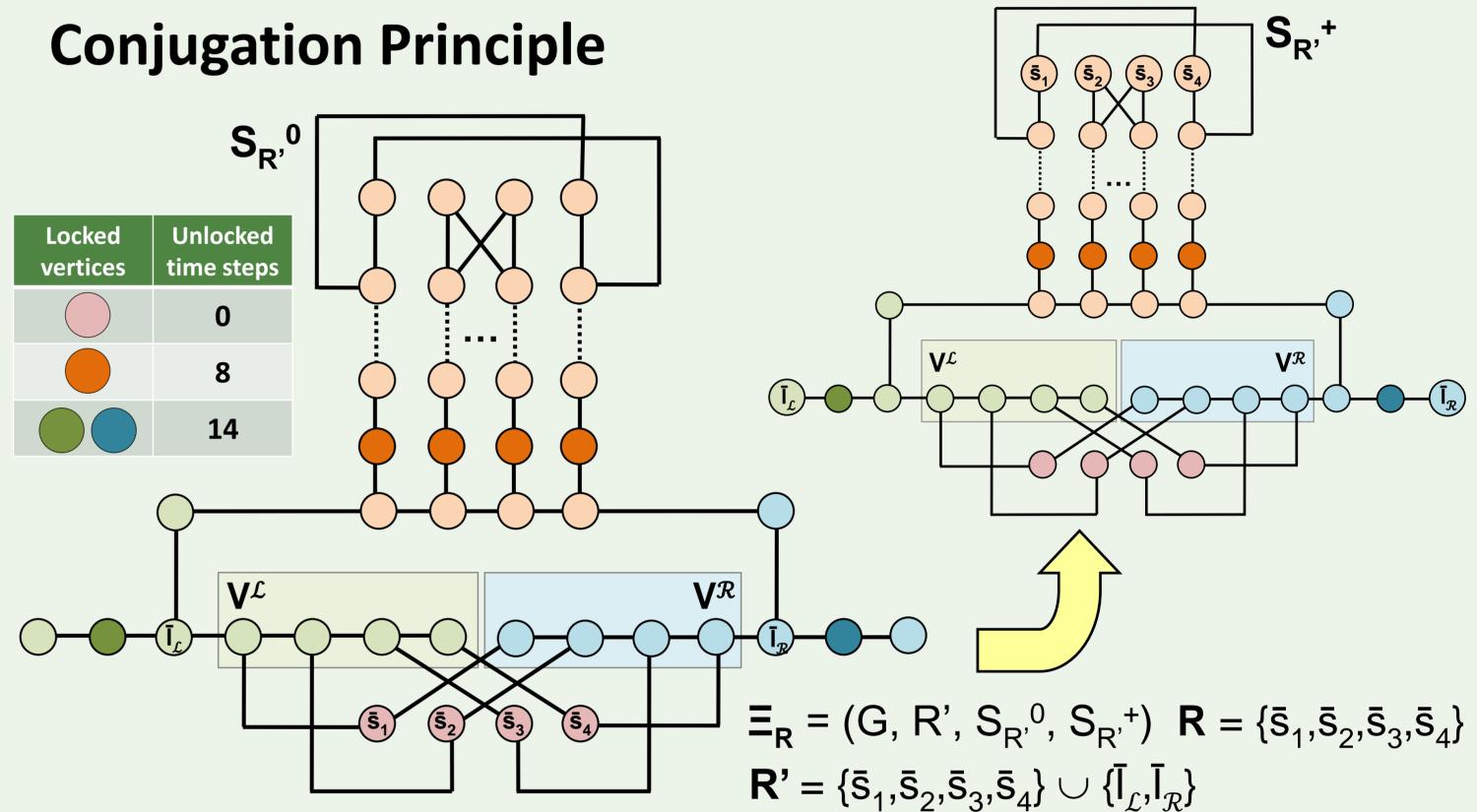
Example of Multi-robot Path Planning



Solution of an instance of <i>path planning</i> for multiple robots Σ with R = {1,2,3}						
ζ = 4						$S_R^4 = S_R^+$
	1	\overline{v}_1 \overline{v}_2 \overline{v}_3	\overline{V}_4	\overline{V}_7	\overline{V}_8	\overline{V}_9
	2	$\overline{\mathbf{V}}_{2}$	\overline{V}_1	\overline{V}_4	\overline{V}_7	\overline{V}_8
	3	\overline{V}_3	\overline{V}_2	\overline{V}_1	\overline{V}_4	$\overline{\mathbf{v}}_7$
	.	- 3	- 2		- 4	- 1

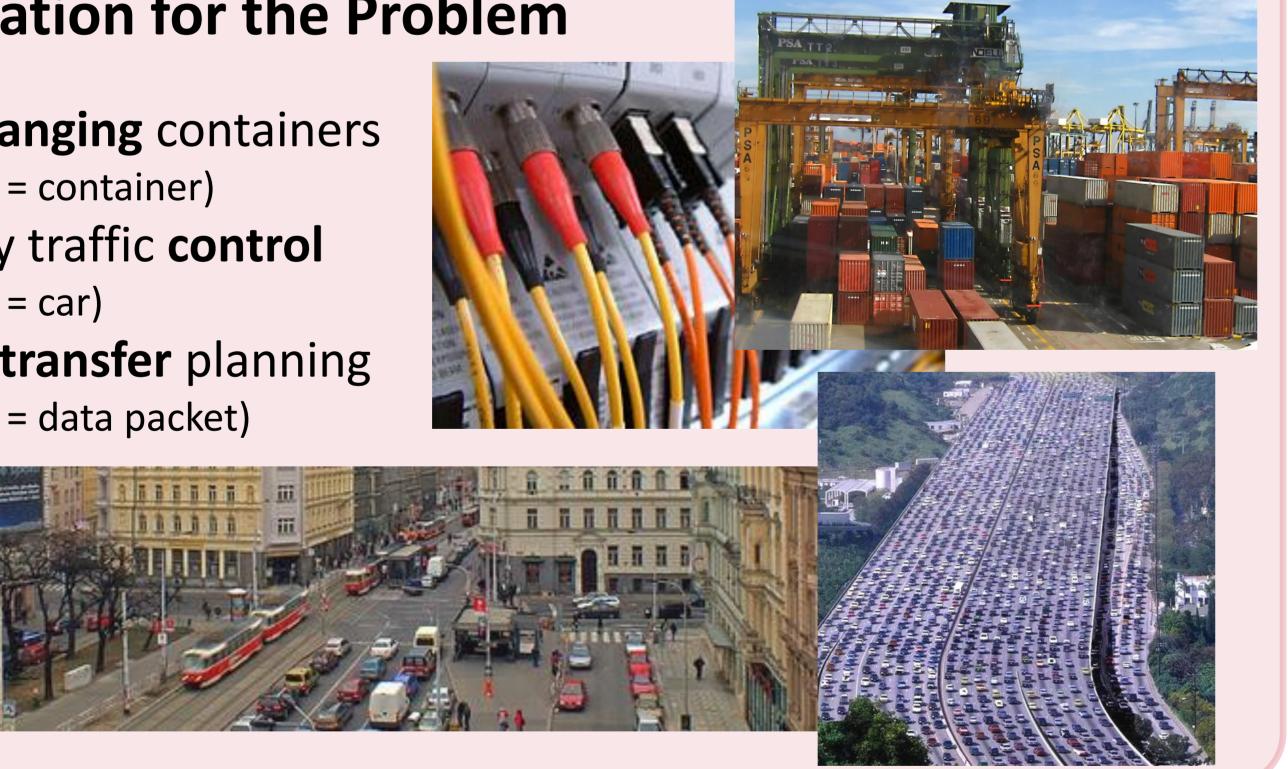
- a **solution** of the **makespan** $\zeta = 4$ is shown
- columns represent arrangements of robots in vertices at individual time steps
- rows represent sequences of moves of individual robots





Motivation for the Problem

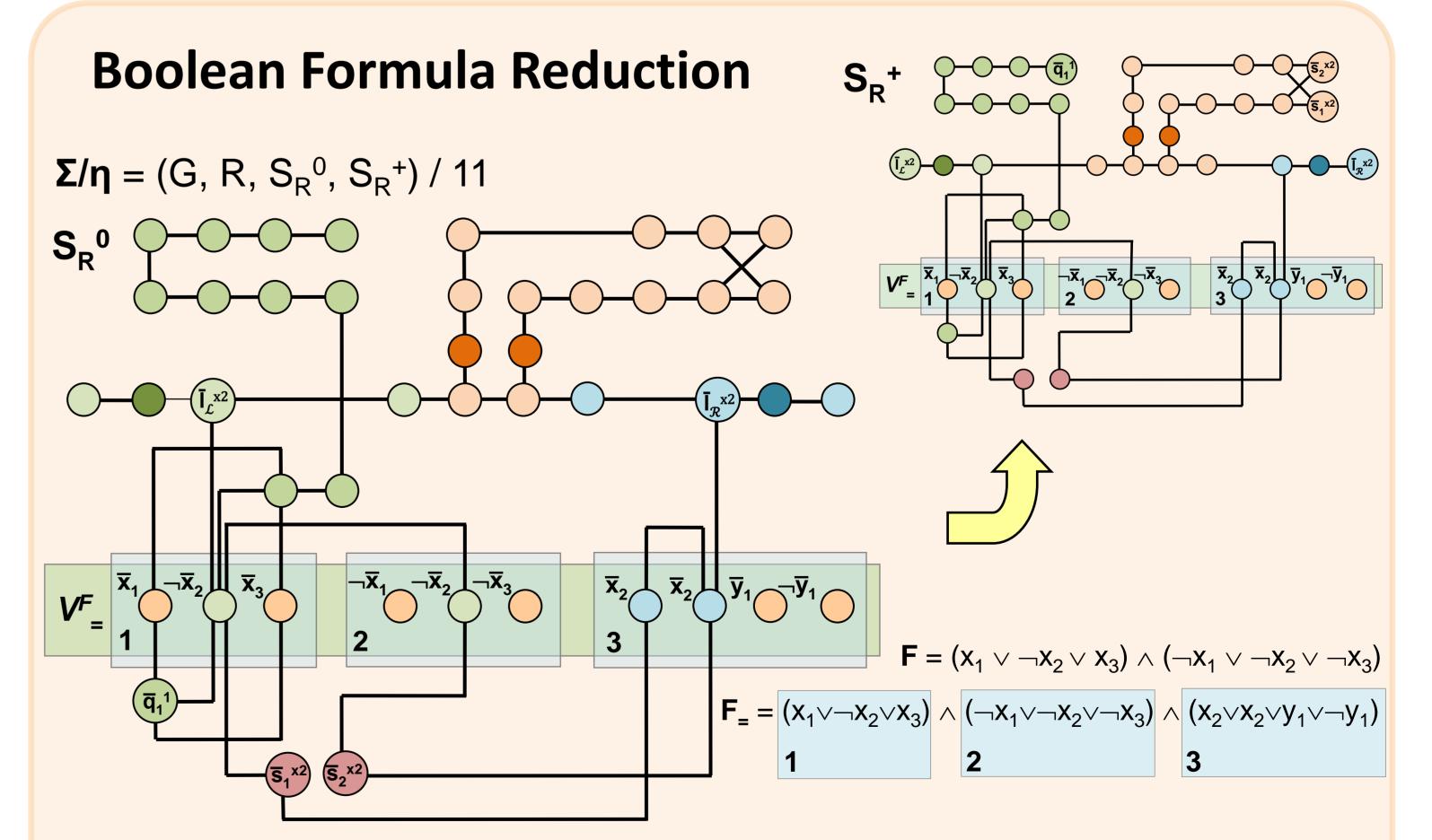
- rearranging containers (robot = container)
- heavy traffic control (robot = car)
- data transfer planning (robot = data packet)



Optimization Variant of the Problem

• The makespan of the solution must be as small as possible. • **Decision** version ... MRPP_{OPT}

- either $\mathbf{V}^{\mathcal{L}}$ or $\mathbf{V}^{\mathcal{R}}$ is visited by robots $\mathbf{\bar{s}}_1$, $\mathbf{\bar{s}}_2$, $\mathbf{\bar{s}}_3$, and $\mathbf{\bar{s}}_4$ at time step 1 in any optimal solution
- **positive** literals mapped to $V^{\mathcal{L}}$; **negative** literals mapped to $V^{\mathcal{R}}$
- conjugation principle is used to simulate **Boolean consistency** over different occurrences of the same variable



- Input: $\Sigma = (G=(V,E), R, S_R^0, S_R^+), \eta$
- Is there a **solution** to Σ of the makespan at most η ?
- Decision version of the optimization variant is **NP-complete**.
 - MRPP_{OPT} \in **NP**: a solution of the makespan O(|V|³) can be generated - polynomial upper bound of the size of a solution to guess in non-deterministic model (with oracle)
 - MRPP_{OPT} is **NP-hard**: SAT₌ polynomial-time reduced to MRPP_{OPT} • the same number of positive and negative occurrences of each variable

The Twenty-Fourth AAAI Conference on Artificial Intelligence

 each variable of F₋ is associated with a conjugation instance • vertices corresponding to literals form a set $V^{F_{-}}$ literals that correspond to vertices through which a robot goes at **time step 1** are set to FALSE (complementary are TRUE) • vertex locking mechanism is used to enforce clause satisfaction • at least one vertex of clause vertices is locked at time step 1

July 2010

Atlanta, GA, USA

