Mutex Reasoning in Cooperative Path Finding Modeled as Propositional Satisfiability

Pavel Surynek

Faculty of Mathematics and Physics Charles University in Prague Czech Republic

IROS 2013, Tokyo, Japan

IROS 2013

abstraction

Cooperative Path-Finding (CPF)

- Robots can move only
 - each robot needs to relocate itself
 - initial and goal location
- Physical limitations
 - robots must not collide with each other
 - must avoid obstacles

Abstraction

- environment undirected graph G=(V,E)
 - vertices V locations in the environment
 - edges E passable region between neighboring locations
- robots entities placed in vertices
 - at most one robots per vertex
 - at least one vertex empty to allow movements

CPF Formally

- A **quadruple** (G, R, α^0 , α^+), where
 - G=(V,E) is an undirected graph
 - $R = {r_1, r_2, ..., r_\mu}$, where $\mu < |V|$ is a **set of robots**
 - α^0 : R \rightarrow V is an **initial arrangement of robots**
 - uniquely invertible function
 - α^+ : R \rightarrow V is a **goal arrangement of robots**
 - uniquely invertible function
- Time is discrete time steps
- Moves/dynamicity
 - depends on the model
 - Robot moves into unoccupied neighbor
 - no other robot is entering the same target
 - sometimes train-like movement is allowed
 - only the leader needs to enter unoccupied vertex

Solution to CPF

- **Solution** of (G, R, α^0 , α^+)
 - sequence of arrangements of robots
 - (i+1)-th arrangement obtained from i-th by legal moves
 - the first arrangement determined by α⁰
 - the last arrangement determined by α⁺
 - all the robots in their goal locations
- The length of solution sequence = makespan
 - optimal/sub-optimal makespan

Motivation for CPF

- Container rearrangement (robot = container)
- Heavy traffic (robot = automobile (in jam))
- Data transfer (robot = data packet)
- Ship avoidance (robot = ship)

CPF as **SAT**

SAT = propositional satisfiability

- a formula φ over 0/1 (false/true) variables
- Is there a valuation under which φ evaluates to 1/true?
 - NP-complete problem
- SAT solving and CPF
 - powerful SAT solvers
 - MiniSAT, clasp, glucose, glue-MiniSAT, crypto-MiniSAT, ...
 - intelligent search, learning, restarts, heuristics, ...
 - CPF \Rightarrow SAT
 - all the advanced techniques employed for free
- Translation
 - given a CPF Σ=(G, R, α^0 , A⁺) and a **makespan** k
 - construct a formula φ
 - satisfiable iff Σ has a solution of makespan k

 $(x \lor \neg y) \land (\neg x \lor y)$ Satisfiable for x = 1, y = 1

Encoding CPF as IP

How to encode a question if there is a solution of makespan k

- Encode arrangements of robots at steps 1,2...,k
- **Step 1** ... α⁰
- Step k ... α⁺ / A⁺
- Integer variables modeling step i
 - A_vⁱ ∈ {0,1,2,..., μ}
 - $\mathbf{A}_{\mathbf{v}}^{i} = \mathbf{j}$ if robot \mathbf{r}_{j} is located in vertex \mathbf{v} at time step \mathbf{i} or
 - A_vⁱ = 0 if v is <u>empty</u> at time step i
 - $T_v^i \in \{0, 1, 2, ..., 2 deg(v)\}$
 - 0 < T_vⁱ ≤ deg(v) if an robot leaves v into the (T_vⁱ)-th neighbor
 - deg(v)≤ T_vⁱ ≤ 2deg(v) if an robots enters v from the ((T_vⁱ)-deg(v))-th neighbor
 - **T**_vⁱ = **0** if <u>no action</u> taken in **v**
- Don't forget constraints valid transitions between time-steps

T.,ⁱ = 5

2nd

deg(u)=4

2nd

2rd

deg(v)=4

∆th **∆**th

1 st

 $\frac{T_v^i = 3}{1^{st}}$

Encoding CPF as SAT

Integer variables

- replace with bit vectors
- for example $\mathbf{A}_{\mathbf{v}}^{i} \in \{0, 1, 2, \dots, \mu\}$
 - replaced with [log₂(μ+1)] propositional variables
 - extra states are forbidden

Compact representation

- smaller than in SAT-based domain-independent planners
- knowledge compilation distance heuristic, mutex reasoning

A 4-connected grid 8×8	Makespan	SATPLAN encoding		SASE encoding		INVERSE encoding	
		Variables	Clauses	Variables	Clauses	Variables	Clauses
4	8	5.864	55.330	11.386	53.143	5.400	38.800
8	8	10.022	165.660	19.097	105.724	5.920	48.224
12	8	14.471	356.410	26.857	168.875	5.920	46.176
16	10	30.157	1.169.198	51.662	372.140	8.122	76.192
24	10	43.451	2.473.813	73.101	588.886	8.122	71.072
32	14	99.398	8.530.312	157.083	1.385.010	12.396	137.120

Knowledge Compilation

Heuristics directly built-in into the encoding

- distance heuristic
 - locations unreachable in a given time are forbidden
 - search space reduced
- mutex reasoning
 - robots are treated pair-wise
 - computationally difficult

Pavel Surynek

IROS 2013

Experimental Evaluation

Experimental setup

- 4-connected grids of size 4×4 to 8×8
- random initial and goal arrangement
- 20% of cells obstacles
- with and without knowledge compilation

Conclusions and Observations

Advantages

- search techniques
 - advanced search techniques from SAT solvers employed (almost) for free
- modularity
 - exchangeable modules SAT solver, encoding
- parallelism
 - knowledge compilation can be done in parallel
- Disadvantages
 - energy extensive solutions
 - robots move too much
 - size of encoded instances
 - large graphs
 - many time steps