
Near Optimal Cooperative Path Planning in Hard
Setups through Satisfiability Solving
Pavel Surynek

Charles University in Prague, Czech Republic
and Kobe University, Japan

Problem of Cooperative Path-planning (CPP)
 Abstraction for tasks of motion of multiple (autonomous or passive)

entities in a certain environment (real or virtual).

 Entities are given an initial and a goal arrangement in the
environment.

 We need to plan movements of entities in time, so that entities
reach the goal arrangement while physical limitations are observed.

 Physical limitations are:
 Entities must not collide with each other.

 Entities must not collide with obstacles in the environment.

 Cooperative path-planning is also known as:
 pebble motion on a graph

 path-planning for multiple robots

 Certain slight variations in the definition allows higher
parallelism

Pavel Surynek JSAI 2012

CPP – Formal definition (1)
Wilson, 1974; Kornhauser et al., 1984; Ryan, 2008

 A popular moving puzzle, that can be abstracted
as the problem of cooperative path-planning is
known as Lloyd’s fifteen.
 Entities are represented by pebbles/agents labeled

by numbers.

 The environment is modeled as an undirected graph where
vertices represent locations in the environment occupied by
agents and edges enable agents to go to the neighboring location.

 Formal definition of the task of CPP
 It is a quadruple Π = (G, A, SA

0, SA
+), where:

 G=(V,E) is an undirected graph,
 A = {a1,a2,...,aμ}, where μ<|V| is a set of agents,
 SA

0: A V is a uniquely invertible function determining the initial
arrangement of agents in vertices of G, and

 SA
+: A V is a uniquely invertible function determining the goal

arrangement of agents in vertices of G.

Pavel Surynek JSAI 2012

CPP – Formal Definition (2)
Wilson, 1974; Kornhauser et al., 1984; Ryan, 2008

 Time is discrete in the model. Time steps and their ordering is
isomorphic to the structure of natural numbers.

 The dynamicity of the task is as follows:
 An agent occupying a vertex at time step i can move into a

neighboring vertex (the move is finished at time step i+1) if the
target vertex is unoccupied at time step i and no other agent is
moving simultaneously into the same target vertex

 For the given Π = (G, A, SA
0, SA

+), we need to find:

 A sequence of moves for every agent such that dynamicity
constraint is satisfied and every agent reaches its goal vertex.

v1

v2

v3

v5

v4

v8

v7
1

2

3

SA
0 SA

+

v6 v9

v1

v2

v3

v5

v4

v8

v7

2

3

v6 v9
1

M1=[v1, v4, v7, v8, v9, v9, v9]

M2=[v2, v2, v1, v4, v7, v8, v8]

M3=[v3, v3, v3, v2, v1, v4, v7]

makespan=7

1 2 3 4 5 6 7

Time step:

Solution of an instance of cooperative

path-planning on a graph with A={1,2,3}

Pavel Surynek JSAI 2012

Motivation
 Container rearrangement

(entity = container)

 Heavy traffic
(entity = automobile (in jam))

 Data transfer
(entity = data packet)

 Generalized lifts
(entity = lift)

Pavel Surynek JSAI 2012

Is the task of CPP easy or hard?
 Basic variant of the task is easy to solve (makespan sub-

optimal solution):
 There exists an algorithm with worst case time complexity of

O(|V|3) that generates solutions of the makespan O(|V|3) for any
instance of CPP on G=(V,E) (Kornhauser et al., 1984).

 If we want a solution that has the makespan as short as
possible the complexity increases:
 The optimization variant of the CPP problem is NP-hard (Ratner a

Warmuth, 1986)

 Shown for the generalized Lloyd’s puzzle (known as (N2-1)-
puzzle).

 We focused on generating and improving sub-optimal
solutions towards optimal makespan

Pavel Surynek JSAI 2012

COBOPT – CPP as Propositional Satisfiability
 Suppose that we are able to construct a propositional formula

such that
 It is satisfiable iff there exists a solution to CPP of a given makespan

 Suppose that we are provided with makespan suboptimal
solution (base solution – can be generated in polynomial time)
 we can find makespan optimal replacement of the given sub-sequence of

the base solution using:
 propositional satisfiability solving + binary search (or some other type of

search where query = SAT solving for the given makespan)

Pavel Surynek JSAI 2012

Base solution

Time steps

Optimized
solution

SAT solving

Next
iteration

makespan

Inverse Encoding of CPP
 Makespan m is given

 encode states of the planning world at time steps 1,2,…,m
 state at the time step 1 is enforced to be equal to the initial state
 state at the time step m is enforced to be equal to the goal state

 Inverse encoding encodes “what agent is located in the given vertex”
 The state at the given time step i is described by the following integer

variables for each vV:
 Av

i{0,1,2,…, μ} with the interpretation that
 Av

i = j iff the agent aj is located in v at the time step i or
 Av

i = 0 iff there is no agent in v
 Tv

i {0,1,2,…, 2deg(v)} with the interpretation that
 0 < Tv

i ≤ deg(v) iff the agent goes out of v into (Tv
i)-th neighbor

 deg(v)≤ Tv
i ≤ 2deg(v) iff the agent goes into v from

 ((Tv
i)-deg(v))-th neighbor

 Tv
i = 0 iff no-operation is selected for v

 Plus constraints to enforce valid transitions between states

Pavel Surynek JSAI 2012

a
v

u
deg(u)=4

deg(v)=4
1st

2nd

3rd

4th

1st

2nd

3rd

4th

Tv
i = 3

Tu
i = 5

Translating to Propositional Satisfiability
 Each integer variable is encoded as a bit-vector where each

bit is represented by a propositional variable
 for example Av

i{0,1,2,…, μ} is encoded using log2(μ+1)
propositional variables

 extra states induced by the upper integer part are forbidden

 Notice: a bit-vector must take some of the values from its
domain
 each Tv

i must be assigned a value … in each vertex it must be
decided what action is selected (no-op, incoming, outgoing)

 ensures that agents do not collide with each other and
maintains the frame

 Implications of the form Tv
i = constant Au

i+1 = constant
 translated using auxiliary propositional variables

Pavel Surynek JSAI 2012

All-Different Encoding of CPP
 If the environment contains few agents relatively to its size

 inverse encoding contains lot of variables for empty space

 All-Different encoding encodes “where is the given agent”

 The state at the given time step i is described by the following
integer variables for each aA :
 La

i{1,2,…, |V|} with the interpretation that
La

i = j iff the agent a is located in the j-th vertex of the graph G

 The requirement that there is at most one agent per vertex is
modeled as All-Different(La1

i, La2
i, …, Laμ

i)
 Other constraints are more complicated

 it is necessary to express that agents can move along edges only

 and that target vertex of the movement must be empty

 Augmenting by heuristics
 some vertices are unreachable by the agent in the given time step

 Pavel Surynek JSAI 2012

Encoding Size Comparison

 Two setups grid of size 8x8 and 16x16

 random initial and goal arrangement of agents

Pavel Surynek JSAI 2012

|A| in the
4-connected

grid 88

Number of
layers

SATPLAN

encoding

SASE

encoding

INVERSE

encoding

ALL-DIFFERENT

encoding

|Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses|

4 8 5864 55330 11386 53143 5400 38800 11128 54356

8 8 10022 165660 19097 105724 5920 48224 25136 114952

12 8 14471 356410 26857 168875 5920 46176 42024 181788

16 10 30157 1169198 51662 372140 8122 76192 79008 326736

24 10 43451 2473813 73101 588886 8122 71072 140400 537528

32 14 99398 8530312 157083 1385010 12396 137120 309824 1120672

|A| in the
4-connected
grid 1616

Number of
layers

SATPLAN

encoding

SASE

encoding

INVERSE

encoding

ALL-DIFFERENT

encoding

|Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses|

4 21 69704 746562 137406 677737 60755 478462 122368 827628

8 15 65365 995507 134482 712352 46904 412416 178816 1174616

16 18

Out of memory

342100 2347456 61154 611328 469888 2928336

32 4* 288498 2716096 13672 143104 197888 1101600

40 4* 357762 3783672 13672 134912 265280 1415080

64 4* 561210 5913320 14700 189440 510464 2446912

Makespan Comparison – grid 8x8
 Compared against WHCA*

 WHCA* is decoupled
 often produces near makespan optimal

Pavel Surynek JSAI 2012

0

20

40

60

80

0 4 8 12 16 20 24

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Makespan|Grid 8x8|few agents

Base solution

WHCA*

Inverse

All-different

0

200

400

600

28 32 36 40 44 48 52

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Makespan|Grid 8x8|many agents

Base solution

Inverse

All-different

Makespan Comparison – grid 16x16

Pavel Surynek JSAI 2012

0

40

80

120

160

0 4 8 12 16 20 24 28 32 36 40

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Makespan|Grid 16x16|few agents

Base solution

WHCA*

Inverse

All-different

0

200

400

600

800

1000

48 64 80 96 112 128

N
u

m
b

er
 o

f
ti

m
e

st
ep

s

Makespan|Grid 16x16|many agents

Base solution

Inverse

All-different

Parallelism Increasing

Pavel Surynek JSAI 2012

1

14

28
42

0

100

200

300

400

0
8

16
24

N
u

m
b

er
 o

f
m

o
ve

s

Parallelism

Original Paralellism
Grid 8x8

1

14

28
42

0

100

200

0
8

16
24

N
u

m
b

er
 o

f
m

o
ve

s

Parallelism

Optimized Paralellism
Grid 8x8

1

24

48

88
0

100

200

0
16

32
48

64
80

N
u

m
b

er
 o

f
m

o
ve

s

Parallelism

Original Paralellism
Grid 16x16

1

32

56
104

0

10

20

30

40

0
16

32
48

64
80

N
u

m
b

er
 o

f
m

o
ve

s

Parallelism

Optimized Paralellism
Grid 16x16

|Agents| |Agents|

|Agents| |Agents|

Concluding Remarks
 Improving sub-optimal solutions of cooperative path-planning by

modeling the problem as propositional satisfiability.

 COBOPT: short subsequences of a sub-optimal solution are replaced
by the makespan optimal ones.

 Two encodings (and its variants)

 Inverse encoding

 better in densely populated environments

 All-Different encoding

 better in sparsely populated environments

 COBOPT solution optimization together with both encodings
represents state-of-the-art in generating short solutions to CPP

Pavel Surynek JSAI 2012

