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Problem of Cooperative Path-planning (CPP) 
 Abstraction for tasks of motion of multiple (autonomous or passive) 

entities in a certain environment (real or virtual). 

 Entities are given an initial and a goal arrangement in the 
environment. 

 We need to plan movements of entities in time,  so that entities 
reach the goal arrangement while physical limitations are observed. 

 Physical limitations are: 
 Entities must not collide with each other. 

 Entities must not collide with obstacles in the environment. 

 Cooperative path-planning is also known as: 
 pebble motion on a graph 

 path-planning for multiple robots 

 Certain slight variations in the definition allows higher 
parallelism 
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CPP – Formal definition (1) 
Wilson, 1974; Kornhauser et al., 1984; Ryan, 2008 

 A popular moving puzzle, that can be abstracted 
as the problem of cooperative path-planning is 
known as Lloyd’s fifteen. 
 Entities are represented by pebbles/agents labeled 

by numbers. 

 The environment is modeled as an undirected graph where 
vertices represent locations in the environment occupied by 
agents and edges enable agents to go to the neighboring location. 

 Formal definition of the task of CPP 
 It is a quadruple Π = (G, A, SA

0, SA
+), where: 

 G=(V,E) is an undirected graph, 
 A = {a1,a2,...,aμ}, where μ<|V| is a set of agents, 
 SA

0: A V is a uniquely invertible function determining the initial 
arrangement of agents in vertices of G, and 

 SA
+: A V is a uniquely invertible function determining the goal 

arrangement of agents in vertices of G. 
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CPP – Formal Definition (2) 
Wilson, 1974; Kornhauser et al., 1984; Ryan, 2008 

 Time is discrete in the model. Time steps and their ordering is 
isomorphic to the structure of natural numbers. 

 The dynamicity of the task is as follows: 
 An agent occupying a vertex at time step i can move into a 

neighboring vertex (the move is finished at time step i+1) if the 
target vertex is unoccupied at time step i and no other agent is 
moving simultaneously into the same target vertex 

 For the given Π = (G, A, SA
0, SA

+), we need to find: 

 A sequence of moves for every agent such that dynamicity 
constraint is satisfied and every agent reaches its goal vertex. 
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Time step: 

Solution of an instance of cooperative 

path-planning on a graph with A={1,2,3} 
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Motivation 
 Container rearrangement 

(entity = container) 

 Heavy traffic 
(entity = automobile (in jam)) 

 Data transfer 
(entity = data packet) 

 Generalized lifts 
(entity = lift)  
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Is the task of CPP easy or hard? 
 Basic variant of the task is easy to solve (makespan sub-

optimal solution): 
 There exists an algorithm with worst case time complexity of 

O(|V|3) that generates solutions of the makespan O(|V|3) for any 
instance of CPP on G=(V,E) (Kornhauser et al., 1984). 
 

 If we want a solution that has the makespan as short as 
possible the complexity increases: 
 The optimization variant of the CPP problem is NP-hard (Ratner a 

Warmuth, 1986) 

 Shown for the generalized Lloyd’s  puzzle (known as (N2-1)-
puzzle). 
 

 We focused on generating and improving sub-optimal 
solutions towards optimal makespan 
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COBOPT – CPP as Propositional Satisfiability 
 Suppose that we are able to construct a propositional formula 

such that 
 It is satisfiable iff there exists a solution to CPP of a given makespan 

 Suppose that we are provided with makespan suboptimal 
solution (base solution – can be generated in polynomial time) 
 we can find makespan optimal replacement of the given sub-sequence of 

the base solution using: 
 propositional satisfiability solving + binary search (or some other type of 

search where query = SAT solving for the given makespan) 
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Inverse Encoding of CPP 
 Makespan m is given 

 encode states of the planning world at time steps 1,2,…,m 
 state at the time step 1 is enforced to be equal to the initial state 
 state at the time step m is enforced to be equal to the goal state 

 Inverse encoding encodes “what agent is located in the given vertex” 
 The state at the given time step i is described by the following integer 

variables for each vV: 
 Av

i{0,1,2,…, μ} with the interpretation that 
 Av

i = j iff the agent aj is located in v at the time step i or 
 Av

i = 0 iff there is no agent in v 
 Tv

i {0,1,2,…, 2deg(v)} with the interpretation that  
  0 < Tv

i  ≤ deg(v) iff the agent goes out of v into (Tv
i)-th neighbor 

 deg(v)≤ Tv
i ≤ 2deg(v) iff the agent goes into v from 

 ((Tv
i)-deg(v))-th neighbor  

 Tv
i = 0 iff no-operation is selected for v 

 Plus constraints to enforce valid transitions between states 
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Translating to Propositional Satisfiability 
 Each integer variable is encoded as a bit-vector where each 

bit is represented by a propositional variable  
 for example Av

i{0,1,2,…, μ} is encoded using log2(μ+1) 
propositional variables 

 extra states induced by the upper integer part are forbidden 

 Notice: a bit-vector must take some of the values from its 
domain 
 each Tv

i must be assigned a value … in each vertex it must be 
decided what action is selected (no-op, incoming, outgoing) 

 ensures that agents do not collide with each other and 
maintains the frame 

 Implications of the form Tv
i = constant   Au

i+1 = constant 
 translated using auxiliary propositional variables 
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All-Different Encoding of CPP 
 If the environment contains few agents relatively to its size 

 inverse encoding contains lot of variables for empty space 

 All-Different encoding encodes “where is the given agent” 

 The state at the given time step i is described by the following 
integer variables for each aA : 
 La

i{1,2,…, |V|} with the interpretation that 
La

i = j iff the agent a is located in the j-th vertex of the graph G 

 The requirement that there is at most one agent per vertex is 
modeled as All-Different(La1

i, La2
i, …, Laμ

i) 
 Other constraints are more complicated 

 it is necessary to express that agents can move along edges only 

 and that target vertex of the movement must be empty 

 Augmenting by heuristics 
 some vertices are unreachable by the agent in the given time step 
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Encoding Size Comparison 

 Two setups grid of size 8x8 and 16x16 

 random initial and goal arrangement of agents 
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|A| in the 
4-connected 

grid 88 

Number of 
layers 

SATPLAN 

encoding 

SASE 

encoding 

INVERSE 

encoding 

ALL-DIFFERENT 

encoding 

|Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses| 

4 8 5864 55330 11386 53143 5400 38800 11128 54356 

8 8 10022 165660 19097 105724 5920 48224 25136 114952 

12 8 14471 356410 26857 168875 5920 46176 42024 181788 

16 10 30157 1169198 51662 372140 8122 76192 79008 326736 

24 10 43451 2473813 73101 588886 8122 71072 140400 537528 

32 14 99398 8530312 157083 1385010 12396 137120 309824 1120672 

|A|  in the 
4-connected 
grid 1616 

Number of 
layers 

SATPLAN 

encoding 

SASE 

encoding 

INVERSE 

encoding 

ALL-DIFFERENT 

encoding 

|Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses| |Variables| |Clauses| 

4 21 69704 746562 137406 677737 60755 478462 122368 827628 

8 15 65365 995507 134482 712352 46904 412416 178816 1174616 

16 18 

Out of memory 

342100 2347456 61154 611328 469888 2928336 

32 4* 288498 2716096 13672 143104 197888 1101600 

40 4* 357762 3783672 13672 134912 265280 1415080 

64 4* 561210 5913320 14700 189440 510464 2446912 



Makespan Comparison – grid 8x8 
 Compared against WHCA*  

 WHCA* is decoupled 
 often produces near makespan optimal 
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Makespan Comparison – grid 16x16 
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Parallelism Increasing 
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Concluding Remarks 
 Improving sub-optimal solutions of cooperative path-planning by 

modeling the problem as propositional satisfiability. 
 

 COBOPT: short subsequences of a sub-optimal solution are replaced 
by the makespan optimal ones. 
 

 Two encodings (and its variants) 

 Inverse encoding 

 better in densely populated environments 

 All-Different encoding 

 better in sparsely populated environments 

 

 COBOPT solution optimization together with both encodings 
represents state-of-the-art in generating short solutions to CPP 
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