
An Optimization Variant of Multi-robot Path Planning is Intractable

Pavel Surynek
Department of Theoretical Computer Science and Mathematical Logic

Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

The Twenty-Fourth AAAI Conference on Artificial Intelligence

SR
0 Solution of an instance of path planning

for multiple robots Σ with R = {1,2,3}

Σ = (G, R, SR
0, SR

+)

v̅1

1

2

3

ζ = 4

1

2

3

R SR
0

v̅1

v̅2

v̅3

SR
1

v̅4

v̅1

v̅2

SR
2

v̅7

v̅4

v̅1

SR
3

v̅8

v̅7

v̅4

SR
4 = SR

+

v̅9

v̅8

v̅7

SR
+

v̅2

v̅3

v̅4

v̅5

v̅6

v̅7

v̅8

v̅9

v̅1

3

2

1

v̅2

v̅3

v̅4

v̅5

v̅6

v̅7

v̅8

v̅9

Example of Multi-robot Path Planning

Problem of Multi-robot Path Planning

• Input: Σ = (G, R, SR
0, SR

+)
• an undirected graph G = (V,E)
• a set of robots R = {r1̄,r2̄,…,rν̄}, where |V|> ν
• a uniquely invertible function SR

0: R  V determining an
initial arrangement of robots in vertices of G

• another uniquely invertible function SR
+: R  V determining

a goal arrangement of robots
• Dynamicity:

• a move into a currently unoccupied vertex is allowed
• a move into a vertex currently vacated by an allowed

move is allowed
• Output: [SR

0, SR
1, SR

2,…, SR
ζ = SR

+]
• SR

i: R  V is a uniquely invertible function i  {0,1,…, ζ}
• SR

i+1 is obtained from SR
i by allowed moves i  {0,1,…, ζ-1}

• ζ is the makespan of the solution

AAAI 2010 Atlanta, GA, USAJuly 2010

Optimization Variant of the Problem

• a solution of the makespan ζ = 4 is shown
• columns represent arrangements of robots in vertices at

individual time steps
• rows represent sequences of moves of individual robots

• The makespan of the solution must be as small as possible.
• Decision version … MRPPOPT

• Input: Σ = (G=(V,E), R, SR
0, SR

+), η
• Is there a solution to Σ of the makespan at most η?

• Decision version of the optimization variant is NP-complete.
• MRPPOPT  NP: a solution of the makespan O(|V|3) can be

generated - polynomial upper bound of the size of a solution to
guess in non-deterministic model (with oracle)

• MRPPOPT is NP-hard: SAT= polynomial-time reduced to MRPPOPT
• the same number of positive and negative occurrences of each variable

• rearranging containers
(robot = container)

• heavy traffic control
(robot = car)

• data transfer planning
(robot = data packet)

Motivation for the Problem

Vertex Locking Mechanism

Conjugation Principle

Σ = (G, R, SR
0, SR

+)

Σ’ = (G’, R’, SR’
0, SR’

+)

v̅1

v̅2

v̅3

v̅4

v̅5

v̅6

v̅7

r̄2r̄1

r̄3

v̅1

v̅2

v̅3

v̅4

v̅5

v̅6

v̅7

r̄2 r̄1

r̄3

SR’
0

SR
0 SR

+

SR’
+

v̅1

v̅2

v̅3

v̅4

v̅6

v̅7

r̄1 r̄2

r̄3

v̅1

v̅2

v̅3

v̅4

v̅5

v̅6

v̅7

r̄2 r̄1

r̄3

u̅3 u̅2
u̅1 w̅1 w̅2 w̅3 w̅4

q̅2 q̅1

u̅3 u̅2 u̅1
w̅1 w̅2

w̅3 w̅4

q̅1q̅2

v̅5

• vertex v̅3 will be locked for
time steps 1 and 3

• original robots r1̄, r2̄, and r3̄

cannot enter v̅3 at time
steps 1 and 3 in any
optimal solution

…

SR’
0

l̄ℒ l̄ℛ

VℛVℒ

s̄1 s̄2 s̄3 s̄4

…

SR’
+

s̄1 s̄2 s̄3 s̄4

Vℒ Vℛ

l̄ℒ l̄ℛ

ΞR = (G, R’, SR’
0, SR’

+) R = {s̄1,s̄2,s̄3,s̄4}

R’ = {s̄1,s̄2,s̄3,s̄4}  {l̄ℒ,l̄ℛ}

Locked
vertices

Unlocked
time steps

0

8

14

• either Vℒ or Vℛ is visited by robots s1̄, s2̄, s3̄, and s4̄ at time step
1 in any optimal solution

• positive literals mapped to Vℒ; negative literals mapped to Vℛ

• conjugation principle is used to simulate Boolean consistency
over different occurrences of the same variable

Boolean Formula Reduction

• each variable of F= is associated with a conjugation instance
• vertices corresponding to literals form a set VF

=

• literals that correspond to vertices through which a robot goes
at time step 1 are set to FALSE (complementary are TRUE)

• vertex locking mechanism is used to enforce clause satisfaction
• at least one vertex of clause vertices is locked at time step 1

Σ/η = (G, R, SR
0, SR

+) / 11

1 2 3

SR
0

VF
=

x̅1 x̅2 x̅3
x̅1 x̅2 x̅3 x̅2 y̅1x̅2

y̅1

q̅1
1

s̅1
x2 s̅2

x2

l̄ℒ
x2 l̄ℛ

x2

1 2 3

SR
+

VF
=

q̅1
1

s̅1
x2

s̅2
x2

l̄ℒ
x2 l̄ℛ

x2

x̅1 x̅2
x̅3 x̅1 x̅2

x̅3
x̅2 x̅2 y̅1

y̅1

F = (x1  x2  x3)  (x1  x2  x3)

1 2 3

F= = (x1x2x3)  (x1x2x3)  (x2x2y1y1)

