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Abstract.
1
A parallel version of the problem of cooperative path-finding (pCPF) is introduced in 

this paper. The task in CPF is to determine a spatio-temporal plan for each member of a group of 

agents. Each agent is given its initial location in the environment and its task is to reach the giv-

en goal location. Agents must avoid obstacles and must not collide with one another. The envi-

ronment where agents are moving is modeled as an undirected graph. Agents are placed in verti-

ces and they move along edges. At most one agent is placed in each vertex and at least one ver-

tex remains unoccupied.  

 An agent can only move into a currently unoccupied vertex in the standard version of CPF. In 

the parallel version, an agent can also move into a vertex being currently vacated by another 

agent supposing the character of this movement is not cyclic. 

 The optimal pCPF where the task is to find the smallest possible solution of the makespan is 

particularly studied. The main contribution of this paper is the proof of NP-completeness of the 

decision version of the optimal pCPF. A reduction of propositional satisfiability (SAT) to the 

problem is used in the proof. 

Keywords: cooperative path-finding (CPF), parallelism, multi-agent, sliding puzzle, 

(N
2
-1)-puzzle, N×N-puzzle, 15-puzzle, domain dependent planning, complexity, 

NP-completeness 

1. Introduction and Motivation 

This paper addresses the problem of cooperative path-finding (CPF) [17, 18, 22] and its parallel 

version. Consider a group of mobile agents that are moving in some environment (for example 

in the 2-dimensional plane with obstacles). Each agent in the group is given an initial and a goal 

location. The question of interest is to determine a sequence of moves for each agent such that 

all the agents reach their goal locations, supposing they started from the given initial ones, by 

following this sequence. Physical limitations must be observed: agents must not collide with 

one another and they must avoid obstacles. 

The CPF problem is motivated by many practical tasks. Various problems regarding the 

navigation of a group of mobile agents can be formulated as CPF. However, the problem’s pri-
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mary motivation is the need to solve tasks of relocating certain entities (autonomous or centrally 

controlled) within an environment with a limited free space. Hence, the problem is not limited 

to cases where agents are actually represented by mobile agents. Such real-life examples include 

rearranging of stored items in automated storages (an agent is represented by a movable pile 

with stored items – see Figure 1) or coordination of vehicles in dense traffic (agent = vehicle). 

Moreover, the reasoning about rearrangement/coordination tasks should not be limited to physi-

cal entities. An agent may be represented by a virtual entity or by a piece of commodity as well. 

Thus, many tasks such as the planning of a data transfer between communication nodes with 

limited storage capacity (agent = data packet), commodity transportation in the commodity 

transportation network (agent = certain amount of com-

modity), or even the motion planning of large groups of 

virtual agents in the computer-generated imagery can be 

expressed as an instance of CPF. 

A parallel version of CPF (pCPF) is suggested in this 

paper and its computational complexity is studied. The 

standard CPF is usually formulated on an undirected 

graph that models the environment. The vertices of the 

graph represent locations and edges represent passable 

regions. Agents are placed in the graph’s vertices and 

they are allowed to move into a neighboring vertex if it is 

currently unoccupied. The parallel version of CPF is 

more relaxed – an agent is also allowed to enter a vertex 

that is simultaneously vacated by another agent sup-

posed that agents do not perform a cyclic movement (a 

cyclic movement includes a rotation along a cycle but 

also the swapping of a pair of agents along a single 

edge). In other words, there must exist an agent entering 

an unoccupied vertex, leading this simultaneous move-

ment. 

An abstract instance for a given specific real-life co-

operative path-finding situation can be modeled in a va-

riety of ways. For instance, it is necessary to sample lo-

cations in the original environment in order to make the 

abstract instance as precise as needed. Nevertheless, the-

se issues fall outside the scope of this work. 

The main contribution of this paper is the proof of 

NP-completeness of the optimal pCPF. This result was 

already noted in a short conference paper [26]. However, 

the paper was too short to cover the proof. In the present 

paper, the proof is presented with all the details, includ-

ing the rigorous treatment and illustrations. 

In the context of CPF, works on the problems of mo-

tion planning over graphs must be mentioned [13, 14, 15, 16, 37] since they are closely related. 

Namely, the so-called pebble motion on graphs (PMG), of which the most widely known repre-

sentative is the 15-puzzle [13, 15, 16, 37], in fact, represents the standard (non-parallel) CPF. 

Many theoretical results have been obtained for PMG – it is known that the problem can be 
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Floor plan of a small 
automated storage 

Abstraction of the floor 
plan as an undirected 

graph 

Figure 1. An illustration of a real-

scenario modeling of the environment by 

an undirected graph. The scenario consists 

of a small automated storage with movable 

piles of stored items (labeled   to   and   

to  ). Each pile can be moved left/right/ 

forward/backward. Items in piles are 

accessible from the passage – to access 

piles  -  or  -  the storage needs to be 

rearranged. The environment is modeled 

as a grid of the size    , which is a bi-

connected graph. 
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solved in a polynomial time (in         for         modeling the environment) with the 

solution consisting of a polynomial number of moves (again         moves) [13, 37]. Moreo-

ver, the decision version of the optimal PMG (that is, a yes/no question if a solution of a given 

length/makespan exists) is known to be NP-complete [15, 16]. This result has been shown for a 

generalized variant of the 15-puzzle that is also known as the       -puzzle. Hence, the ques-

tion naturally arises whether the situation changes in the case of pCPF. The present paper pro-

vides an answer. 

The paper is organized as follows: a formal definition of PMG is recalled and a definition of 

pCPF is given in Section 2 (3). Some basic properties of both the problems and their corre-

spondence are also discussed in this section. Section 3 (7) represents the core part of the paper – 

a description of several techniques for polynomial transformation of propositional satisfiability 

to pCPF. The last section – Section 4 (26) – contains an overview of related works, and the con-

clusion. 

2. Pebble Motion on a Graph and Cooperative Path-finding 

The problems of pebble motion on a graph (PMG) and parallel cooperative path-finding 

(pCPF) are formally defined in this section. As has been mentioned, non-parallel CPF and PMG 

are used to denote the same concept by many authors [13, 20, 37]. The PMG/CPF problem has 

been already studied in the literature and many theoretical results have been obtained for this 

problem. The parallel version of CPF represents a relaxation of PMG/CPF with respect to the 

dynamic character of the movements.  

Consider an environment in which a group of mobile agents is moving. The agents are all 

identical (that is, they are all of the same size and have the same moving abilities). Each agent 

starts at a given initial location and it needs to reach a given goal location. Both problems con-

sist in finding a spatial-temporal path for each agent so that it can reach its goal by following 

this path. Agents must not collide with one another and they must avoid obstacles in the envi-

ronment. 

An abstraction common in the literature related to PMG/CPF is adopted regarding the model 

of the environment [18, 20]. The environment containing obstacles, in which the agents are 

moving, is modeled as an undirected graph. Vertices of this graph represent locations in the 

environment and the edges model a passable way from one location to the neighboring location. 

The time is discrete – each agent is located in a vertex at each time step. The motion of an agent 

is an instantaneous event. If the agent is placed in a vertex at a given time step then the result of 

the motion is a situation where the agent is placed in the neighboring vertex at the following 

time step. 

2.1. Formal Definitions of Motion Problems 

The notion of pebble motion on a graph – PMG (also called the pebble motion puzzle, sliding 

box puzzle; special variants are known as the 15-puzzle and       -puzzle) [13, 16, 37] and 

the related problems of cooperative path-finding – CPF (also known as multi-agent path-

finding) [20, 25, 32] are described in the following definition. 
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Definition 1 (pebble motion on a graph– PMG). Let         be an undirected graph and let 

                   where      , be a set of pebbles. The initial arrangement and the goal 

arrangement of pebbles in   are defined by two uniquely invertible functions   
      (that 

is   
       

     for every       with    ) and   
       respectively. In the pebble 

motion on a graph (PMG) problem, the task is to find a number   and a sequence of pebble 

arrangements       
    

      
 
  such that the following conditions hold (the sequence repre-

sents arrangements of pebbles at each time step – the time step is indicated by the upper index): 

(i)   
      is a uniquely invertible function for every          ; 

(ii)   
 
   

  (that is, all the pebbles eventually reach their destination vertices); 

(iii) either   
       

       or    
       

          for every     and           

  (that is, a pebble either stays in a vertex or moves along an edge); 

(iv) if   
       

       (that is, the pebble   moves between time steps   and    ) then 

  
       

            with     must hold for every     and             

(that is, a pebble can move into a currently unoccupied vertex only). 

The instance of PMG is formally a quadruple          
    

  . A solution to the instance 

  will be denoted as          
    

      
 
 . □ 

 

 
 

Figure 2. An illustration of the problem of pebble motion on a graph (PMG) and parallel cooperative 

path-finding (pCPF). Both problems are illustrated on the same graph with the same initial and goal 

locations. The task is to move pebbles/agents from their initial locations specified by   
    

  to their goal 

locations specified by   
    

 . The solution of makespan 6 (   ) is shown for PMG and the solution of 

makespan 4 (   ) is shown for pCPF. Note the differences in parallelism between these two solutions – 

pCPF allows a higher number of moves to be performed in parallel. 

 

The notation in the form of a line above the symbol is used to distinguish a constant from a 

variable (for example,     is a variable while     is a constant; sometimes a constant parame-

terized by a variable or by an expression will be used – for example,     denotes a constant pa-

rameterized by the index    ; parameterization by an expression will be clear from the con-

text). 

When speaking about a move at time step  , the time step of commencing the move is re-

ferred to (the move is performed between time steps   and    ). 

A parallel version of CPF derives from a relaxation of PMG/CPF. The requirement that the 

target vertex of a pebble/agent must be vacated in the previous time step is relaxed. Thus, the 

move of an agent entering the target vertex, which is simultaneously vacated by another agent 
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and no other agent is trying to enter the same target vertex, is allowed in the parallel version of 

CPF. However, there must be some leading agent initiating such a chain of moves by moving 

into an unoccupied vertex (that is, agents can move like a train with the leading agent in front), 

which is not entered by any other agent at the same time step. These requirements rule out the 

rotation of agents along a cycle with no vacant position as well as the swapping of a pair of 

agents along an edge. The problem is formalized in the following definition. 

 

Definition 2 (parallel cooperative path-finding – pCPF). Again, let         be an undi-

rected graph. A set of agents                    where       is given instead of a set of 

pebbles. Similarly, the graph models the environment where the agents are moving. The initial 

arrangement and the goal arrangement of agents are defined by two uniquely invertible func-

tions   
      (that is,   

       
     for every       with    ) and   

       re-

spectively. The problem of parallel cooperative path-finding (pCPF) then consists in the need 

to solve the task of finding a number   and a sequence of agent arrangements    

   
    

      
 
  for which the following conditions hold: 

(i)   
      is a valid arrangement for every           (that is, uniquely invertible); 

(ii)   
 
   

  (that is, all the agents eventually reach their destinations); 

(iii) either   
       

       or    
       

          for every     and           

  (that is, an agent either stays in a vertex or moves into the neighboring vertex); 

(iv) if   
       

       (that is, the agent   moves between time steps   and    ) then 

there must exist a sequence of distinct agents                with      such that 

  
       

             with      (   moves to a vertex that is unoccupied at 

time step  ;    is the leading agent in the chain of agents which includes the sequence 

as its part) and   
          

        for             (agents                

follow the leader like a chain; they move all at once between time steps   and    ). 

The instance of pCPF is formally a quadruple          
    

  . The solution to the in-

stance   will be denoted as          
    

      
 
 . □ 

 

The only conceptual difference between the definition of PMG/CPF and that of pCPF con-

sists in point (iv). The remaining differences are attributable to different names of functions 

representing arrangements of agents. 

The numbers   and   are called the makespan of the solution of PMG/CPF and pCPF, re-

spectively. The makespan needs to be distinguished from the size of the solution, which is the 

total number of moves performed by pebbles/agents. The makespan is typically smaller than the 

size of the solution. In case of the PMG/CPF with just a single unoccupied vertex, the makespan 

and the size of the solution are the same. 

Examples of instances of PMG/CPF and pCPF and their solutions are shown in Figure 2. 

2.2. Known Properties of Motion Problems and Related Questions 

Note that a solution of an instance of PMG/CPF as well as a solution of an instance of pCPF 

allows a pebble/agent to stay in a vertex for more than a single time step. It is also possible that 

a pebble/agent visits the same vertex several times within the solution. Hence, a sequence of 

moves for a single pebble/agent does not necessarily form a simple path in the given input graph 

(if the trajectory of the agent is to be modeled by a simple path, a time expanded graph with a 
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copy of the input graph for every time step may need to be considered; a path in the time-

expanded graph is always simple as it connects vertices in consecutive time steps only). 

 Note further that both these problems intrinsically allow parallel movements of peb-

bles/agents. That is, more than one pebble/agent can perform a move at a single time step. How-

ever, pCPF allows higher parallelism due to its weaker requirements on movements (the target 

vertex is required to be unoccupied only for the leading agent in the current time step – see Fig-

ure 2). More than one unoccupied vertex is necessary to obtain parallelism in PMG/CPF. On the 

other hand, it is sufficient to have a single unoccupied vertex to obtain parallelism in pCPF 

(consider, for example, agents moving along a cycle with one vacant position). 

There is an easy way to prove a correspondence between the PMG/CPF and the pCPF solu-

tion, as summarized in the following proposition. It states that the solution of an instance of 

PMG/CPF can be used as a solution to the corresponding instance of pCPF, which has the same 

graph, the same set of agents, and the same initial and goal arrangements. 

 

Proposition 1 (problem correspondence). Let          
    

   be an instance of PMG/CPF 

and let          
    

      
 
  be its solution. Then             is a solution of the in-

stance pCPF          
    

   (that is, the instance of pCPF on the same graph has the set of 

agents represented by the set of pebbles and the initial/goal locations of agents are the same as 

those of the pebbles).  

 

There is a variety of modifications of PMG/CPF and pCPF. A natural additional requirement 

is to produce solutions with the shortest possible makespan (that is, the numbers   or  , re-

spectively, are required to be as small as possible). Unfortunately, this requirement makes the 

problem of PMG/CPF intractable. It was shown in [15, 16] that producing an optimal 

makespan solution to the special case of PMG/CPF known as    -puzzle (or       -

puzzle), which takes place on a 4-connected grid of the     size with one vacant position, is 

  -hard. Hence, PMG/CPF on a general graph with an arbitrary set of pebbles/agents is 

  -hard as well. 

However, no similar conclusion regarding the complexity of the optimal pCPF can simply be 

drawn based on the above facts. The situation here is complicated due to the inherent parallel-

ism, which may affect the makespan in an unforeseen way. The proof constructions used for the 

   -puzzle in [15, 16] thus no longer apply for pCPF. 

Observe further that difficult cases of the problem of PMG/CPF have a single unoccupied 

vertex. This fact may raise a question of how the situation changes when there are more than 

one unoccupied vertices. Intuition suggests that more unoccupied vertices may simplify the 

problem. Unfortunately, this is not the case. PMG/CPF on a general graph with the fixed num-

ber of unoccupied vertices is still   -hard since multiple copies of the    -puzzle from [15, 

16] can be used to add as many unoccupied vertices as needed (note that the resulting graph 

may be disconnected). 

The situation is much easier without the requirement of the optimality of the solution 

makespan; PMG/CPF is in the P class, as shown in [13, 37]. Due to Proposition 1, pCPF is also 

in the P class. It has also been shown in [13] that a solution of the size of         can be gener-

ated for any solvable PMG/CPF instance                
    

  . Hence, it provides a pol-

ynomial upper bound on the size of the content of the oracle to guess the solution in a non-

deterministic model. Thus, it is possible to conclude that the decision version of optimal 
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PMG/CPF is an NP-complete problem. The decision version here means the yes/no question as 

to whether there is a solution of   of the makespan smaller than the given bound. 
It seems that PMG/CPF and pCPF problems have already been resolved except for the case 

of the complexity of the optimal pCPF. However, there is another issue worth studying. Con-

structions proving the membership of the problem of PMG/CPF into the P class used in [13, 37] 

generate solutions that are too long for practical use. As the makespan of the solution is of great 

importance in practice, this property makes these methods unsuitable when dealing with a real-

life motion problem abstracted as PMG/CPF or pCPF [23, 24, 25]. Hence, alternative solution 

methods that generate shorter, yet sub-optimal, solutions are also of interest [22, 23, 24, 25, 28]. 

3. The Intractability of Optimal Cooperative Path-Finding 

The main result presented in this section is that the optimal pCPF is intractable. In particular, it 

is shown to be NP-hard and the corresponding decision version to be NP-complete. The proof 

technique was partially inspired by Even’s et al. [6] proof of NP-completeness of the two-

commodity integral flow problem [1]. Similarly as in [6], we reduce propositional satisfiability 

(SAT) [1, 8, 12] to optimal pCPF to show its NP-hardness. The reduction is quite complex and 

requires a thorough technical preparation, as elaborated in the following sections. On the other 

hand, proving the membership of optimal pCPF to NP is relatively easy. 

3.1. Overview of the Reduction of SAT to Optimal pCPF 

As the reduction of SAT to optimal pCPF is technically complicated, a brief overview is provid-

ed at this point to improve the readability of the technical description. 

 The top-level idea of the reduction is that the movement of agents will simulate valuation of 

the given propositional formula. Thus, we need to construct an instance of pCPF for the given 

propositional formula so that there are two options of going through a certain location in the 

graph that correspond to every propositional variable. If agents go through one of these two 

options, the corresponding propositional variable should be valuated accordingly as either 

     or      . The question is how to construct the pCPF instance where movements of 

agents in any optimal solution simulate a valuation of the formula. Two fundamental properties 

are implicitly present when the propositional formula is valuated. Both of them need to be simu-

lated explicitly when the formula is reduced to an instance of pCPF. 

 The first property is the so-called propositional consistency, which means that all the posi-

tive and all the negative occurrences of the same variable in the input formula have the same 

propositional value, respectively. The second property is the fact that all the clauses of the 

propositional formula in CNF [12] need to be satisfied in order to satisfy the entire formula. 

This characteristic will be called clause satisfaction. 

 The following section is devoted to techniques for controlling movements of agents over the 

graph in optimal solutions of pCPF. The so-called vertex locking mechanism is developed to 

force agents to move or prevent them from moving into some vertices of the graph. Movements 

of agents need to be controlled to allow a simulation of propositional consistency and clause 

satisfaction in pCPF eventually, which is elaborated in subsequent sections. The mechanism of 

the so-called conjugation is developed to keep a group of moving agents together in order to 

simulate propositional consistency properly – the group must not be divided between positive 

and negative optional pass ways, which simulates that all the occurrences of a given variable are 
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assigned the same truth-value. All the movement-control techniques are finally put together to 

simulate the identification of a satisfying valuation of the given propositional formula by find-

ing an optimal makespan solution to the constructed instance of pCPF. 

 If not interested in the technical details of vertex locking, please skip to Section 3.3 (17). 

3.2.  Vertex Locking Techniques for Controlling Agent Movements 

A technique to prevent agents from entering a given vertex at a given set of time steps will be 

shown in this section. This is a crucial skill used later to force agents to move in a required way 

in optimal solutions in order to simulate proper compliance with the propositional formula. For 

the sake of understanding the suggested concepts, the explanation is followed by a scheme 

where a simple vertex locking technique is gradually augmented to eventually obtain a tech-

nique that will actually be used in the reduction. 

 The vertex locking technique can be applied on an arbitrary instance of pCPF. The result of 

the application of the technique on the instance is that agents cannot enter a selected vertex at 

the selected time steps in any optimal solution (the shortest possible makespan of the solution is 

required). The augmentation of the problem consists in adding new vertices, edges, and agents 

into the instance. The selection of time steps at which the vertex will not be allowed entry by the 

original agents is modeled by an appropriate setting of the initial and goal locations of the newly 

added agents. The whole construction is formalized in the following lemma and its proof. 

 

Lemma 1 (vertex locking augmentation). Assume the following preconditions: 

(a) Let                
    

   be an instance of pCPF and let     with   
       

     be the so-called locked vertex. 

(b) Next, let                 where       (natural numbers including  ) for   

        and             be a set of so called lock time steps. 

Then there exists an instance of pCPF                      
     

   such that         

and it never happens that an agent     enters the vertex   at any time step     in any op-

timal solution    
      (entering the vertex   at time step   means that an agent is located in   at 

time step  ).  

 

The notation      stands for a restriction of the pCPF problem on the set of vertices  . That 

is, if                      
     

   and     , then             
         

       

  , where 

                         ,               
          

       ,    
      

      

with    
          

            , and    
      

      with    
          

            . In 

other words, each component of the description of the instance is naturally restricted on a small-

er set of vertices. The lemma states that the augmented instance    after restriction on the origi-

nal set of vertices is the same as the original instance  . 

 

Proof. Let    be the makespan of any optimal solution of the pCPF instance   (note that the 

number    is difficult to compute, as shown later; but assume that it is currently known). 

An augmentation of the graph         will be shown first. The set of vertices   is ex-

tended with a set of new vertices                                     , where         

  . The new vertices are connected around the locked vertex   in the following way. A set of 
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edges                  ,                ,             ,        ,        ,          ,          ,  , 

             is added to the graph with the extended set of vertices. Thus, the augmented graph 

is              
       . 

The idea behind the construction of the augmented graph is that new agents are initially 

placed in new vertices     for     with     or a new agent is placed in   if    . Then the 

newly added agents are forced to move straight ahead into the vertices               through 

the vertex  . Agents are forced to move in this way as a result of the requirement on the opti-

mality of the solution. That is if agents do not move in the above-suggested way, they cannot 

manage to reach their destinations in time. The motion of new agents through the vertex   

makes an obstruction in this vertex exactly at the selected time steps given by lock time steps  . 

 

 
 

Figure 3. An illustration of vertex locking augmentation in an instance of the pCPF problem. Assume 

that we want to prevent the agents    ,    , and     from entering the vertex     at time steps 1 and 3 in any 

optimal solution. The original instance   with the set of agents                 is shown in the upper part 

of the figure. The makespan of any optimal solution of   is     . The augmented instance    is in the 

lower part of the figure. New vertices    ,    ,    ,    ,    ,    , and     and new agents     and     were add-

ed. The makespan of any optimal solution of the augmented problem is               
               and it never happens that any of the original agents    ,    , and     enters     at 

time step 1 or 3 in any optimal solution (    is occupied by     at time step 1 and by     at time step 3). 

 

A formal description of the above idea follows. The set of agents is extended with a set of 

new agents                   ; that is,        . The initial and goal arrangements of new 

agents are spread around the locked vertex   in the newly added vertices:    
            if      

and    
         if      for          ;    

                 if           and    
       

  if           for          . For the original agents, the initial and the goal arrange-

ments remain the same; that is,    
       

     and    
       

         . 

At this point, it is necessary to show that it never happens that an agent     enters the ver-

tex   at any time step     within the optimal solution    
     . Any optimal solution of the 
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pCPF instance    has the makespan of     . Moreover, any solution 

   
          

     
     

  
      of the optimal makespan of the instance    must satisfy that 

   
           ,    

             ,    
             , …,  

  
             ,  

  
         ,  

  
          

   ,  
  
             ,…,  

  
                       

       for          . This is ensured by 

the fact that the shortest path from    
       to    

       in    has the length of      and it con-

sists of vertices                                                  . Hence, no shorter solution in 

terms of the makespan exists. 

However, it remains to show that the original agents from   manage to reach their destina-

tions within the makespan of     . This claim follows from the equality           , i.e. 

that for at least    time steps the vertex   is not obstructed by any motion of newly added agents 

supposing they are moving straight towards their destinations. In any optimal solution of the 

original instance, it is sufficient to enter   at most    times (note that none of the original agents 

need to occupy   at the beginning). Thus, any optimal solution of the original instance can be 

simulated in the augmented instance while the moves of the original agents are stopped at the 

time steps during which   is obstructed. Hence, the makespan of any optimal solution of    is 

exactly     . 

It has been shown that the vertex   is obstructed at every time step     in any optimal so-

lution. Hence, no original agent can enter   at any time step    .  

 

The situation from Lemma 1 is illustrated in Figure 3. Note that it is not difficult to extend 

the construction from the proof of Lemma 1 on multiple vertices that will be locked at selected 

time steps (different sets of time steps for locking can be used for different vertices). Another 

useful property of the augmented problem is summarized in the following corollary. 

 

Corollary 1 (makespan preserving vertex locking). Assume preconditions (a) and (b) together 

with the following preconditions: 

(c) There exists a solution       of the instance                
    

   of the 

makespan  , where     . 

(d) Let     be a locked vertex entered by an agent within       at time steps   

             where       for           and            and it holds that 

     . 

Then there exists an instance                      
     

   such that         and it nev-

er happens that an agent     enters the vertex   at any time step     within any optimal 

solution    
     ; moreover the makespan of any optimal solution of    is again  .  

 

Proof. The construction of    is almost the same as in the proof of Lemma 1, only the parameter 

  is now set to     . Then, the construction ensures the makespan of   of any optimal solution 

of   . 

The makespan is at least   since the newly added agents must go along the newly added path 

towards its end, which cannot be carried out in a smaller makespan. On the other hand, there 

exists a solution of the makespan   of the augmented instance   . The vertex   needs to be oc-

cupied only at time steps            by the newly added agents that do not interfere with the 

time steps at which the vertex   is entered within the solution       by the original agents (this 
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is due to      ). Altogether, the makespan of any optimal solution of an augmented in-

stance    is  .  

 

Lemma 1 as well as Corollary 1 can be generalized for locking a given number of vertices of 

a selected subset of vertices     at a selected set of time steps  . Nevertheless, only a spe-

cial variant of this generalization, where just one vertex of   is to be locked at selected time 

steps, will actually be used in further reasoning. To be more precise, at least one vertex in   is 

required not to be occupied by an agent from the original set of agents at any time step    . It 

can be regarded as a kind of disjunctive locking where the set considered in disjunction is  . 

An analogous extension to Corollary 1 that preserves makespan additionally assumes the exist-

ence of a solution of the original instance where at least one vertex of   is unoccupied at any 

time step    . These statements, which are merely a technical extension of Lemma 1 and Cor-

ollary 1, are formalized as Lemma 2 and Corollary 2. 

 

 
 

Figure 4. An illustration of a vertex set locking augmentation in an instance of the pCPF problem. As-

sume that we want at least one vertex of the set                 not to be occupied by any of the original 

agents    ,    , and     at time steps 1 and 3 in any optimal solution. The original instance   with the set of 

agents                 is taken from Figure 3. The augmentation is made by adding a new path consist-

ing of vertices        ,    ,    ,    ,    , and     around the set   and by adding new agents     and    . The 

makespan of any optimal solution of the augmented instance    is                . At least 

one vertex of   is occupied by     at time step 1 and by     at time step 3 in any optimal solution. Hence, 

it never happens that all the vertices of   are occupied by agents          and     at time step 1 or 3 within 

the optimal solution. 

 

Lemma 2 (set locking augmentation). Let the following preconditions hold: 

(aa)                
    

   be an instance of pCPF and     with   
       

     be the so-called set of locked vertices. 

(bb) Next, let               , where       (natural numbers including  ) for   

       , and            be a set of lock time steps. 

Then there exists an instance of the problem of pCPF                      
     

   such 

that         and it never happens that all the vertices of the set   are occupied by agents 

          
        
                

     

                  

                            

             
     

      
  

    

W 
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from the set   at any time step     within any optimal solution         (that is, at least one 

vertex from   is not occupied by an agent from   at any time step    ).  

 

Proof. The instance   is augmented in a way that a new agent is forced to visit exactly one ver-

tex of the set   at each time step    . The technique is almost the same as in the case of 

Lemma 1. A path of new vertices is added around the set of locked vertices. The path branches 

into all the vertices of   at both connection points. Formally, the augmentation is as follows. 

Let    be the makespan of any optimal solution of  . The set of vertices   is extended with a 

set of new vertices                                     , where           . A set of 

edges                  ,                ,  ,          ,          ,          ,  ,                

                              is added to the graph with the extended set of vertices. 

Thus, the augmented graph is              
       . 

The set of agents is extended with a set of new agents                   ; that is,    

    . The initial and goal arrangements of new agents are spread around a set of locked verti-

ces in the newly added vertices as follows:    
            if      and    

         for some 

    if      for          ;    
                 if           and    

         for 

some     if           for          . For the original agents, the initial and the goal 

arrangements remain the same; that is,    
       

     and    
       

         . 

The makespan of any optimal solution of    is at least      since the shortest path from 

   
       to    

       in    has the length of      for any          . On the other hand, since 

          , no vertex of   is occupied by any new agent at least for    time steps sup-

posing the new agents are moving straight towards their destinations. Together with the fact that 

in any optimal solution of the original instance  , it is sufficient to occupy   for at most    time 

steps, the makespan of any optimal solution of    is exactly     .  

 

The construction of the augmentation from the proof of the above lemma is shown in Figure 

4. Observe that the construction can easily be extended to include the locking of multiple sets 

of locked vertices while different lock time steps may be used for each locked set. 

 

Corollary 2 (makespan preserving set locking). Assume that the preconditions (aa) and (bb) 

hold; in addition, assume that the following preconditions hold as well: 

(cc) There exists a solution       of the instance                
    

   of the 

makespan  , where     . 

(dd) There is at least one unoccupied vertex in the selected set     at all the time steps 

within       except time steps                with       for           and 

           and it holds that      . 

Then there exists an instance                      
     

   such that         and it never 

happens that all the vertices of   are occupied by the original agents from the set   at any time 

step     within any optimal solution    
     ; moreover the makespan of any optimal solution 

of    is again  .  

 

Proof. The construction of    is almost the same as in the proof of Corollary 1. The difference is 

that the parameter   is now set to     . The construction then ensures that the makespan of 

any optimal solution of    is  . 
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The makespan of any optimal solution is at least   since the newly added agents must go to 

the end of the newly added path. On the other hand, all the vertices of the set   need to be oc-

cupied by the original agents within the solution       only at time steps            that do 

not interfere with time steps            (since      ) at which the newly added agents 

need to occupy at least one vertex of   (supposing they are going directly to their destinations 

along the newly added path). Hence, there exists a solution of the makespan   of the augmented 

instance   . Altogether, any optimal solution of    has the makespan  .  

 

Observe that the original agents are allowed to enter newly added vertices in all the above 

augmentations. This may help the original agents to reach their destinations faster (the newly 

added vertices may be used as an additional “parking place” for agents). This behavior of agents 

is undesirable in the planned reduction where it is needed to isolate the vertex locking mecha-

nism from the original instance. Hence, a slight adaptation of the vertex locking technique must 

be used. 

 

 
 

Figure 5. An illustration of two-stage vertex locking in an instance of the pCPF problem. Assume that 

we want to prevent agents    ,    , and     from entering the vertex     at time steps 1 and 3. Additionally, 

no vertex added by the augmentation can be entered by the original agents    ,    , and    . These require-

ments are ensured by the two-stage locking mechanism. First,     is locked at time steps 1 and 3 using a 

path of new vertices    ,    ,    ,    ,         , and     (this stage corresponds to Figure 3). Then     and     

are locked at time steps                and             , respectively, by the same technique. The 

makespan of any optimal solution of    is 5 (the same as of   ). 
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Some additional notations are needed to formally express the requirement that the newly 

added vertices are not to be used by the original agents. Let    
          

     
     

  
 
  be an 

optimal solution of the pCPF instance    over the graph            and let     . Then the 

restriction of the solution    
      on the set of vertices   is denoted as    

        

    
       

       
  
 
   , where    

           with    
          

             for   

       . Next, let              
         

      be an optimal solution of    , then 

               
            

               , and let                      be a solution 

(not necessarily optimal) of   . An augmentation    of the instance  , where added vertices are 

never used, can be expressed by the condition                  . 
 

Proposition 2 (two-stage vertex locking). Assume that the preconditions (a) and (b) hold. Then 

there exists an instance of pCPF                      
     

   such that        , 

where it never happens that an agent     enters   at any time step     within any optimal 

solution         and                   (that is, original agents cannot use any added ver-

tex in any optimal solution).  

 

Note that Proposition 2 (14) is almost the same as Lemma 1 except for the additionally re-

quired condition                  . 
 

Proof. The basic construction will be adopted from the proof of Lemma 1; then some further 

augmentations will be made by successive applications of Corollary 1 to enforce the condition 

that                  . 

Let    denote the makespan of optimal solutions of  . In the first stage, the graph   is ex-

tended exactly as in the previous case. That is, a set of vertices                        

              , where           , and a set of edges                  ,                , 

 ,          ,        ,        ,          ,          ,  ,              are added to the graph; that is 

             
       . The set of agents is extended with                   ; that 

is,         and the initial and goal arrangements of the new agents are set as follows: 

   
            if      and    

         if      for          ;    
                 if 

          and    
         if           for          . As it has been shown, this 

construction suffices for satisfying almost all the requirements except                  . 

Now, it is necessary to prevent agents from   from entering any of the added vertices   . 

Observe that locking vertices     and     suffices to fulfill this requirement since the newly add-

ed vertices form a path around   and this is the only vertex through which the path is connected 

to the original graph (neighboring vertices of   are     and    ). Vertices     and     need to be 

locked for all the time steps except for the time steps at which agents from the set    go through 

them in the optimal solution – this represents the second-stage locking. More precisely, the 

vertex     needs to be locked at time steps from the set                     

                 (where                                  ) and the vertex     

needs to be locked at time steps from the set                                   . Note 

that                as well as               . Moreover, the construction of sets      

and      ensures that vertices     and    , respectively, are locked at time steps at which they are 

not entered within some solution (which is known to be the optimal solution). Hence, Corollary 
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1 applies for   , the locked vertex    , and the set of lock time steps     ; that is, the optimal 

makespan is preserved. In other words, the vertex locking is synchronized with the vertex lock-

ing from the first stage. Subsequently, Corollary 1 is applied once more for the resulting in-

stance, the locked vertex    , and the set of lock time steps     . Let 

                     
     

   denote the final instance, then                  .  

 

The construction from Proposition 2 is illustrated in Figure 5. In fact, it represents a further 

augmentation of the instance in Figure 3. 

The important property is that the size of all the augmented instances of the problem is 

                      , where    is the optimal makespan (that is, asymptotically as many 

as           ) vertices and agents are added). Consequently, if an augmented instance needs to 

be kept small (with respect to        ), the numbers    and    must also be small. 

 

Corollary 3 (makespan preserving two-stage vertex locking). Assume that the preconditions 

(a), (b), (c), and (d) hold. Then there exists an instance                      
     

   

such that         and it never happens that an agent     enters the locked vertex   at any 

time step     within any optimal solution    
      and                   (that is, the 

original agents cannot use any added vertex in any optimal solution); moreover, the makespan 

of any optimal solution of    is again  .  

 

Proof. The construction from the proof of Proposition 2 can be adopted with a minor change. In 

the first stage of the construction of    where the construction from the proof of Lemma 1 has 

been applied, Corollary 1 is applied instead. This ensures that the intermediate instance after the 

first stage locking preserves the makespan of  . The rest of the proof can be applied without any 

change.  

 

Again, it is not difficult to generalize the construction for locking a subset of a certain size of 

a selected set of vertices at given time steps where the original agents can move only in the orig-

inal vertices. These merely technical extensions of Proposition 2 and Corollary 3 are listed as 

Proposition 3 and Corollary 4. 

 

Proposition 3 (two-stage set locking). Assume that the preconditions (aa) and (bb) hold. Then 

there exists an instance of the problem of pCPF                      
     

   such that 

       , where it never happens that all the vertices of   are occupied by the original agents 

from   at any time step     within any optimal solution    
      and                    

(that is, original agents cannot use any added vertex in any optimal solution).  

 

Proof. The proof will partially adopt the basic idea of the construction from the proof of Propo-

sition 2. The vertex set locking will be done in two stages by means of successive applications 

of Corollary 1 to enforce the condition                   . 

Let    be the makespan of optimal solutions of the pCPF instance  . The first stage of the 

augmentation will be performed as in the case of Proposition 2. A set of vertices    

                                 , where           , and a set of edges    

                                                                                             

                  are added to the graph; that is              
       . The 
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set of agents is extended with a set of new agents                   ; that is,         and 

the initial and goal arrangements of the new agents are set as follows:    
            if      

and    
         for some     if      for          ;    

                 if      

     and    
         for some     if           for          . 

 

 
 

Figure 6. An illustration of two-stage vertex set locking in an instance of the pCPF problem. At least one 

vertex of the set                 must not be occupied by any of the original agents    ,    , and     at 

time steps 1 and 3. Additionally, no vertex added by the augmentation can be entered by any of the origi-

nal agents. These requirements are ensured by the two-stage set locking mechanism. First, the set   is 

locked at time steps 1 and 3 by adding a path of new vertices    ,    ,    ,    ,         , and     (this stage 

corresponds to Figure 4). Then     and     are locked at time steps                and             , 
respectively, by the vertex locking technique. The makespan of any optimal solution of    is 5 (the same 

as of    in Figure 4). 

 

To prevent agents from   from entering any of the added vertices    second-stage vertex 

locking must be done. It is sufficient to lock the vertices    and    since these two vertices are 

the only connection points of the original graph with the newly added parts. The vertices    and 

   need to be locked for all the time steps except for the time steps at which agents of    go 

through them in the optimal solution. More precisely, the vertex     needs to be locked for time 

   
  

                            

             
     

    

    
     

     
     

       
     

     
    

    
  

    
  

    
  

    
  

    
  

    
  

    
  

    
 

    
 

    
 

    
  

    
  

    
  

    
  

    
 

    
 

    
 

    
 

    
 

    
 

    
 

    
     

 

    
 

W 

    
  

    
  

    
  

    
  

    
  

    
  

    
  

    
  

    
      

 
    

 

    
  

    
  

    
  

    
  

    
 

    
     

 

    
  

    
 

                                      
                                    
 

   
  

    
 

    
  

    
  

    
  

    
  

    
  

    
  

    
  

    
  

    
 

    
     

 

    
  

    
  

    
  

    
  

    
 

    
 

    
 

    
 

    
 

    
 

    
 

    
 

    
 

    
 

W 

    
  

    
  

    
  

    
  

    
  

    
  

    
  

    
  

    
  

    
     

 

    
  

    
  

    
  

    
  

    
 

    
     

 



 On the Complexity of the Optimal Parallel Cooperative Path-finding 
 

17 

steps from the set                                    and the vertex     needs to be 

locked for time steps from the set                                   . 

Since                (as well as               ) and the vertex     is to be locked 

for the time steps at which it is not entered as part of some optimal solution, Corollary 1 applies 

for   , the locked vertex    , and the set of lock time steps     . That is, the optimal makespan is 

preserved. Again, vertex locking is synchronized with vertex locking from the first stage. Cor-

ollary 1 is subsequently once more applied on the resulting instance with the locked vertex     

and the set of lock time steps     . Let                      
     

   denote the final 

instance, then                  .  

 

The construction of the two-stage vertex locking from the above proof is shown in Figure 6. 

As in the case of locking a single vertex, the size of all the augmented instances of the problem 

is                       , where    is the optimal makespan of  . 

 

Corollary 4 (makespan preserving two-stage set locking). Assume that the preconditions (aa), 

(bb), (cc), and (dd) hold. Then there exists an instance                      
     

   such 

that        , and it never happens that all the vertices of   are occupied by the original 

agents of   at any time step     within any optimal solution    
     ; moreover, the 

makespan of any optimal solution of    is again   and and                   (that is, the 

original agents cannot use any added vertex in any optimal solution).  

 

Proof. The construction of    from the proof of Proposition 3 can be adopted with a minor 

change. Instead of using the construction from the proof of Lemma 1 in the first stage, Corollary 

1 is applied. This ensures that the intermediate instance after the first stage of locking preserves 

the makespan of  . The rest of the proof can be applied without any change.  

3.3. Conjugation – Moving Agents Together to Simulate Propositional Consistency 

We will simulate a valuation of variables of the propositional formula by passing certain pass 

ways in the graph. There will be two pass ways for each variable – one representing a positive 

valuation and the other a negative valuation. Since we need to preserve the propositional con-

sistency (the positive and negative literals of the same propositional variable should have com-

plementary values), a group of agents for valuating a given variable must not be split between 

these two pass ways. All the agents must pass either the positive branch or the negative branch. 

Hence, we need some technique that would keep a group of agents together even though they 

can choose between two alternative pass ways. A technique that ensures such a behavior of 

agents will be called a conjugation technique. 

 Let                   be a set of agents to be conjugated. Formally, the conjugation means 

that there is an instance of the problem of path-finding for multiple agents      

            
     

  , where              ;   ,   ,  ,    are pair-wise disjoint, 

             ,     ,    
        (the image of the set by    

  is defined naturally: 

   
                 

       ),    
       , and there exists a time step   such that with-

in any optimal solution    
         

     
       

 
  either     

          
            

           or 

    
          

            
           holds. That is, at time step   the whole group of agents that 
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are conjugated appears either in    or   . No other cases, in which some of the conjugated 

agents appear in    and some in   , can appear in any optimal solution. 

In order to rule out trivial cases of   a requirement that     
         

         
     

  
 
  

    
            

              and     
        

         
       

 
       

            
        

      should be taken into account. That is, agents   must go through one of the two alterna-

tive pass ways represented by    and   . The task is now to build such an instance of the pCPF 

problem. 

The main idea of the construction is to order the agents of   into a queue that starts with an 

additional agent called a leading agent. There is a branching in the graph into    and   , 

which are then joined together, and two leading agents are prepared. The destination for the 

leading agents is temporarily closed by the construction from Corollary 1. This prevents the 

leading agents from escaping before fulfilling their task. The destination for agents of   is ac-

cessible from both the    and    branch symmetrically. The leading agents have no other 

choice than to lead the group of agents to their destinations. Finally, the leading agent has to go 

out of the way. 

The crucial observation is that if the group of agents   is split between both branches, then 

the leading agents inevitably block each other causing an obstruction which eliminates any 

chance to reach the destinations in time (that is, the solution cannot be finished as optimal). 

Hence, the agent must go into one of the branches of    or    together (they must conjugate). 

The formal description of the construction is set out below. 

The graph         consists of the following sets of vertices: 

         
     

       
    

(called initial vertices), 

         
     

       
    

(called left vertices), 

         
       

       
    

(called right vertices), 

       
    

    
    

   

(called destination vertices), with 

  
      

      
      

     
    

 (called left part of destination vertices) 

  
      

     
      

      
    

 (called right part of destination vertices) 

    
      

     
       

    

(called gate part of destination vertices) and 

    
        

       
         

       
       

         
           

       
         

   

(called array part of destination vertices), 

where   is a parameter determining the length of a solution; it is required that      . Note 

that   
  is in fact an array of   rows of   vertices within   . In total, the set of vertices is 

             .  

The edges of the graph are as follows: 

         
     

       
     

         
     

         
     

       
       

         
     

    

(edges for making a connection between the initial vertices and left/right vertices), 
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(edges for connecting the remaining left/right vertices), 

        
     

       
     

       
     

       
     

           
     

       
     

       
     

     

(edges for connecting the left/right vertices to the gate part of the destination vertices), 

  
       

       
       

       
         

       
     

(edges for connecting the gate part to the array part of the destination vertices), 

  
         

       
           

       
               

       
             

       
     

(edges for connecting rows of the array part of the destination vertices), 

  
           

       
           

         
             

       
     

(edges for connecting the last row of the array part in the reversed order); 

in total, the set of edges of the graph   is              
    

    
 . 

The set of agents is extended with two leading agents     and     (the left and the right lead-

ing agent); that is,               . The initial arrangement of agents is as follows:    
       

   
  for          ;    

          
  and    

          
 . That is, the original agents are placed into 

the initial vertices while the leading agents are placed in such a way that original agents can join 

either of them. The goal arrangement is:    
            

  for          ;    
           

  and 

   
           

 ; that is, the original agents should finally reach the last row of the array part of 

the destination vertices and the leading agents should go out of the way. 

The required conjugation of agents into the left and right vertices at a certain time step can 

be satisfied if the agents move as follows: all the agents               from the set of vertices 

   
     

       
  move into the set of vertices    

     
       

  if the left branch is chosen, or into the 

set of vertices    
     

       
  if the right branch is chosen. 

Without loss of generality, suppose the left branch has been chosen. Agents              , to-

gether with the leading agent    , then move into vertices    
     

       
      

     
  . This is fol-

lowed by the movement of agents               towards the last row of the array part of the des-

tination vertices where their order is eventually reversed (if the right branch has been chosen, 

no reversing is necessary). Leading agents return to their goal locations in     
  and     

  at the 

same time. The described behavior of agents within the optimal solution is ensured by locking 

appropriate vertices at appropriate time steps. That is, the pCPF instance   is further extended 

with additional agents and vertices used for locking vertices, as shown in the proof of Corollary 

1. However, for the sake of simplicity, the description below will be restricted to the original 

components of the problem    

Thus, the optimal solution for the left branch      
           

       
         

 
  should satisfy 

that      
          

 ,      
          

 ,      
            

 , …,      
          

 ,      
            

 , 

     
            

 ,      
            

 ,      
            

 , …,      
              

 ,      
                

 , 

     
                  

 ,      
                  

 , …,      
                      

 , and      
           

     
     

       for          ;      
          

 ,      
           

     
  ,      

           
     

  , 

     
           

     
  , …,      

               
     

  ,      
             

     
  ,      

             
     

   

(the left leading agent is going in front of the queue formed by the sequence of agents 

             ), there is no special requirement on      
        ,      

        , …,      
          , indeed 

     
               

     
      . Similarly, there is no special requirement on      

       for any 
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         . The optimal solution for the right branch      
           

       
         

 
  has 

almost the same form. The only difference is that the final reversal of the agents               to 

fit into the last row of the array part of the destination vertices is not performed. Observe that 

the time step at which the conjugation occurs is    . 

Now, the task is to show that the described behavior is feasible and no other behavior can 

occur within any optimal solution. In other words, any optimal solution of the problem has ei-

ther the form of the solution for the left branch or the solution for the right branch. 

 

 
 

Figure 7. A conjugation instance of the pCPF problem. The conjugation instance   
  shown in the figure 

is constructed with respect to a set of agents                     and a parameter    . The agents are 

restricted in their movements using vertex locking – namely, the initial vertices    
 ,    

 ,    
 , and    

  can be 

entered only at time step 0; the vertices      
 ,      

 ,      
 , and      

  can be entered only at time step 8; and the 

vertices     
  and     

  can be entered only at time step 14. These conditions enforce that the agents    ,    , 

   , and     are located either in vertices    
 ,    

 ,    
 , and    

  or in vertices    
 ,    

 ,    
 , and    

  at time step 

1 in any optimal solution of   
 . 

 

The first row of the array part of the destination vertices, that is, vertices      
       

         
 , is 

locked (closed for entering) for all the time steps except for time step    . At this time step, 

all the agents               are entering the array part of the destination vertices. Then they con-

tinue towards their goal locations and hence vertices      
       

         
  can be locked again for 

  
            

     
   

  
                     
                                
     

   
  

allowed at time step 0 
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allowed at time step 14 
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the remaining time steps. The vertices     
  and     

  are locked for all the time steps except the 

time step      . Similarly, the initial vertices are locked for all the time steps except for 

time step  . 

At the time of opening the first row of the array part of the destination vertices (at time step 

   ), all the agents               must reside in the vertices    
     

       
  (eventually in the 

reverse order). Otherwise, they have no chance to reach their goal locations at all. Then, the 

fastest way to reach their goal locations starting from vertices    
     

       
  is to exactly follow 

the shortest paths to the last row of the array part of the destination vertices (all these paths are 

of the same length). Since      , which is enough time steps for the leading agents to reach 

their destination locations; the motion of agents               within the array part of the destina-

tion vertices represents the bottleneck. 

It remains to check the behavior of agents before time step    . Since the initial vertices 

are only allowed to be occupied at time step  , the agents               must enter the left or the 

right vertices immediately at the next time step. Between time steps   and    , it is impossi-

ble to swap agents in the currently accessible part of the graph since it consists of a single path. 

Hence, if the agents              split between the left and the right vertices, then they cannot be 

arranged into vertices    
     

       
  in the required order, because they are obstructed by the 

leading agents     and    . 

The just described instance will be called a conjugation instance of the pCPF problem. Note 

that the instance is parameterized by a set of agents   and an integer parameter        . An 

instance of the problem corresponding to the given parameters will be denoted as   
 . Note fur-

ther that the makespan of any optimal solution of   
  is               . It is easy to see 

that the size of   
  is           , which is        . 

An example of a conjugation instance is shown in Figure 7. Although some edges of the con-

jugation instance intersect, it is just a matter of a graph drawing in a plane. There is actually no 

interference between agents traversing edges that intersect (notice further that pCPF may take 

place in high dimensional spaces that cannot be drawn in a plane without intersecting an edge). 

3.4. NP-completeness of pCPF 

All the ingredients have been prepared to prove that a decision version of the optimal pCPF is 

  -complete. The membership in    will be checked first. Subsequently, a polynomial time 

reduction of a propositional satisfiability instance (SAT) [1] to the instance of the decision 

version of the optimal pCPF will be constructed. 

  

Definition 3 (decision version of pCPF). A decision version of the optimal pCPF is a task de-

signed to decide whether, for a given instance of pCPF   and a number     , there exists a 

solution       of the makespan at most  . A notation     will be used for the decision instance. 

Next, let         denote the language of positive instances of this problem. □ 

 

It is not that easy to see that           , since no upper bound on the size of the solution 

of         has so far been established. Hence, the standard technique of “guessing and check-

ing” cannot be used immediately. Note that decision variants of several related sliding piece 

problems [10] such as the Sokoban game [4] and the Rush-hour puzzle [7] are proven to be 

      -complete [8, 9] but it is not known whether they are in   . The reason is that the pol-
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ynomial upper bound on the size of the solution has not yet been found. Fortunately, this is not 

the case of        . It is possible to establish the polynomial upper bound on the size of the 

solution of         using results shown in [13]. 

 

Lemma 3.           .  

 

Proof. It has been shown in [13] that there exists a solution          
    

      
 
  for any 

solvable instance of the problem of PMG                
    

   such that           (  

is regarded as a function of   here). Since the solution of an instance of PMG can be used as a 

solution of the corresponding pCPF instance (Proposition 1), it implies that there exists a solu-

tion          
    

      
 
  for any solvable instance of the problem of pCPF      

          
    

   such that           (  is also regarded a function of  ). An instance of 

            can be solved on a Turing machine with an oracle in polynomial time as follows. 

A solution of the size         of   is generated first by the oracle. Then, the generated solution 

is checked as to whether its makespan is at most   and whether it satisfies Definition 2. This 

check can be carried out in polynomial time with respect to the size of    .  

 

 Propositional satisfiability is a decision problem where the question is whether a given prop-

ositional formula has a satisfying valuation or not. As it is usual, propositional formulas in a 

conjunctive normal form (CNF) [12] are considered. Let     denote the language of satisfiable 

instances of propositional formulas in CNF as it is formalized in the following definition. 

 

Definition 4 (propositional satisfiability –    ). A propositional variable is a variable that can 

be evaluated as either      or      . A literal is a propositional variable or its negation. A 

clause is a disjunction of literals; that is,    
 
   , where      and    is a literal for   

       . A propositional formula in CNF is a conjunction of clauses; that is,    
 
   , where 

     and    is a clause for          . Let        denote the set of propositional varia-

bles of the CNF formula  , then the valuation of variables of   is an assignment          

            . The valuation of variables is naturally extended from variables to literals, 

clauses, and the complete CNF formula. The propositional satisfiability problem (SAT) is a 

decision problem where the question is whether a given formula   in CNF has a valuation of its 

variables so that   evaluates to      under this valuation. □ 

 

If the CNF formula   has a satisfying valuation, then   is said to be satisfiable or, otherwise, 

it is said to be unsatisfiable (examples of several propositional formulae in CNF are shown in 

Figure 8). It is well known that     is   -complete. However, a slight technical adaptation of 

propositional satisfiability is necessary to carry out the required reduction to pCPF. A restriction 

on formulas in CNF where positive and negative literals of the same variable have the same 

number of occurrences in the formula will be made. Let the language of satisfiable formulas that 

comply with this restriction be denoted as      (see Figure 8 again). 

 

Definition 5 (equality propositional satisfiability –     ). Let   be a propositional formula in 

CNF. Next, let          with          denote the set of positive occurrences of   in   and, 

similarly, let          denote a set of negative occurrences of   in  . The equality proposi-
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tional satisfiability problem (    ) is a decision problem where the question is whether a given 

formula   in CNF such that                       for every          is satisfiable or 

not. □ 

 

Lemma 4.      is   -complete.  

 

Proof. With respect to the membership in   , the restriction makes no change; thus      

  . Any instance of     can be reduced to an instance of      by adding clauses to balance 

the number of positive and negative literals of the same variable. The added clauses should pre-

serve equisatisfiability of the resulting formula with the original one.  

 

 
 

Figure 8. Examples of propositional formulae in CNF. Three formulae   ,   , and    are shown.    is 

unsatisfiable while the other two are satisfiable. Positive and negative occurrences of literals in the formu-

lae are depicted. Note that the number of positive and negative occurrences of    in    is unbalanced; that 

is,         (satisfiable but syntactically incorrect). The result of the rebalancing of    is         

(both satisfiable and syntactically correct). 

 

 Let   be a formula in CNF and let   be a variable with unbalanced positive and negative 

occurrences. Without loss of generality, let                      . Then a clause 

   
                     
         , where   is a new variable, is added to  . Now   as well as 

the newly added   have the same number of positive and negative occurrences. Clearly, the 

resulting formula is equisatisfiable with   since the newly added clause is always satisfied. The 

                   

                             

                                            

 

 

unsatisfiable 
 

                                                     
                                           
 

 
 
satisfiable with           ,            ,            
 

                                                       
                                            
                                           
 
 

 
 
satisfiable with           ,            ,           ,            
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described process should be done for all the unbalanced variables. The length of the resulting 

formula is at most twice that of  , thus the reduction can be done in polynomial time.  

 

Theorem 1.         is   -complete.  

 

Proof. It remains to prove that         is   -hard. A polynomial time reduction of      to 

        will be used. Let    be a formula in CNF, that is,         
   

   
   , where   

  is the 

 -th literal of the  -th clause; there are   clauses, where the  -th clause has    literals. 

Assume further that that each variable has the same number of positive and negative occur-

rences in   . Let         denote the set of propositional variables of   . An instance      

          
    

     of the decision version of the optimal pCPF for    will be constructed in the 

following way. Every occurrence of a literal in    will be associated with a vertex. Thus, a set of 

vertices           
  

  
   

 
    is constructed (   

  is a symbol while   
  is a variable standing for a 

literal); a vertex    
  corresponds to an occurrence of a literal   

  in the  -th clause as the  -th dis-

junct. A conjugation instance of pCPF will be associated with each propositional variable of    

while left and right vertices of the conjugation graph will be one-to-one matched to vertices 

from     that correspond to negative and positive occurrences of the variable, respectively. This 

is possible since there is the same number of positive and negative occurrences of each variable 

in    (a conjugation graph has the same number of left and right vertices). 

The idea is to prepare a group of agents of the size                         for each 

propositional variable          . This group of agents will be placed in the initial vertices of 

the conjugation subgraph corresponding to  . The construction of the conjugation subgraph will 

enforce that all the agents must go either into the vertices corresponding to positive literals or 

into the vertices corresponding to negative literals. If the movement of agents is interpreted in 

the way that literals corresponding to vertices of     visited at time step 1 will be assigned the 

same propositional value, then the conjugation technique assures propositional consistency of 

the assignment. However, this is not enough to establish correspondence between an assignment 

satisfying    and a solution of    . It is furthermore necessary to make agents simulate clause 

satisfaction by means of any solution whose makespan is at most  .  

This can be done by enforcing agents either to visit at least one literal/vertex of each clause 

of    (in cases when the visited literals/vertices are assigned the value     ) or leave at least 

one literal/vertex of each clause of    unoccupied at time step 1 (in cases where the visited liter-

als/vertices are assigned the value      ). Since the second option can easily be implemented 

through the vertex set locking mechanism (Proposition 3, Corollary 4), the value       will be 

used for literals corresponding to vertices visited at time step 1. 

Nevertheless, some technical details such as the exact specification of   need to be dis-

cussed. Equality between makespans of optimal solutions over the individual conjugation in-

stances needs to be established.  

Recall that a conjugation instance   
  is characterized by two parameters:   – the set conju-

gated agents and   – parameter affecting the makespan of the optimal solution of the instance. 

Let                                        . For a given          , the conjugation 

instance      
    

 will have the parameters          
     

                  
   and         
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                      . Hence, the makespan of any optimal solution of the conjugation 

instance      
    

 is                   . 

 

 
 

Figure 9. A polynomial time reduction of a propositional formula to a decision instance of pCPF. A 

formula   is transformed to a formula    in which each variable has the same number of positive and 

negative occurrences. Subsequently, an instance of the decision version of the problem of pCPF     is 

constructed. The conjugation technique is used to simulate propositional consistency and the set locking 

technique is used to simulate clause satisfaction (the reduction of one variable using the conjugation tech-

nique and the reduction of one clause using the set locking technique are shown). There exists a solution 

of   of the makespan      if and only if the formula   is satisfiable. 

 

 

                            

                                            
 

 
                                             

      
    

  
  

   
   

    

   
      

   

                                         
    

   
   

   
      

      
      

   

   
      

      
       

   

   
      

   

   
         

         
        

         
         

     

   
   

1 2 3 

  
  

                                             

    

   
      

   

   
      

   

   
   

1 2 3 

1 2 3 

         
    

   

   
        

        
        

     

   
        

     

   
        

     

   
     

   
     

     
     

     
     

     
     

     
          

     
     
          

     

     
     

     
          

     

     
          

     



 
 

 

26 

Left and right vertices of      
    

 are matched with vertices from     as follows: 

    
       

              
         

    
                           and     

       
               

     

    
    

                         . Now, a crucial observation has to be made. It holds that 

   is satisfiable if and only if there exists a solution of the currently constructed instance of the 

makespan of      such that at time step 1 at least one vertex from the set of vertices corre-

sponding to each clause remains unoccupied. 

Let                       be a satisfying valuation of   . If           , then 

agents    
     

                 
  are placed in    

       
               

   
 at time step 1; if           

then they are placed in    
       

              
   

 at time step 1. The placement of agents at time steps 

other than 1 is straightforward. Since   is the satisfying assignment, at least one vertex from the 

set of vertices corresponding to each clause remains unoccupied. On the other hand, Corollary 4 

can be used to augment the instance to enforce that at least one vertex from the set of vertices 

that corresponds to literals of a clause is not occupied by agents from the set                

within any optimal solution while the makespan of      remains preserved. That is, Corol-

lary 4 is invoked with       
     

        
   that corresponds to satisfying the  th clause of   . Let 

  denote the resulting instance. Any solution of the makespan of      of   satisfies condi-

tions at time step 1 and hence it induces a satisfying assignment of   . 

The construction of   requires polynomial time in the size of   ; the size of   is also poly-

nomial (the size of each conjugation subgraph is polynomial in the size of    and the number of 

conjugation subgraphs is bounded by the size of   ). Now, if   has a solution of the makespan 

       then it is ensured that conjugation and clause satisfaction has been successfully 

simulated, thus a satisfying valuation of    can easily be derived from this solution. Hence, 

        if and only if            . Together with Lemma 3 the claim that         is 

  -complete has been obtained.  

 

The reduction described in the proof is illustrated in Figure 9. The illustration shows the in-

stantiation of the conjugation mechanism over a single variable. Figure 9 also represents the 

connection of the simulation of clause satisfaction to the conjugation mechanism. 

4. Related Works and Conclusion 

A parallel version of the cooperative path-finding problem (pCPF) is introduced in this paper. 

The new theoretical result shown in this paper is that the decision version of the optimal pCPF 

is NP-complete. The parameter, which is optimized, is the makespan, that is the maximum of 

arrival times to a destination over all the agents. 

The reduction of propositional satisfiability to pCPF has been used for the proof of 

NP-hardness. Numerous techniques to simulate propositional consistency and clause satisfaction 

within pCPF were developed in this work. These techniques were inspired by works on multi-

commodity flows [6]. We assume the existence of developed techniques generic enough to be 

used in different contexts. Vertex locking and conjugation techniques have recently been used in 

the proof of NP-hardness designed to check the existence of a winning strategy in the so-called 

adversarial CPF (ACPF) [29]. ACPF is CPF with multiple teams of agents that compete in 

reaching their goals. 
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The finding that optimal pCPF is NP-complete is rather negative. Fortunately, if the re-

quirement on the shortest possible makespan of solutions is relaxed, the problem becomes trac-

table. In particular, it belongs to the P class. However, the situation is not as straightforward. 

Although algorithms developed for solving PMG/CPF [13, 37] can be used for solving pCPF, 

this practice is disadvantageous. Despite a promising theoretical makespan of         of solu-

tions generated by these algorithms, the makespan measured empirically is relatively high [28] 

due to a large constant in the estimation. Therefore, alternative solving sub-optimal algorithms 

for pCPF producing better solutions (so called BIBOX algorithms) and solution-improving tech-

niques have been proposed [23, 24, 25, 28]. Recently, there has been a considerable develop-

ment in sub-optimal algorithms for CPF represented by works [30]. 

An important related work is referred to in articles [30, 31, 32, 33]. Its authors study a ver-

sion of pCPF similar to the one presented in this paper. The authors define a tractable class of 

this problem where graphs are restricted to grids and there is a relative abundance of unoccupied 

vertices. 

Several attempts to find an optimal solution of the standard non-parallel CPF have been 

made. An algorithm based on A* has been presented in [21]. The algorithm is suitable for CPF 

instances with few agents and a plenty of free space in the graphs. An alternative approach to 

solving CPF optimally is to translate CPF to SAT, as has been suggested in [30]. Interestingly, 

SAT-based methods seem to be complementary to A* since they perform well on densely occu-

pied instances. 

An interesting question for future work is whether it is feasible to find a solution of a pCPF 

instance that is constantly worse than the optimum. Currently, it is an open question whether 

such an approximation algorithm exists. The answer to this question will therefore provide an 

estimate of how far from the optimum the solutions generated by algorithms for the 

non-optimization case of the problem are. Thus, an estimate of the makespan of the optimal 

solution of large instances would also be made available. 

Glossary 

PMG     pebble motion on a graph 

           an undirected graph;   denotes a set of vertices;   denotes a set of edges 

        a set of pebbles 

        the number of pebbles 

          a pebble 

  
         the initial arrangement of pebbles 

  
         the goal arrangement of pebbles 

  
          the arrangement of pebbles at time step   

       the makespan of a solution of PMG and a sequence of pebble arrangements 

        a sequence of arrangements of pebbles forming a solution of PMG 

         
    

   an instance of PMG 

          a solution to the instance of PMG 

CPF     cooperative path-finding 

pCPF     parallel cooperative path-finding 

        a set of agents 

        the number of agents 
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          an agent 

  
        the initial arrangement of agents 

  
         the goal arrangement of agents 

  
         the arrangement of agents at time step   

       the makespan of a solution of pCPF 

         the makespan of an optimal solution of pCPF 

         a sequence of arrangements of agents forming a solution of pCPF 

         
    

   an instance of pCPF 

          a solution to the instance of pCPF 

           a set of solutions of a pCPF instance   

            a set of makespan optimal solutions of a pCPF instance   

  
       a conjugation instance of pCPF;   is the length of a solution 

        a language consisting of pairs     where   is a pCPF solvable by solution of 

the makespan at most   

     a language consisting of satisfiable propositional formulas in CNF 

      a subset of     where each variable has the same number of positive and 

negative occurrences 

    a propositional formula in CNF 

     a propositional formula in CNF where each variable has the same number of 

its positive and negative occurrences 

          a set of positive occurrences of a propositional variable   in   

          a set of negative occurrences of a propositional variable   in   

     the restriction of an object   on a set of vertices   

    newly added vertices 

    newly added edges 

    newly added agents 
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