
1

On the Complexity of Optimal Parallel

Cooperative Path-Finding

Pavel Surynek

Charles University Prague

Faculty of Mathematics and Physics

Department of Theoretical Computer Science and Mathematical Logic

Malostranské náměstí 25, Praha, 118 00, Czech Republic

pavel.surynek@mff.cuni.cz

Abstract.
1
A parallel version of the problem of cooperative path-finding (pCPF) is introduced in

this paper. The task in CPF is to determine a spatio-temporal plan for each member of a group of

agents. Each agent is given its initial location in the environment and its task is to reach the giv-

en goal location. Agents must avoid obstacles and must not collide with one another. The envi-

ronment where agents are moving is modeled as an undirected graph. Agents are placed in verti-

ces and they move along edges. At most one agent is placed in each vertex and at least one ver-

tex remains unoccupied.

 An agent can only move into a currently unoccupied vertex in the standard version of CPF. In

the parallel version, an agent can also move into a vertex being currently vacated by another

agent supposing the character of this movement is not cyclic.

 The optimal pCPF where the task is to find the smallest possible solution of the makespan is

particularly studied. The main contribution of this paper is the proof of NP-completeness of the

decision version of the optimal pCPF. A reduction of propositional satisfiability (SAT) to the

problem is used in the proof.

Keywords: cooperative path-finding (CPF), parallelism, multi-agent, sliding puzzle,

(N
2
-1)-puzzle, N×N-puzzle, 15-puzzle, domain dependent planning, complexity,

NP-completeness

1. Introduction and Motivation

This paper addresses the problem of cooperative path-finding (CPF) [17, 18, 22] and its parallel

version. Consider a group of mobile agents that are moving in some environment (for example

in the 2-dimensional plane with obstacles). Each agent in the group is given an initial and a goal

location. The question of interest is to determine a sequence of moves for each agent such that

all the agents reach their goal locations, supposing they started from the given initial ones, by

following this sequence. Physical limitations must be observed: agents must not collide with

one another and they must avoid obstacles.

The CPF problem is motivated by many practical tasks. Various problems regarding the

navigation of a group of mobile agents can be formulated as CPF. However, the problem’s pri-

Submitted to Fundamenta Informaticae on March 30, 2012. Reviews received on October 1, 2012. Revision submitted on January

21, 2013. Reviews of the revision received on April 17, 2014. Second revision submitted on June 7, 2014.

mailto:pavel.surynek@mff.cuni.cz

2

mary motivation is the need to solve tasks of relocating certain entities (autonomous or centrally

controlled) within an environment with a limited free space. Hence, the problem is not limited

to cases where agents are actually represented by mobile agents. Such real-life examples include

rearranging of stored items in automated storages (an agent is represented by a movable pile

with stored items – see Figure 1) or coordination of vehicles in dense traffic (agent = vehicle).

Moreover, the reasoning about rearrangement/coordination tasks should not be limited to physi-

cal entities. An agent may be represented by a virtual entity or by a piece of commodity as well.

Thus, many tasks such as the planning of a data transfer between communication nodes with

limited storage capacity (agent = data packet), commodity transportation in the commodity

transportation network (agent = certain amount of com-

modity), or even the motion planning of large groups of

virtual agents in the computer-generated imagery can be

expressed as an instance of CPF.

A parallel version of CPF (pCPF) is suggested in this

paper and its computational complexity is studied. The

standard CPF is usually formulated on an undirected

graph that models the environment. The vertices of the

graph represent locations and edges represent passable

regions. Agents are placed in the graph’s vertices and

they are allowed to move into a neighboring vertex if it is

currently unoccupied. The parallel version of CPF is

more relaxed – an agent is also allowed to enter a vertex

that is simultaneously vacated by another agent sup-

posed that agents do not perform a cyclic movement (a

cyclic movement includes a rotation along a cycle but

also the swapping of a pair of agents along a single

edge). In other words, there must exist an agent entering

an unoccupied vertex, leading this simultaneous move-

ment.

An abstract instance for a given specific real-life co-

operative path-finding situation can be modeled in a va-

riety of ways. For instance, it is necessary to sample lo-

cations in the original environment in order to make the

abstract instance as precise as needed. Nevertheless, the-

se issues fall outside the scope of this work.

The main contribution of this paper is the proof of

NP-completeness of the optimal pCPF. This result was

already noted in a short conference paper [26]. However,

the paper was too short to cover the proof. In the present

paper, the proof is presented with all the details, includ-

ing the rigorous treatment and illustrations.

In the context of CPF, works on the problems of mo-

tion planning over graphs must be mentioned [13, 14, 15, 16, 37] since they are closely related.

Namely, the so-called pebble motion on graphs (PMG), of which the most widely known repre-

sentative is the 15-puzzle [13, 15, 16, 37], in fact, represents the standard (non-parallel) CPF.

Many theoretical results have been obtained for PMG – it is known that the problem can be

p
assage

Floor plan of a small
automated storage

Abstraction of the floor
plan as an undirected

graph

Figure 1. An illustration of a real-

scenario modeling of the environment by

an undirected graph. The scenario consists

of a small automated storage with movable

piles of stored items (labeled to and

to). Each pile can be moved left/right/

forward/backward. Items in piles are

accessible from the passage – to access

piles - or - the storage needs to be

rearranged. The environment is modeled

as a grid of the size , which is a bi-

connected graph.

 On the Complexity of the Optimal Parallel Cooperative Path-finding

3

solved in a polynomial time (in for modeling the environment) with the

solution consisting of a polynomial number of moves (again moves) [13, 37]. Moreo-

ver, the decision version of the optimal PMG (that is, a yes/no question if a solution of a given

length/makespan exists) is known to be NP-complete [15, 16]. This result has been shown for a

generalized variant of the 15-puzzle that is also known as the -puzzle. Hence, the ques-

tion naturally arises whether the situation changes in the case of pCPF. The present paper pro-

vides an answer.

The paper is organized as follows: a formal definition of PMG is recalled and a definition of

pCPF is given in Section 2 (3). Some basic properties of both the problems and their corre-

spondence are also discussed in this section. Section 3 (7) represents the core part of the paper –

a description of several techniques for polynomial transformation of propositional satisfiability

to pCPF. The last section – Section 4 (26) – contains an overview of related works, and the con-

clusion.

2. Pebble Motion on a Graph and Cooperative Path-finding

The problems of pebble motion on a graph (PMG) and parallel cooperative path-finding

(pCPF) are formally defined in this section. As has been mentioned, non-parallel CPF and PMG

are used to denote the same concept by many authors [13, 20, 37]. The PMG/CPF problem has

been already studied in the literature and many theoretical results have been obtained for this

problem. The parallel version of CPF represents a relaxation of PMG/CPF with respect to the

dynamic character of the movements.

Consider an environment in which a group of mobile agents is moving. The agents are all

identical (that is, they are all of the same size and have the same moving abilities). Each agent

starts at a given initial location and it needs to reach a given goal location. Both problems con-

sist in finding a spatial-temporal path for each agent so that it can reach its goal by following

this path. Agents must not collide with one another and they must avoid obstacles in the envi-

ronment.

An abstraction common in the literature related to PMG/CPF is adopted regarding the model

of the environment [18, 20]. The environment containing obstacles, in which the agents are

moving, is modeled as an undirected graph. Vertices of this graph represent locations in the

environment and the edges model a passable way from one location to the neighboring location.

The time is discrete – each agent is located in a vertex at each time step. The motion of an agent

is an instantaneous event. If the agent is placed in a vertex at a given time step then the result of

the motion is a situation where the agent is placed in the neighboring vertex at the following

time step.

2.1. Formal Definitions of Motion Problems

The notion of pebble motion on a graph – PMG (also called the pebble motion puzzle, sliding

box puzzle; special variants are known as the 15-puzzle and -puzzle) [13, 16, 37] and

the related problems of cooperative path-finding – CPF (also known as multi-agent path-

finding) [20, 25, 32] are described in the following definition.

4

Definition 1 (pebble motion on a graph– PMG). Let be an undirected graph and let

 where , be a set of pebbles. The initial arrangement and the goal

arrangement of pebbles in are defined by two uniquely invertible functions
 (that

is

 for every with) and
 respectively. In the pebble

motion on a graph (PMG) problem, the task is to find a number and a sequence of pebble

arrangements

 such that the following conditions hold (the sequence repre-

sents arrangements of pebbles at each time step – the time step is indicated by the upper index):

(i)
 is a uniquely invertible function for every ;

(ii)

 (that is, all the pebbles eventually reach their destination vertices);

(iii) either

 or

 for every and

 (that is, a pebble either stays in a vertex or moves along an edge);

(iv) if

 (that is, the pebble moves between time steps and) then

 with must hold for every and

(that is, a pebble can move into a currently unoccupied vertex only).

The instance of PMG is formally a quadruple

 . A solution to the instance

 will be denoted as

 . □

Figure 2. An illustration of the problem of pebble motion on a graph (PMG) and parallel cooperative

path-finding (pCPF). Both problems are illustrated on the same graph with the same initial and goal

locations. The task is to move pebbles/agents from their initial locations specified by

 to their goal

locations specified by

 . The solution of makespan 6 () is shown for PMG and the solution of

makespan 4 () is shown for pCPF. Note the differences in parallelism between these two solutions –

pCPF allows a higher number of moves to be performed in parallel.

The notation in the form of a line above the symbol is used to distinguish a constant from a

variable (for example, is a variable while is a constant; sometimes a constant parame-

terized by a variable or by an expression will be used – for example, denotes a constant pa-

rameterized by the index ; parameterization by an expression will be clear from the con-

text).

When speaking about a move at time step , the time step of commencing the move is re-

ferred to (the move is performed between time steps and).

A parallel version of CPF derives from a relaxation of PMG/CPF. The requirement that the

target vertex of a pebble/agent must be vacated in the previous time step is relaxed. Thus, the

move of an agent entering the target vertex, which is simultaneously vacated by another agent

Solution of the problem of pebble motion

on a graph (PMG) with

Solution of the problem of parallel coopera-

tive path-finding (pCPF) with

 On the Complexity of the Optimal Parallel Cooperative Path-finding

5

and no other agent is trying to enter the same target vertex, is allowed in the parallel version of

CPF. However, there must be some leading agent initiating such a chain of moves by moving

into an unoccupied vertex (that is, agents can move like a train with the leading agent in front),

which is not entered by any other agent at the same time step. These requirements rule out the

rotation of agents along a cycle with no vacant position as well as the swapping of a pair of

agents along an edge. The problem is formalized in the following definition.

Definition 2 (parallel cooperative path-finding – pCPF). Again, let be an undi-

rected graph. A set of agents where is given instead of a set of

pebbles. Similarly, the graph models the environment where the agents are moving. The initial

arrangement and the goal arrangement of agents are defined by two uniquely invertible func-

tions
 (that is,

 for every with) and

 re-

spectively. The problem of parallel cooperative path-finding (pCPF) then consists in the need

to solve the task of finding a number and a sequence of agent arrangements

 for which the following conditions hold:

(i)
 is a valid arrangement for every (that is, uniquely invertible);

(ii)

 (that is, all the agents eventually reach their destinations);

(iii) either

 or

 for every and

 (that is, an agent either stays in a vertex or moves into the neighboring vertex);

(iv) if

 (that is, the agent moves between time steps and) then

there must exist a sequence of distinct agents with such that

 with (moves to a vertex that is unoccupied at

time step ; is the leading agent in the chain of agents which includes the sequence

as its part) and

 for (agents

follow the leader like a chain; they move all at once between time steps and).

The instance of pCPF is formally a quadruple

 . The solution to the in-

stance will be denoted as

 . □

The only conceptual difference between the definition of PMG/CPF and that of pCPF con-

sists in point (iv). The remaining differences are attributable to different names of functions

representing arrangements of agents.

The numbers and are called the makespan of the solution of PMG/CPF and pCPF, re-

spectively. The makespan needs to be distinguished from the size of the solution, which is the

total number of moves performed by pebbles/agents. The makespan is typically smaller than the

size of the solution. In case of the PMG/CPF with just a single unoccupied vertex, the makespan

and the size of the solution are the same.

Examples of instances of PMG/CPF and pCPF and their solutions are shown in Figure 2.

2.2. Known Properties of Motion Problems and Related Questions

Note that a solution of an instance of PMG/CPF as well as a solution of an instance of pCPF

allows a pebble/agent to stay in a vertex for more than a single time step. It is also possible that

a pebble/agent visits the same vertex several times within the solution. Hence, a sequence of

moves for a single pebble/agent does not necessarily form a simple path in the given input graph

(if the trajectory of the agent is to be modeled by a simple path, a time expanded graph with a

6

copy of the input graph for every time step may need to be considered; a path in the time-

expanded graph is always simple as it connects vertices in consecutive time steps only).

 Note further that both these problems intrinsically allow parallel movements of peb-

bles/agents. That is, more than one pebble/agent can perform a move at a single time step. How-

ever, pCPF allows higher parallelism due to its weaker requirements on movements (the target

vertex is required to be unoccupied only for the leading agent in the current time step – see Fig-

ure 2). More than one unoccupied vertex is necessary to obtain parallelism in PMG/CPF. On the

other hand, it is sufficient to have a single unoccupied vertex to obtain parallelism in pCPF

(consider, for example, agents moving along a cycle with one vacant position).

There is an easy way to prove a correspondence between the PMG/CPF and the pCPF solu-

tion, as summarized in the following proposition. It states that the solution of an instance of

PMG/CPF can be used as a solution to the corresponding instance of pCPF, which has the same

graph, the same set of agents, and the same initial and goal arrangements.

Proposition 1 (problem correspondence). Let

 be an instance of PMG/CPF

and let

 be its solution. Then is a solution of the in-

stance pCPF

 (that is, the instance of pCPF on the same graph has the set of

agents represented by the set of pebbles and the initial/goal locations of agents are the same as

those of the pebbles).

There is a variety of modifications of PMG/CPF and pCPF. A natural additional requirement

is to produce solutions with the shortest possible makespan (that is, the numbers or , re-

spectively, are required to be as small as possible). Unfortunately, this requirement makes the

problem of PMG/CPF intractable. It was shown in [15, 16] that producing an optimal

makespan solution to the special case of PMG/CPF known as -puzzle (or -

puzzle), which takes place on a 4-connected grid of the size with one vacant position, is

 -hard. Hence, PMG/CPF on a general graph with an arbitrary set of pebbles/agents is

 -hard as well.

However, no similar conclusion regarding the complexity of the optimal pCPF can simply be

drawn based on the above facts. The situation here is complicated due to the inherent parallel-

ism, which may affect the makespan in an unforeseen way. The proof constructions used for the

 -puzzle in [15, 16] thus no longer apply for pCPF.

Observe further that difficult cases of the problem of PMG/CPF have a single unoccupied

vertex. This fact may raise a question of how the situation changes when there are more than

one unoccupied vertices. Intuition suggests that more unoccupied vertices may simplify the

problem. Unfortunately, this is not the case. PMG/CPF on a general graph with the fixed num-

ber of unoccupied vertices is still -hard since multiple copies of the -puzzle from [15,

16] can be used to add as many unoccupied vertices as needed (note that the resulting graph

may be disconnected).

The situation is much easier without the requirement of the optimality of the solution

makespan; PMG/CPF is in the P class, as shown in [13, 37]. Due to Proposition 1, pCPF is also

in the P class. It has also been shown in [13] that a solution of the size of can be gener-

ated for any solvable PMG/CPF instance

 . Hence, it provides a pol-

ynomial upper bound on the size of the content of the oracle to guess the solution in a non-

deterministic model. Thus, it is possible to conclude that the decision version of optimal

 On the Complexity of the Optimal Parallel Cooperative Path-finding

7

PMG/CPF is an NP-complete problem. The decision version here means the yes/no question as

to whether there is a solution of of the makespan smaller than the given bound.
It seems that PMG/CPF and pCPF problems have already been resolved except for the case

of the complexity of the optimal pCPF. However, there is another issue worth studying. Con-

structions proving the membership of the problem of PMG/CPF into the P class used in [13, 37]

generate solutions that are too long for practical use. As the makespan of the solution is of great

importance in practice, this property makes these methods unsuitable when dealing with a real-

life motion problem abstracted as PMG/CPF or pCPF [23, 24, 25]. Hence, alternative solution

methods that generate shorter, yet sub-optimal, solutions are also of interest [22, 23, 24, 25, 28].

3. The Intractability of Optimal Cooperative Path-Finding

The main result presented in this section is that the optimal pCPF is intractable. In particular, it

is shown to be NP-hard and the corresponding decision version to be NP-complete. The proof

technique was partially inspired by Even’s et al. [6] proof of NP-completeness of the two-

commodity integral flow problem [1]. Similarly as in [6], we reduce propositional satisfiability

(SAT) [1, 8, 12] to optimal pCPF to show its NP-hardness. The reduction is quite complex and

requires a thorough technical preparation, as elaborated in the following sections. On the other

hand, proving the membership of optimal pCPF to NP is relatively easy.

3.1. Overview of the Reduction of SAT to Optimal pCPF

As the reduction of SAT to optimal pCPF is technically complicated, a brief overview is provid-

ed at this point to improve the readability of the technical description.

 The top-level idea of the reduction is that the movement of agents will simulate valuation of

the given propositional formula. Thus, we need to construct an instance of pCPF for the given

propositional formula so that there are two options of going through a certain location in the

graph that correspond to every propositional variable. If agents go through one of these two

options, the corresponding propositional variable should be valuated accordingly as either

 or . The question is how to construct the pCPF instance where movements of

agents in any optimal solution simulate a valuation of the formula. Two fundamental properties

are implicitly present when the propositional formula is valuated. Both of them need to be simu-

lated explicitly when the formula is reduced to an instance of pCPF.

 The first property is the so-called propositional consistency, which means that all the posi-

tive and all the negative occurrences of the same variable in the input formula have the same

propositional value, respectively. The second property is the fact that all the clauses of the

propositional formula in CNF [12] need to be satisfied in order to satisfy the entire formula.

This characteristic will be called clause satisfaction.

 The following section is devoted to techniques for controlling movements of agents over the

graph in optimal solutions of pCPF. The so-called vertex locking mechanism is developed to

force agents to move or prevent them from moving into some vertices of the graph. Movements

of agents need to be controlled to allow a simulation of propositional consistency and clause

satisfaction in pCPF eventually, which is elaborated in subsequent sections. The mechanism of

the so-called conjugation is developed to keep a group of moving agents together in order to

simulate propositional consistency properly – the group must not be divided between positive

and negative optional pass ways, which simulates that all the occurrences of a given variable are

8

assigned the same truth-value. All the movement-control techniques are finally put together to

simulate the identification of a satisfying valuation of the given propositional formula by find-

ing an optimal makespan solution to the constructed instance of pCPF.

 If not interested in the technical details of vertex locking, please skip to Section 3.3 (17).

3.2. Vertex Locking Techniques for Controlling Agent Movements

A technique to prevent agents from entering a given vertex at a given set of time steps will be

shown in this section. This is a crucial skill used later to force agents to move in a required way

in optimal solutions in order to simulate proper compliance with the propositional formula. For

the sake of understanding the suggested concepts, the explanation is followed by a scheme

where a simple vertex locking technique is gradually augmented to eventually obtain a tech-

nique that will actually be used in the reduction.

 The vertex locking technique can be applied on an arbitrary instance of pCPF. The result of

the application of the technique on the instance is that agents cannot enter a selected vertex at

the selected time steps in any optimal solution (the shortest possible makespan of the solution is

required). The augmentation of the problem consists in adding new vertices, edges, and agents

into the instance. The selection of time steps at which the vertex will not be allowed entry by the

original agents is modeled by an appropriate setting of the initial and goal locations of the newly

added agents. The whole construction is formalized in the following lemma and its proof.

Lemma 1 (vertex locking augmentation). Assume the following preconditions:

(a) Let

 be an instance of pCPF and let with

 be the so-called locked vertex.

(b) Next, let where (natural numbers including) for

 and be a set of so called lock time steps.

Then there exists an instance of pCPF

 such that

and it never happens that an agent enters the vertex at any time step in any op-

timal solution
 (entering the vertex at time step means that an agent is located in at

time step).

The notation stands for a restriction of the pCPF problem on the set of vertices . That

is, if

 and , then

 , where

 ,

 ,

with

 , and

 with

 . In

other words, each component of the description of the instance is naturally restricted on a small-

er set of vertices. The lemma states that the augmented instance after restriction on the origi-

nal set of vertices is the same as the original instance .

Proof. Let be the makespan of any optimal solution of the pCPF instance (note that the

number is difficult to compute, as shown later; but assume that it is currently known).

An augmentation of the graph will be shown first. The set of vertices is ex-

tended with a set of new vertices , where

 . The new vertices are connected around the locked vertex in the following way. A set of

 On the Complexity of the Optimal Parallel Cooperative Path-finding

9

edges , , , , , , , ,

 is added to the graph with the extended set of vertices. Thus, the augmented graph

is
 .

The idea behind the construction of the augmented graph is that new agents are initially

placed in new vertices for with or a new agent is placed in if . Then the

newly added agents are forced to move straight ahead into the vertices through

the vertex . Agents are forced to move in this way as a result of the requirement on the opti-

mality of the solution. That is if agents do not move in the above-suggested way, they cannot

manage to reach their destinations in time. The motion of new agents through the vertex

makes an obstruction in this vertex exactly at the selected time steps given by lock time steps .

Figure 3. An illustration of vertex locking augmentation in an instance of the pCPF problem. Assume

that we want to prevent the agents , , and from entering the vertex at time steps 1 and 3 in any

optimal solution. The original instance with the set of agents is shown in the upper part

of the figure. The makespan of any optimal solution of is . The augmented instance is in the

lower part of the figure. New vertices , , , , , , and and new agents and were add-

ed. The makespan of any optimal solution of the augmented problem is
 and it never happens that any of the original agents , , and enters at

time step 1 or 3 in any optimal solution (is occupied by at time step 1 and by at time step 3).

A formal description of the above idea follows. The set of agents is extended with a set of

new agents ; that is, . The initial and goal arrangements of new

agents are spread around the locked vertex in the newly added vertices:
 if

and
 if for ;

 if and

 if for . For the original agents, the initial and the goal arrange-

ments remain the same; that is,

 and

 .

At this point, it is necessary to show that it never happens that an agent enters the ver-

tex at any time step within the optimal solution
 . Any optimal solution of the

v v

v v

10

pCPF instance has the makespan of . Moreover, any solution

 of the optimal makespan of the instance must satisfy that

 ,

 ,
 , …,

 ,

 ,

 ,

 ,…,

 for . This is ensured by

the fact that the shortest path from
 to

 in has the length of and it con-

sists of vertices . Hence, no shorter solution in

terms of the makespan exists.

However, it remains to show that the original agents from manage to reach their destina-

tions within the makespan of . This claim follows from the equality , i.e.

that for at least time steps the vertex is not obstructed by any motion of newly added agents

supposing they are moving straight towards their destinations. In any optimal solution of the

original instance, it is sufficient to enter at most times (note that none of the original agents

need to occupy at the beginning). Thus, any optimal solution of the original instance can be

simulated in the augmented instance while the moves of the original agents are stopped at the

time steps during which is obstructed. Hence, the makespan of any optimal solution of is

exactly .

It has been shown that the vertex is obstructed at every time step in any optimal so-

lution. Hence, no original agent can enter at any time step .

The situation from Lemma 1 is illustrated in Figure 3. Note that it is not difficult to extend

the construction from the proof of Lemma 1 on multiple vertices that will be locked at selected

time steps (different sets of time steps for locking can be used for different vertices). Another

useful property of the augmented problem is summarized in the following corollary.

Corollary 1 (makespan preserving vertex locking). Assume preconditions (a) and (b) together

with the following preconditions:

(c) There exists a solution of the instance

 of the

makespan , where .

(d) Let be a locked vertex entered by an agent within at time steps

 where for and and it holds that

 .

Then there exists an instance

 such that and it nev-

er happens that an agent enters the vertex at any time step within any optimal

solution
 ; moreover the makespan of any optimal solution of is again .

Proof. The construction of is almost the same as in the proof of Lemma 1, only the parameter

 is now set to . Then, the construction ensures the makespan of of any optimal solution

of .

The makespan is at least since the newly added agents must go along the newly added path

towards its end, which cannot be carried out in a smaller makespan. On the other hand, there

exists a solution of the makespan of the augmented instance . The vertex needs to be oc-

cupied only at time steps by the newly added agents that do not interfere with the

time steps at which the vertex is entered within the solution by the original agents (this

 On the Complexity of the Optimal Parallel Cooperative Path-finding

11

is due to). Altogether, the makespan of any optimal solution of an augmented in-

stance is .

Lemma 1 as well as Corollary 1 can be generalized for locking a given number of vertices of

a selected subset of vertices at a selected set of time steps . Nevertheless, only a spe-

cial variant of this generalization, where just one vertex of is to be locked at selected time

steps, will actually be used in further reasoning. To be more precise, at least one vertex in is

required not to be occupied by an agent from the original set of agents at any time step . It

can be regarded as a kind of disjunctive locking where the set considered in disjunction is .

An analogous extension to Corollary 1 that preserves makespan additionally assumes the exist-

ence of a solution of the original instance where at least one vertex of is unoccupied at any

time step . These statements, which are merely a technical extension of Lemma 1 and Cor-

ollary 1, are formalized as Lemma 2 and Corollary 2.

Figure 4. An illustration of a vertex set locking augmentation in an instance of the pCPF problem. As-

sume that we want at least one vertex of the set not to be occupied by any of the original

agents , , and at time steps 1 and 3 in any optimal solution. The original instance with the set of

agents is taken from Figure 3. The augmentation is made by adding a new path consist-

ing of vertices , , , , , and around the set and by adding new agents and . The

makespan of any optimal solution of the augmented instance is . At least

one vertex of is occupied by at time step 1 and by at time step 3 in any optimal solution. Hence,

it never happens that all the vertices of are occupied by agents and at time step 1 or 3 within

the optimal solution.

Lemma 2 (set locking augmentation). Let the following preconditions hold:

(aa)

 be an instance of pCPF and with

 be the so-called set of locked vertices.

(bb) Next, let , where (natural numbers including) for

 , and be a set of lock time steps.

Then there exists an instance of the problem of pCPF

 such

that and it never happens that all the vertices of the set are occupied by agents

W

W

12

from the set at any time step within any optimal solution (that is, at least one

vertex from is not occupied by an agent from at any time step).

Proof. The instance is augmented in a way that a new agent is forced to visit exactly one ver-

tex of the set at each time step . The technique is almost the same as in the case of

Lemma 1. A path of new vertices is added around the set of locked vertices. The path branches

into all the vertices of at both connection points. Formally, the augmentation is as follows.

Let be the makespan of any optimal solution of . The set of vertices is extended with a

set of new vertices , where . A set of

edges , , , , , , ,

 is added to the graph with the extended set of vertices.

Thus, the augmented graph is
 .

The set of agents is extended with a set of new agents ; that is,

 . The initial and goal arrangements of new agents are spread around a set of locked verti-

ces in the newly added vertices as follows:
 if and

 for some

 if for ;
 if and

 for

some if for . For the original agents, the initial and the goal

arrangements remain the same; that is,

 and

 .

The makespan of any optimal solution of is at least since the shortest path from

 to

 in has the length of for any . On the other hand, since

 , no vertex of is occupied by any new agent at least for time steps sup-

posing the new agents are moving straight towards their destinations. Together with the fact that

in any optimal solution of the original instance , it is sufficient to occupy for at most time

steps, the makespan of any optimal solution of is exactly .

The construction of the augmentation from the proof of the above lemma is shown in Figure

4. Observe that the construction can easily be extended to include the locking of multiple sets

of locked vertices while different lock time steps may be used for each locked set.

Corollary 2 (makespan preserving set locking). Assume that the preconditions (aa) and (bb)

hold; in addition, assume that the following preconditions hold as well:

(cc) There exists a solution of the instance

 of the

makespan , where .

(dd) There is at least one unoccupied vertex in the selected set at all the time steps

within except time steps with for and

 and it holds that .

Then there exists an instance

 such that and it never

happens that all the vertices of are occupied by the original agents from the set at any time

step within any optimal solution
 ; moreover the makespan of any optimal solution

of is again .

Proof. The construction of is almost the same as in the proof of Corollary 1. The difference is

that the parameter is now set to . The construction then ensures that the makespan of

any optimal solution of is .

 On the Complexity of the Optimal Parallel Cooperative Path-finding

13

The makespan of any optimal solution is at least since the newly added agents must go to

the end of the newly added path. On the other hand, all the vertices of the set need to be oc-

cupied by the original agents within the solution only at time steps that do

not interfere with time steps (since) at which the newly added agents

need to occupy at least one vertex of (supposing they are going directly to their destinations

along the newly added path). Hence, there exists a solution of the makespan of the augmented

instance . Altogether, any optimal solution of has the makespan .

Observe that the original agents are allowed to enter newly added vertices in all the above

augmentations. This may help the original agents to reach their destinations faster (the newly

added vertices may be used as an additional “parking place” for agents). This behavior of agents

is undesirable in the planned reduction where it is needed to isolate the vertex locking mecha-

nism from the original instance. Hence, a slight adaptation of the vertex locking technique must

be used.

Figure 5. An illustration of two-stage vertex locking in an instance of the pCPF problem. Assume that

we want to prevent agents , , and from entering the vertex at time steps 1 and 3. Additionally,

no vertex added by the augmentation can be entered by the original agents , , and . These require-

ments are ensured by the two-stage locking mechanism. First, is locked at time steps 1 and 3 using a

path of new vertices , , , , , and (this stage corresponds to Figure 3). Then and

are locked at time steps and , respectively, by the same technique. The

makespan of any optimal solution of is 5 (the same as of).

v

v

14

Some additional notations are needed to formally express the requirement that the newly

added vertices are not to be used by the original agents. Let

 be an

optimal solution of the pCPF instance over the graph and let . Then the

restriction of the solution
 on the set of vertices is denoted as

 , where

 with

 for

 . Next, let

 be an optimal solution of , then

 , and let be a solution

(not necessarily optimal) of . An augmentation of the instance , where added vertices are

never used, can be expressed by the condition .

Proposition 2 (two-stage vertex locking). Assume that the preconditions (a) and (b) hold. Then

there exists an instance of pCPF

 such that ,

where it never happens that an agent enters at any time step within any optimal

solution and (that is, original agents cannot use any added ver-

tex in any optimal solution).

Note that Proposition 2 (14) is almost the same as Lemma 1 except for the additionally re-

quired condition .

Proof. The basic construction will be adopted from the proof of Lemma 1; then some further

augmentations will be made by successive applications of Corollary 1 to enforce the condition

that .

Let denote the makespan of optimal solutions of . In the first stage, the graph is ex-

tended exactly as in the previous case. That is, a set of vertices

 , where , and a set of edges , ,

 , , , , , , , are added to the graph; that is

 . The set of agents is extended with ; that

is, and the initial and goal arrangements of the new agents are set as follows:

 if and

 if for ;
 if

 and
 if for . As it has been shown, this

construction suffices for satisfying almost all the requirements except .

Now, it is necessary to prevent agents from from entering any of the added vertices .

Observe that locking vertices and suffices to fulfill this requirement since the newly add-

ed vertices form a path around and this is the only vertex through which the path is connected

to the original graph (neighboring vertices of are and). Vertices and need to be

locked for all the time steps except for the time steps at which agents from the set go through

them in the optimal solution – this represents the second-stage locking. More precisely, the

vertex needs to be locked at time steps from the set

 (where) and the vertex

needs to be locked at time steps from the set . Note

that as well as . Moreover, the construction of sets

and ensures that vertices and , respectively, are locked at time steps at which they are

not entered within some solution (which is known to be the optimal solution). Hence, Corollary

 On the Complexity of the Optimal Parallel Cooperative Path-finding

15

1 applies for , the locked vertex , and the set of lock time steps ; that is, the optimal

makespan is preserved. In other words, the vertex locking is synchronized with the vertex lock-

ing from the first stage. Subsequently, Corollary 1 is applied once more for the resulting in-

stance, the locked vertex , and the set of lock time steps . Let

 denote the final instance, then .

The construction from Proposition 2 is illustrated in Figure 5. In fact, it represents a further

augmentation of the instance in Figure 3.

The important property is that the size of all the augmented instances of the problem is

 , where is the optimal makespan (that is, asymptotically as many

as) vertices and agents are added). Consequently, if an augmented instance needs to

be kept small (with respect to), the numbers and must also be small.

Corollary 3 (makespan preserving two-stage vertex locking). Assume that the preconditions

(a), (b), (c), and (d) hold. Then there exists an instance

such that and it never happens that an agent enters the locked vertex at any

time step within any optimal solution
 and (that is, the

original agents cannot use any added vertex in any optimal solution); moreover, the makespan

of any optimal solution of is again .

Proof. The construction from the proof of Proposition 2 can be adopted with a minor change. In

the first stage of the construction of where the construction from the proof of Lemma 1 has

been applied, Corollary 1 is applied instead. This ensures that the intermediate instance after the

first stage locking preserves the makespan of . The rest of the proof can be applied without any

change.

Again, it is not difficult to generalize the construction for locking a subset of a certain size of

a selected set of vertices at given time steps where the original agents can move only in the orig-

inal vertices. These merely technical extensions of Proposition 2 and Corollary 3 are listed as

Proposition 3 and Corollary 4.

Proposition 3 (two-stage set locking). Assume that the preconditions (aa) and (bb) hold. Then

there exists an instance of the problem of pCPF

 such that

 , where it never happens that all the vertices of are occupied by the original agents

from at any time step within any optimal solution
 and

(that is, original agents cannot use any added vertex in any optimal solution).

Proof. The proof will partially adopt the basic idea of the construction from the proof of Propo-

sition 2. The vertex set locking will be done in two stages by means of successive applications

of Corollary 1 to enforce the condition .

Let be the makespan of optimal solutions of the pCPF instance . The first stage of the

augmentation will be performed as in the case of Proposition 2. A set of vertices

 , where , and a set of edges

 are added to the graph; that is
 . The

16

set of agents is extended with a set of new agents ; that is, and

the initial and goal arrangements of the new agents are set as follows:
 if

and
 for some if for ;

 if

 and
 for some if for .

Figure 6. An illustration of two-stage vertex set locking in an instance of the pCPF problem. At least one

vertex of the set must not be occupied by any of the original agents , , and at

time steps 1 and 3. Additionally, no vertex added by the augmentation can be entered by any of the origi-

nal agents. These requirements are ensured by the two-stage set locking mechanism. First, the set is

locked at time steps 1 and 3 by adding a path of new vertices , , , , , and (this stage

corresponds to Figure 4). Then and are locked at time steps and ,
respectively, by the vertex locking technique. The makespan of any optimal solution of is 5 (the same

as of in Figure 4).

To prevent agents from from entering any of the added vertices second-stage vertex

locking must be done. It is sufficient to lock the vertices and since these two vertices are

the only connection points of the original graph with the newly added parts. The vertices and

 need to be locked for all the time steps except for the time steps at which agents of go

through them in the optimal solution. More precisely, the vertex needs to be locked for time

W

W

 On the Complexity of the Optimal Parallel Cooperative Path-finding

17

steps from the set and the vertex needs to be

locked for time steps from the set .

Since (as well as) and the vertex is to be locked

for the time steps at which it is not entered as part of some optimal solution, Corollary 1 applies

for , the locked vertex , and the set of lock time steps . That is, the optimal makespan is

preserved. Again, vertex locking is synchronized with vertex locking from the first stage. Cor-

ollary 1 is subsequently once more applied on the resulting instance with the locked vertex

and the set of lock time steps . Let

 denote the final

instance, then .

The construction of the two-stage vertex locking from the above proof is shown in Figure 6.

As in the case of locking a single vertex, the size of all the augmented instances of the problem

is , where is the optimal makespan of .

Corollary 4 (makespan preserving two-stage set locking). Assume that the preconditions (aa),

(bb), (cc), and (dd) hold. Then there exists an instance

 such

that , and it never happens that all the vertices of are occupied by the original

agents of at any time step within any optimal solution
 ; moreover, the

makespan of any optimal solution of is again and and (that is, the

original agents cannot use any added vertex in any optimal solution).

Proof. The construction of from the proof of Proposition 3 can be adopted with a minor

change. Instead of using the construction from the proof of Lemma 1 in the first stage, Corollary

1 is applied. This ensures that the intermediate instance after the first stage of locking preserves

the makespan of . The rest of the proof can be applied without any change.

3.3. Conjugation – Moving Agents Together to Simulate Propositional Consistency

We will simulate a valuation of variables of the propositional formula by passing certain pass

ways in the graph. There will be two pass ways for each variable – one representing a positive

valuation and the other a negative valuation. Since we need to preserve the propositional con-

sistency (the positive and negative literals of the same propositional variable should have com-

plementary values), a group of agents for valuating a given variable must not be split between

these two pass ways. All the agents must pass either the positive branch or the negative branch.

Hence, we need some technique that would keep a group of agents together even though they

can choose between two alternative pass ways. A technique that ensures such a behavior of

agents will be called a conjugation technique.

 Let be a set of agents to be conjugated. Formally, the conjugation means

that there is an instance of the problem of path-finding for multiple agents

 , where ; , , , are pair-wise disjoint,

 , ,
 (the image of the set by

 is defined naturally:

),
 , and there exists a time step such that with-

in any optimal solution

 either

 or

 holds. That is, at time step the whole group of agents that

18

are conjugated appears either in or . No other cases, in which some of the conjugated

agents appear in and some in , can appear in any optimal solution.

In order to rule out trivial cases of a requirement that

 and

 should be taken into account. That is, agents must go through one of the two alterna-

tive pass ways represented by and . The task is now to build such an instance of the pCPF

problem.

The main idea of the construction is to order the agents of into a queue that starts with an

additional agent called a leading agent. There is a branching in the graph into and ,

which are then joined together, and two leading agents are prepared. The destination for the

leading agents is temporarily closed by the construction from Corollary 1. This prevents the

leading agents from escaping before fulfilling their task. The destination for agents of is ac-

cessible from both the and branch symmetrically. The leading agents have no other

choice than to lead the group of agents to their destinations. Finally, the leading agent has to go

out of the way.

The crucial observation is that if the group of agents is split between both branches, then

the leading agents inevitably block each other causing an obstruction which eliminates any

chance to reach the destinations in time (that is, the solution cannot be finished as optimal).

Hence, the agent must go into one of the branches of or together (they must conjugate).

The formal description of the construction is set out below.

The graph consists of the following sets of vertices:

(called initial vertices),

(called left vertices),

(called right vertices),

(called destination vertices), with

 (called left part of destination vertices)

 (called right part of destination vertices)

(called gate part of destination vertices) and

(called array part of destination vertices),

where is a parameter determining the length of a solution; it is required that . Note

that
 is in fact an array of rows of vertices within . In total, the set of vertices is

 .

The edges of the graph are as follows:

(edges for making a connection between the initial vertices and left/right vertices),

 On the Complexity of the Optimal Parallel Cooperative Path-finding

19

(edges for connecting the remaining left/right vertices),

(edges for connecting the left/right vertices to the gate part of the destination vertices),

(edges for connecting the gate part to the array part of the destination vertices),

(edges for connecting rows of the array part of the destination vertices),

(edges for connecting the last row of the array part in the reversed order);

in total, the set of edges of the graph is

 .

The set of agents is extended with two leading agents and (the left and the right lead-

ing agent); that is, . The initial arrangement of agents is as follows:

 for ;

 and

 . That is, the original agents are placed into

the initial vertices while the leading agents are placed in such a way that original agents can join

either of them. The goal arrangement is:

 for ;

 and

 ; that is, the original agents should finally reach the last row of the array part of

the destination vertices and the leading agents should go out of the way.

The required conjugation of agents into the left and right vertices at a certain time step can

be satisfied if the agents move as follows: all the agents from the set of vertices

 move into the set of vertices

 if the left branch is chosen, or into the

set of vertices

 if the right branch is chosen.

Without loss of generality, suppose the left branch has been chosen. Agents , to-

gether with the leading agent , then move into vertices

 . This is fol-

lowed by the movement of agents towards the last row of the array part of the des-

tination vertices where their order is eventually reversed (if the right branch has been chosen,

no reversing is necessary). Leading agents return to their goal locations in
 and

 at the

same time. The described behavior of agents within the optimal solution is ensured by locking

appropriate vertices at appropriate time steps. That is, the pCPF instance is further extended

with additional agents and vertices used for locking vertices, as shown in the proof of Corollary

1. However, for the sake of simplicity, the description below will be restricted to the original

components of the problem

Thus, the optimal solution for the left branch

 should satisfy

that

 ,

 ,

 , …,

 ,

 ,

 ,

 ,

 , …,

 ,

 ,

 ,

 , …,

 , and

 for ;

 ,

 ,

 ,

 , …,

 ,

 ,

(the left leading agent is going in front of the queue formed by the sequence of agents

), there is no special requirement on
 ,

 , …,
 , indeed

 . Similarly, there is no special requirement on

 for any

20

 . The optimal solution for the right branch

 has

almost the same form. The only difference is that the final reversal of the agents to

fit into the last row of the array part of the destination vertices is not performed. Observe that

the time step at which the conjugation occurs is .

Now, the task is to show that the described behavior is feasible and no other behavior can

occur within any optimal solution. In other words, any optimal solution of the problem has ei-

ther the form of the solution for the left branch or the solution for the right branch.

Figure 7. A conjugation instance of the pCPF problem. The conjugation instance
 shown in the figure

is constructed with respect to a set of agents and a parameter . The agents are

restricted in their movements using vertex locking – namely, the initial vertices
 ,

 ,
 , and

 can be

entered only at time step 0; the vertices
 ,

 ,
 , and

 can be entered only at time step 8; and the

vertices
 and

 can be entered only at time step 14. These conditions enforce that the agents , ,

 , and are located either in vertices
 ,

 ,
 , and

 or in vertices
 ,

 ,
 , and

 at time step

1 in any optimal solution of
 .

The first row of the array part of the destination vertices, that is, vertices

 , is

locked (closed for entering) for all the time steps except for time step . At this time step,

all the agents are entering the array part of the destination vertices. Then they con-

tinue towards their goal locations and hence vertices

 can be locked again for

allowed at time step 0

allowed at time step 8

allowed at time step 14

…

…

 On the Complexity of the Optimal Parallel Cooperative Path-finding

21

the remaining time steps. The vertices
 and

 are locked for all the time steps except the

time step . Similarly, the initial vertices are locked for all the time steps except for

time step .

At the time of opening the first row of the array part of the destination vertices (at time step

), all the agents must reside in the vertices

 (eventually in the

reverse order). Otherwise, they have no chance to reach their goal locations at all. Then, the

fastest way to reach their goal locations starting from vertices

 is to exactly follow

the shortest paths to the last row of the array part of the destination vertices (all these paths are

of the same length). Since , which is enough time steps for the leading agents to reach

their destination locations; the motion of agents within the array part of the destina-

tion vertices represents the bottleneck.

It remains to check the behavior of agents before time step . Since the initial vertices

are only allowed to be occupied at time step , the agents must enter the left or the

right vertices immediately at the next time step. Between time steps and , it is impossi-

ble to swap agents in the currently accessible part of the graph since it consists of a single path.

Hence, if the agents split between the left and the right vertices, then they cannot be

arranged into vertices

 in the required order, because they are obstructed by the

leading agents and .

The just described instance will be called a conjugation instance of the pCPF problem. Note

that the instance is parameterized by a set of agents and an integer parameter . An

instance of the problem corresponding to the given parameters will be denoted as
 . Note fur-

ther that the makespan of any optimal solution of
 is . It is easy to see

that the size of
 is , which is .

An example of a conjugation instance is shown in Figure 7. Although some edges of the con-

jugation instance intersect, it is just a matter of a graph drawing in a plane. There is actually no

interference between agents traversing edges that intersect (notice further that pCPF may take

place in high dimensional spaces that cannot be drawn in a plane without intersecting an edge).

3.4. NP-completeness of pCPF

All the ingredients have been prepared to prove that a decision version of the optimal pCPF is

 -complete. The membership in will be checked first. Subsequently, a polynomial time

reduction of a propositional satisfiability instance (SAT) [1] to the instance of the decision

version of the optimal pCPF will be constructed.

Definition 3 (decision version of pCPF). A decision version of the optimal pCPF is a task de-

signed to decide whether, for a given instance of pCPF and a number , there exists a

solution of the makespan at most . A notation will be used for the decision instance.

Next, let denote the language of positive instances of this problem. □

It is not that easy to see that , since no upper bound on the size of the solution

of has so far been established. Hence, the standard technique of “guessing and check-

ing” cannot be used immediately. Note that decision variants of several related sliding piece

problems [10] such as the Sokoban game [4] and the Rush-hour puzzle [7] are proven to be

 -complete [8, 9] but it is not known whether they are in . The reason is that the pol-

22

ynomial upper bound on the size of the solution has not yet been found. Fortunately, this is not

the case of . It is possible to establish the polynomial upper bound on the size of the

solution of using results shown in [13].

Lemma 3. .

Proof. It has been shown in [13] that there exists a solution

 for any

solvable instance of the problem of PMG

 such that (

is regarded as a function of here). Since the solution of an instance of PMG can be used as a

solution of the corresponding pCPF instance (Proposition 1), it implies that there exists a solu-

tion

 for any solvable instance of the problem of pCPF

 such that (is also regarded a function of). An instance of

 can be solved on a Turing machine with an oracle in polynomial time as follows.

A solution of the size of is generated first by the oracle. Then, the generated solution

is checked as to whether its makespan is at most and whether it satisfies Definition 2. This

check can be carried out in polynomial time with respect to the size of .

 Propositional satisfiability is a decision problem where the question is whether a given prop-

ositional formula has a satisfying valuation or not. As it is usual, propositional formulas in a

conjunctive normal form (CNF) [12] are considered. Let denote the language of satisfiable

instances of propositional formulas in CNF as it is formalized in the following definition.

Definition 4 (propositional satisfiability –). A propositional variable is a variable that can

be evaluated as either or . A literal is a propositional variable or its negation. A

clause is a disjunction of literals; that is,

 , where and is a literal for

 . A propositional formula in CNF is a conjunction of clauses; that is,

 , where

 and is a clause for . Let denote the set of propositional varia-

bles of the CNF formula , then the valuation of variables of is an assignment

 . The valuation of variables is naturally extended from variables to literals,

clauses, and the complete CNF formula. The propositional satisfiability problem (SAT) is a

decision problem where the question is whether a given formula in CNF has a valuation of its

variables so that evaluates to under this valuation. □

If the CNF formula has a satisfying valuation, then is said to be satisfiable or, otherwise,

it is said to be unsatisfiable (examples of several propositional formulae in CNF are shown in

Figure 8). It is well known that is -complete. However, a slight technical adaptation of

propositional satisfiability is necessary to carry out the required reduction to pCPF. A restriction

on formulas in CNF where positive and negative literals of the same variable have the same

number of occurrences in the formula will be made. Let the language of satisfiable formulas that

comply with this restriction be denoted as (see Figure 8 again).

Definition 5 (equality propositional satisfiability –). Let be a propositional formula in

CNF. Next, let with denote the set of positive occurrences of in and,

similarly, let denote a set of negative occurrences of in . The equality proposi-

 On the Complexity of the Optimal Parallel Cooperative Path-finding

23

tional satisfiability problem () is a decision problem where the question is whether a given

formula in CNF such that for every is satisfiable or

not. □

Lemma 4. is -complete.

Proof. With respect to the membership in , the restriction makes no change; thus

 . Any instance of can be reduced to an instance of by adding clauses to balance

the number of positive and negative literals of the same variable. The added clauses should pre-

serve equisatisfiability of the resulting formula with the original one.

Figure 8. Examples of propositional formulae in CNF. Three formulae , , and are shown. is

unsatisfiable while the other two are satisfiable. Positive and negative occurrences of literals in the formu-

lae are depicted. Note that the number of positive and negative occurrences of in is unbalanced; that

is, (satisfiable but syntactically incorrect). The result of the rebalancing of is

(both satisfiable and syntactically correct).

 Let be a formula in CNF and let be a variable with unbalanced positive and negative

occurrences. Without loss of generality, let . Then a clause

 , where is a new variable, is added to . Now as well as

the newly added have the same number of positive and negative occurrences. Clearly, the

resulting formula is equisatisfiable with since the newly added clause is always satisfied. The

unsatisfiable

satisfiable with , ,

satisfiable with , , ,

24

described process should be done for all the unbalanced variables. The length of the resulting

formula is at most twice that of , thus the reduction can be done in polynomial time.

Theorem 1. is -complete.

Proof. It remains to prove that is -hard. A polynomial time reduction of to

 will be used. Let be a formula in CNF, that is,

 , where

 is the

 -th literal of the -th clause; there are clauses, where the -th clause has literals.

Assume further that that each variable has the same number of positive and negative occur-

rences in . Let denote the set of propositional variables of . An instance

 of the decision version of the optimal pCPF for will be constructed in the

following way. Every occurrence of a literal in will be associated with a vertex. Thus, a set of

vertices

 is constructed (

 is a symbol while
 is a variable standing for a

literal); a vertex
 corresponds to an occurrence of a literal

 in the -th clause as the -th dis-

junct. A conjugation instance of pCPF will be associated with each propositional variable of

while left and right vertices of the conjugation graph will be one-to-one matched to vertices

from that correspond to negative and positive occurrences of the variable, respectively. This

is possible since there is the same number of positive and negative occurrences of each variable

in (a conjugation graph has the same number of left and right vertices).

The idea is to prepare a group of agents of the size for each

propositional variable . This group of agents will be placed in the initial vertices of

the conjugation subgraph corresponding to . The construction of the conjugation subgraph will

enforce that all the agents must go either into the vertices corresponding to positive literals or

into the vertices corresponding to negative literals. If the movement of agents is interpreted in

the way that literals corresponding to vertices of visited at time step 1 will be assigned the

same propositional value, then the conjugation technique assures propositional consistency of

the assignment. However, this is not enough to establish correspondence between an assignment

satisfying and a solution of . It is furthermore necessary to make agents simulate clause

satisfaction by means of any solution whose makespan is at most .

This can be done by enforcing agents either to visit at least one literal/vertex of each clause

of (in cases when the visited literals/vertices are assigned the value) or leave at least

one literal/vertex of each clause of unoccupied at time step 1 (in cases where the visited liter-

als/vertices are assigned the value). Since the second option can easily be implemented

through the vertex set locking mechanism (Proposition 3, Corollary 4), the value will be

used for literals corresponding to vertices visited at time step 1.

Nevertheless, some technical details such as the exact specification of need to be dis-

cussed. Equality between makespans of optimal solutions over the individual conjugation in-

stances needs to be established.

Recall that a conjugation instance
 is characterized by two parameters: – the set conju-

gated agents and – parameter affecting the makespan of the optimal solution of the instance.

Let . For a given , the conjugation

instance

 will have the parameters

 and

 On the Complexity of the Optimal Parallel Cooperative Path-finding

25

 . Hence, the makespan of any optimal solution of the conjugation

instance

 is .

Figure 9. A polynomial time reduction of a propositional formula to a decision instance of pCPF. A

formula is transformed to a formula in which each variable has the same number of positive and

negative occurrences. Subsequently, an instance of the decision version of the problem of pCPF is

constructed. The conjugation technique is used to simulate propositional consistency and the set locking

technique is used to simulate clause satisfaction (the reduction of one variable using the conjugation tech-

nique and the reduction of one clause using the set locking technique are shown). There exists a solution

of of the makespan if and only if the formula is satisfiable.

1 2 3

1 2 3

1 2 3

26

Left and right vertices of

 are matched with vertices from as follows:

 and

 . Now, a crucial observation has to be made. It holds that

 is satisfiable if and only if there exists a solution of the currently constructed instance of the

makespan of such that at time step 1 at least one vertex from the set of vertices corre-

sponding to each clause remains unoccupied.

Let be a satisfying valuation of . If , then

agents

 are placed in

 at time step 1; if

then they are placed in

 at time step 1. The placement of agents at time steps

other than 1 is straightforward. Since is the satisfying assignment, at least one vertex from the

set of vertices corresponding to each clause remains unoccupied. On the other hand, Corollary 4

can be used to augment the instance to enforce that at least one vertex from the set of vertices

that corresponds to literals of a clause is not occupied by agents from the set

within any optimal solution while the makespan of remains preserved. That is, Corol-

lary 4 is invoked with

 that corresponds to satisfying the th clause of . Let

 denote the resulting instance. Any solution of the makespan of of satisfies condi-

tions at time step 1 and hence it induces a satisfying assignment of .

The construction of requires polynomial time in the size of ; the size of is also poly-

nomial (the size of each conjugation subgraph is polynomial in the size of and the number of

conjugation subgraphs is bounded by the size of). Now, if has a solution of the makespan

 then it is ensured that conjugation and clause satisfaction has been successfully

simulated, thus a satisfying valuation of can easily be derived from this solution. Hence,

 if and only if . Together with Lemma 3 the claim that is

 -complete has been obtained.

The reduction described in the proof is illustrated in Figure 9. The illustration shows the in-

stantiation of the conjugation mechanism over a single variable. Figure 9 also represents the

connection of the simulation of clause satisfaction to the conjugation mechanism.

4. Related Works and Conclusion

A parallel version of the cooperative path-finding problem (pCPF) is introduced in this paper.

The new theoretical result shown in this paper is that the decision version of the optimal pCPF

is NP-complete. The parameter, which is optimized, is the makespan, that is the maximum of

arrival times to a destination over all the agents.

The reduction of propositional satisfiability to pCPF has been used for the proof of

NP-hardness. Numerous techniques to simulate propositional consistency and clause satisfaction

within pCPF were developed in this work. These techniques were inspired by works on multi-

commodity flows [6]. We assume the existence of developed techniques generic enough to be

used in different contexts. Vertex locking and conjugation techniques have recently been used in

the proof of NP-hardness designed to check the existence of a winning strategy in the so-called

adversarial CPF (ACPF) [29]. ACPF is CPF with multiple teams of agents that compete in

reaching their goals.

 On the Complexity of the Optimal Parallel Cooperative Path-finding

27

The finding that optimal pCPF is NP-complete is rather negative. Fortunately, if the re-

quirement on the shortest possible makespan of solutions is relaxed, the problem becomes trac-

table. In particular, it belongs to the P class. However, the situation is not as straightforward.

Although algorithms developed for solving PMG/CPF [13, 37] can be used for solving pCPF,

this practice is disadvantageous. Despite a promising theoretical makespan of of solu-

tions generated by these algorithms, the makespan measured empirically is relatively high [28]

due to a large constant in the estimation. Therefore, alternative solving sub-optimal algorithms

for pCPF producing better solutions (so called BIBOX algorithms) and solution-improving tech-

niques have been proposed [23, 24, 25, 28]. Recently, there has been a considerable develop-

ment in sub-optimal algorithms for CPF represented by works [30].

An important related work is referred to in articles [30, 31, 32, 33]. Its authors study a ver-

sion of pCPF similar to the one presented in this paper. The authors define a tractable class of

this problem where graphs are restricted to grids and there is a relative abundance of unoccupied

vertices.

Several attempts to find an optimal solution of the standard non-parallel CPF have been

made. An algorithm based on A* has been presented in [21]. The algorithm is suitable for CPF

instances with few agents and a plenty of free space in the graphs. An alternative approach to

solving CPF optimally is to translate CPF to SAT, as has been suggested in [30]. Interestingly,

SAT-based methods seem to be complementary to A* since they perform well on densely occu-

pied instances.

An interesting question for future work is whether it is feasible to find a solution of a pCPF

instance that is constantly worse than the optimum. Currently, it is an open question whether

such an approximation algorithm exists. The answer to this question will therefore provide an

estimate of how far from the optimum the solutions generated by algorithms for the

non-optimization case of the problem are. Thus, an estimate of the makespan of the optimal

solution of large instances would also be made available.

Glossary

PMG pebble motion on a graph

 an undirected graph; denotes a set of vertices; denotes a set of edges

 a set of pebbles

 the number of pebbles

 a pebble

 the initial arrangement of pebbles

 the goal arrangement of pebbles

 the arrangement of pebbles at time step

 the makespan of a solution of PMG and a sequence of pebble arrangements

 a sequence of arrangements of pebbles forming a solution of PMG

 an instance of PMG

 a solution to the instance of PMG

CPF cooperative path-finding

pCPF parallel cooperative path-finding

 a set of agents

 the number of agents

28

 an agent

 the initial arrangement of agents

 the goal arrangement of agents

 the arrangement of agents at time step

 the makespan of a solution of pCPF

 the makespan of an optimal solution of pCPF

 a sequence of arrangements of agents forming a solution of pCPF

 an instance of pCPF

 a solution to the instance of pCPF

 a set of solutions of a pCPF instance

 a set of makespan optimal solutions of a pCPF instance

 a conjugation instance of pCPF; is the length of a solution

 a language consisting of pairs where is a pCPF solvable by solution of

the makespan at most

 a language consisting of satisfiable propositional formulas in CNF

 a subset of where each variable has the same number of positive and

negative occurrences

 a propositional formula in CNF

 a propositional formula in CNF where each variable has the same number of

its positive and negative occurrences

 a set of positive occurrences of a propositional variable in

 a set of negative occurrences of a propositional variable in

 the restriction of an object on a set of vertices

 newly added vertices

 newly added edges

 newly added agents

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms, and applications.

Prentice Hall, 1993, ISBN 978-0136175490.

2. S. A. Cook. The Complexity of Theorem Proving Procedures. Proceedings of the 3rd Annual ACM

Symposium on Theory of Computing (STOC 1971), pp. 151-158, ACM Press, 1971.

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (Second edi-

tion). MIT Press and McGraw-Hill, 2001, ISBN 0-262-03293-7.

4. J. C. Culberson. Sokoban is PSPACE-complete. Technical Report TR 97-02, Department of Compu-

ting Science, University of Alberta, 1997, http://webdocs.cs.ualberta.ca/~joe/Preprints/Sokoban/ in-

dex.html [accessed April 2010].

5. J. D. Dixon and B. Mortimer. Permutation Groups. in Graduate Texts in Mathematics, Volume 163,

Springer, 1996, ISBN 978-0-387-94599-6.

6. S. Even, A. Itai, A. Shamir. On the Complexity of Timetable and Multicommodity Flow Problems.

SIAM Journal on Computing, Volume 5 (4), pp. 691-703, Society for Industrial and Applied Math-

ematics, 1976.

http://webdocs.cs.ualberta.ca/~joe/Preprints/Sokoban/%20index.html
http://webdocs.cs.ualberta.ca/~joe/Preprints/Sokoban/%20index.html

 On the Complexity of the Optimal Parallel Cooperative Path-finding

29

7. G. W. Flake, E. B. Baum. Rush Hour is PSPACE-complete, or "Why you should generously tip

parking lot attendants". Theoretical Computer Science, Volume 270(1-2), pp. 895-911 Elsevier,

2002.

8. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., 1979, ISBN: 978-0716710455.

9. R. A. Hearn and E. D. Demaine. PSPACE-completeness of sliding-block puzzles and other prob-

lems through the nondeterministic constraint logic model of computation. Theoretical Computer Sci-

ence, Volume 343(1-2), pp. 72-96, Elsevier, 2005.

10. E. Hordern. Sliding Piece Puzzles. Oxford University Press, 1986, ISBN: 978-0198532040.

11. M. Ivanová, P. Surynek. Adversarial Cooperative Path-Finding: A First View. The 27th AAAI
Conference on Artificial Intelligence (AAAI 2013), Bellevue, WA, USA, late breaking track, tech-
nical report, AAAI Press, 2013

12. P. Jackson, D. Sheridan. Clause Form Conversions for Propositional Circuits. Theory and Applica-

tions of Satisfiability Testing, 7th International Conference (SAT 2004), Revised Selected Papers,

pp. 183–198, Lecture Notes in Computer Science 3542, Springer 2005.

13. D. Kornhauser, G. L. Miller, and P. G. Spirakis. Coordinating Pebble Motion on Graphs, the Di-

ameter of Permutation Groups, and Applications. Proceedings of the 25th Annual Symposium on

Foundations of Computer Science (FOCS 1984), pp. 241-250, IEEE Press, 1984.

14. C. H. Papadimitriou, P. Raghavan, M. Sudan, and H. Tamaki. Motion Planning on a Graph. Pro-

ceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pp.

511-520, IEEE Press, 1994.

15. D. Ratner and M. K. Warmuth. Finding a Shortest Solution for the N×N Extension of the

15-PUZZLE Is Intractable. Proceedings of the 5th National Conference on Artificial Intelligence

(AAAI 1986), pp. 168-172, Morgan Kaufmann Publishers, 1986.

16. D. Ratner and M. K. Warmuth. NxN Puzzle and Related Relocation Problems. Journal of Symbolic

Computation, Volume 10 (2), pp. 111-138, Elsevier, 1990.

17. M. R. K. Ryan. Graph Decomlocation for Efficient Cooperative path-finding. Proceedings of the

20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2003-2008, IJCAI

Conference, 2007.

18. M. R. K. Ryan. Exploiting Subgraph Structure in Cooperative path-finding. Journal of Artificial In-

telligence Research (JAIR), Volume 31, pp. 497-542, AAAI Press, 2008.

19. P. E. Schupp and R. C. Lyndon. Combinatorial group theory. Springer, 2001, ISBN 978-3-540-

41158-1.

20. D. Silver. Cooperative Pathfinding. Proceedings of the 1st Artificial Intelligence and Interactive

Digital Entertainment Conference (AIIDE 2005), pp. 117-122, AAAI Press.

21. T. Standley. Finding Optimal Solutions to Cooperative Pathfinding Problems. Proceedings of the

24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 173-178, AAAI Press, 2010.

22. P. Surynek. A Novel Approach to Path-finding for Multiple Agents in Bi-connected Graphs. Pro-

ceedings of the 2009 IEEE International Conference on Agentics and Automation (ICRA 2009), pp.

3613-3619, IEEE Press, 2009.

23. P. Surynek. Towards Shorter Solutions for Problems of Path-finding for Multiple Agents in θ-like

Environments. Proceedings of the 22nd International FLAIRS Conference (FLAIRS 2009), pp. 207-

212, AAAI Press, 2009.

24. P. Surynek. Making Solutions of Cooperative path-finding Problems Shorter Using Weak Translo-

cations and Critical Path Parallelism. Proceedings of the 2009 International Symposium on Combi-

natorial Search (SoCS 2009), University of Southern California, 2009, http://www.search-

conference.org/index.php/Main/SOCS09 [accessed July 2009].

http://www.search-conference.org/index.php/Main/SOCS09
http://www.search-conference.org/index.php/Main/SOCS09

30

25. P. Surynek. An Application of Pebble Motion on Graphs to Abstract Cooperative path-finding. Pro-

ceedings of the 21st International Conference on Tools with Artificial Intelligence (ICTAI 2009), pp.

151-158, IEEE Press, 2009.

26. P. Surynek. An Optimization Variant of Cooperative path-finding is Intractable. Proceedings of the

24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 1261-1263, AAAI Press, 2010.

27. P. Surynek. Towards Optimal Cooperative Path Planning in Hard Setups through Satisfiability

Solving. Proceedings of 12th Pacific Rim International Conference on Artificial Intelligence

(PRICAI 2012), pp. 564-576, LNCS 7458, Springer, 2012.

28. P. Surynek. Solving Abstract Cooperative Path-Finding in Densely Populated Environments. Com-

putational Intelligence, Volume 30, Issue 2, pp. 402-450, Wiley, 2014.

29. R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing, Vol-

ume 1 (2), pp. 146-160, Society for Industrial and Applied Mathematics, 1972.

30. K. C. Wang and A. Botea. Tractable Cooperative path-finding on Grid Maps. Proceedings of the

21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 1870-1875, IJCAI

Conference, 2009.

31. K. C. Wang. Bridging the Gap between Centralised and Decentralised Multi-Agent Pathfinding.

Proceedings of the 14th Annual AAAI/SIGART Doctoral Consortium (AAAI-DC 2009), pp. 23-24,

AAAI Press, 2009.

32. K. C. Wang and A. Botea. Fast and Memory-Efficient Multi-Agent Pathfinding. Proceedings of the

Eighteenth International Conference on Automated Planning and Scheduling (ICAPS 2008), Austral-

ia, pp. 380-387, AAAI Press, 2008, ISBN 978-1-57735-386-7.

33. K. C. Wang and A. Botea. Scalable Multi-Agent Pathfinding on Grid Maps with Tractability and

Completeness Guarantees. Proceedings of the European Conference on Artificial Intelligence (ECAI

2010), IOS Press, 2010.

34. D. B. West. Introduction to Graph Theory. Prentice Hall, 2000, ISBN: 978-0130144003.

35. J. Westbrook, R. E. Tarjan. Maintaining bridge-connected and biconnected components on-line.

Algorithmica, Volume 7, Number 5&6, pp. 433–464, Springer, 1992.

36. B. de Wilde, A. ter Mors, C. Witteveen. Push and rotate: cooperative multi-agent path planning.

Proceedings of International conference on Autonomous Agents and Multi-Agent Systems (AAMAS

2013), pp. 87-94, IFAAMAS, 2013.

37. R. M. Wilson. Graph Puzzles, Homotopy, and the Alternating Group. Journal of Combinatorial The-

ory, Ser. B 16, pp. 86-96, Elsevier, 1974.

