Compact Representations of Cooperative Path-Finding as SAT Based on Matchings in Bipartite Graphs

Pavel Surynek presented by Filip Dvořák

Faculty of Mathematics and Physics Charles University in Prague Czech Republic

ICTAI 2014, Limassol, Cyprus

ICTAI 2014

abstraction

each agent needs to relocate itself initial and goal location

Physical limitations

agents can move only

- agents must not collide with each other
- must avoid obstacles

Abstraction

- environment undirected graph G=(V,E)
 - vertices V locations in the environment
 - edges E passable region between neighboring locations

Cooperative Path-Finding (CPF)

- agents items placed in vertices
 - at most one agents per vertex
 - at least one vertex empty to allow movements

CPF Formally

- A **quadruple** (G, A, α^0 , α^+), where
 - G=(V,E) is an undirected graph
 - A = { $a_1, a_2, ..., a_\mu$ }, where $\mu < |V|$ is a set of agents
 - α^0 : A \rightarrow V is an **initial arrangement of agents**
 - uniquely invertible function
 - α^+ : A \rightarrow V is a **goal arrangement of agents**
 - uniquely invertible function
- Time is discrete time steps
- Moves/dynamicity
 - depends on the model
 - agent moves into unoccupied neighbor
 - no other agent is entering the same target
 - sometimes train-like movement is allowed
 - only the leader needs to enter unoccupied vertex

all moves at once 3 2 1

Solution to CPF

- **Solution** of (G, A, α^0 , α^+)
 - sequence of arrangements of agents
 - (i+1)-th arrangement obtained from i-th by legal moves
 - the first arrangement determined by α⁰
 - the last arrangement determined by α⁺
 - all the agents in their goal locations
- The length of solution sequence = makespan
 - optimal/sub-optimal makespan

Solution of an instance of cooperative path-finding on a graph with $A = \{1, 2, 3\}$

makespan	=7	[v ₁ , [v ₂ , [v ₃ ,	v ₄ , v ₂ , v ₃ ,	v ₇ , v ₁ , v ₃ ,	v ₈ , v ₄ , v ₂ ,	v ₉ , v ₇ , v ₁ ,	v ₉ , v ₈ , v ₄ ,	v ₉] v ₈] v ₇]
Tim	ie step:	1	2	3	4	5	6	7

Motivation for CPF

- Container rearrangement (agent = container)
- Heavy traffic

 (agent = automobile (in jam))
- Data transfer
 (agent = data packet)
- Ship avoidance (agent = ship)

CPF as **SAT**

SAT = propositional satisfiability

- a formula φ over 0/1 (false/true) variables
- Is there a valuation under which φ evaluates to 1/true?
 - NP-complete problem
- SAT solving and CPF
 - powerful SAT solvers
 - MiniSAT, clasp, glucose, glue-MiniSAT, crypto-MiniSAT, ...
 - intelligent search, learning, restarts, heuristics, ...
 - CPF \Rightarrow SAT
 - all the advanced techniques accessed almost for free
- Translation
 - given a CPF Σ=(G, A, α^0 , α^+) and a **makespan** η
 - construct a formula φ
 - satisfiable iff Σ has a solution of makespan η

 $(x \lor \neg y) \land (\neg x \lor y)$ Satisfied for x = 1, y = 1

MATCHING Encoding of CPF (1)

How to encode a question if there is a solution of makespan η?

- Build time expansion network
 - Represent arrangements of agents at steps 1,2...,η
 - step 1 ... α⁰
 - step η ... α⁺
 - Encode dynamicity of CPF
 - consecutive arrangements must be obtainable by valid moves
- Decompose encoding into **two parts** ⇒ **MATCHING Encoding**
 - (i) vertex occupancy by anonymous agents
 - occupied vertices in consecutive arrangements form a matching
 - (ii) mapping of agents to vertices
 - the same agent must be located at both ends of an edge traversed by anonymous agents

MATCHING Encoding of CPF (2)

A matching induced by movement of agents between *i*-th and (*i*+1)-th time step

MATCHING Encoding of CPF (3)

- A **series of matchings** corresponding to a solution of CPF of a given makespan
 - existence of a series of matchings is a necessary condition for existence of a solution

MATCHING Encoding of CPF (4)

- Agents are anonymous within the matching model
 - like a piece of commodity (water)
 - an agent at the beginning of a path (initial agent) may not correspond to the agent at the end (goal agent)
- Map distinguishable agents to anonymous ones (to water)
 - if an edge is selected to the matching then the same agent must be located at both ends
 - distinguishable agents follow paths found by commodity (water)

MATCHING Encoding of CPF (5)

Propositional representation

- (i) vertex occupancy by **anonymous agents**
 - a single propositional variable for occupied vertex/edge at a time step
 - used for the most of constraints regarding validity of a move
 - simple representation
- (ii) vertex occupancy by distinguishable agents
 - agent located in a vertex at a time is expressed by a **bit vector**
 - anonymous occupancy at both ends of a selected edge imply equality between agents located its vertices
 - equality between bit vectors

Encoding Size Evaluation

Comparison with **previous encodings**

INVERSE [Surynek, PRICAI 2012]

- based on bit-vectors
- comparison with domain independent SATPlan [Kautz, Selman, 1999] and SASE encoding [Huang, Chen, Zhang, 2010]
- ALL-DIFFERENT [Surynek, ICTAI 2012]
 - based on bit-vectors and all-different constraint

Setup: 4-connected grid, random initial arrangement and goal, 20% obstacles

16 time steps Grid 8×8 INVFRSF ALL-DIFFERENT MATCHING |Agents| 8 358.7 1 489.3 4 520.3 **#Variables** 1 31 327.9 7 930.4 25 881.1 #Clauses 10 019.5 7 834.5 6 181.1 4 55 437.0 34 781.9 43 171.0 11 680.3 67 088.3 7841.9 16 216 745.4 91 344.5 72 259.3 12 510.7 230 753.0 8 672.3 32 122 170.3 646 616.2 99 675.5

32 time steps

Gri /	id 16×16 Agents	INVERSE	ALL-DIFFERENT	MATCHING
1	#Variables #Clauses	71 974.0 286 764.5	11 413.6 82 011.1	38 328.2 230 572.1
	4	85 094.0 496 353.1	50 978.3 336 001.7	51 448.2 377 551.9
	16	98 214.0 803 130.0	296 355.6 1 521 163.0	64 568.2 621 720.0
32		104 774.0 1 065 304.0	847 829.1 3 545 489.0	71 128.2 852 589.4

Pavel Surynek

Runtime Evaluation

 Comparison with previous encodings + A*-based ID+OD [Standley, IJCAI 2011]

same setup as in the size evaluation

Pavel Surynek

Conclusions and Observations

CPF as SAT

- Advantages
 - search techniques
 - advanced search techniques from SAT solvers accessed
 - modularity
 - exchangeable modules SAT solver, encoding
- Disadvantages
 - energy extensive solutions
 - agents move too much

MATCHING Encoding

- space efficient
 - small number of variables and clauses
- time efficient
 - can be solved faster than previous encodings
 - SAT-based approach with MATCHING encoding outperforms A*-based approach