

Near Optimal Cooperative Path Planning in Hard Setups through Satisfiability Solving **Pavel Surynek**

> Charles University in Prague, Czech Republic and Kobe University, Japan

Problem of Cooperative Path-planning (CPP)

- Abstraction for tasks of motion of multiple (autonomous or passive) entities in a certain environment (real or virtual).
 - Entities are given an **initial** and a **goal** arrangement in the environment.
 - We need to plan movements of entities in time, so that entities reach the goal arrangement while physical limitations are observed.

Physical limitations are:

- Entities must **not collide with each other**.
- Entities must not collide with obstacles in the environment.
- Cooperative path-planning is also known as:
 - pebble motion on a graph
 - path-planning for multiple robots
- Certain slight variations in the definition allows higher parallelism

JSAI 2012

CPP – Formal definition (1)

Wilson, 1974; Kornhauser et al., 1984; Ryan, 2008

- A popular moving puzzle, that can be abstracted as the problem of cooperative path-planning is known as Lloyd's fifteen.
 - Entities are represented by pebbles/agents labeled by numbers.
- The environment is modeled as an undirected graph where vertices represent locations in the environment occupied by agents and edges enable agents to go to the neighboring location.
- Formal definition of the task of CPP
 - It is a quadruple $\Pi = (G, A, S_A^0, S_A^+)$, where:
 - G=(V,E) is an undirected graph,
 - A = $\{a_1, a_2, ..., a_{\mu}\}$, where $\mu < |V|$ is a set of agents,
 - S_A⁰: A →V is a uniquely invertible function determining the initial arrangement of agents in vertices of G, and
 - S_A⁺: A →V is a uniquely invertible function determining the goal arrangement of agents in vertices of G.

CPP – Formal Definition (2)

Wilson, 1974; Kornhauser et al., 1984; Ryan, 2008

JSAI 2012

Time is discrete in the model. Time steps and their ordering is isomorphic to the structure of natural numbers.

The dynamicity of the task is as follows:

An agent occupying a vertex at time step *i* can move into a neighboring vertex (the move is finished at time step *i+1*) if the target vertex is **unoccupied** at time step *i* and **no other agent** is moving simultaneously into the same target vertex

For the given $\Pi = (G, A, S_A^0, S_A^+)$, we need to find:

A sequence of moves for every agent such that dynamicity constraint is satisfied and every agent reaches its goal vertex.

Motivation

- Container rearrangement (entity = container)
- Heavy traffic
 (entity = automobile (in jam))
- Data transfer
 (entity = data packet)
- Generalized lifts
 (entity = lift)

JSAI 2012

Is the task of CPP easy or hard?

- Basic variant of the task is easy to solve (makespan suboptimal solution):
 - There exists an algorithm with worst case time complexity of O(|V|³) that generates solutions of the makespan O(|V|³) for any instance of CPP on G=(V,E) (Kornhauser et al., 1984).
- If we want a solution that has the makespan as short as possible the complexity increases:
 - The optimization variant of the CPP problem is NP-hard (Ratner a Warmuth, 1986)
 - Shown for the generalized Lloyd's puzzle (known as (N²-1)puzzle).
- We focused on generating and improving sub-optimal solutions towards optimal makespan

JSAI 2012

COBOPT – CPP as Propositional Satisfiability

- Suppose that we are able to construct a propositional formula such that
 - It is **satisfiable** iff there exists a solution to CPP of a given **makespan**
- Suppose that we are provided with makespan suboptimal solution (base solution – can be generated in polynomial time)
 - we can find makespan optimal replacement of the given sub-sequence of the base solution using:
 - propositional satisfiability solving + binary search (or some other type of search where query = SAT solving for the given makespan)

Inverse Encoding of CPP

Makespan m is given

- encode states of the planning world at time steps 1,2,...,m
- state at the time step 1 is enforced to be equal to the initial state
- state at the time **step m** is enforced to be equal to the **goal state**
- Inverse encoding encodes "what agent is located in the given vertex"
- ▶ The state at the given time step *i* is described by the following **integer variables** for each $v \in V$:
 - $A_v^i \in \{0, 1, 2, ..., \mu\}$ with the interpretation that $A_v^i = j$ iff the agent a_j is located in v at the time step i or $A_v^i = 0$ iff there is no agent in v $T_v^i = 3$
 - ► $T_v^i \in \{0, 1, 2, ..., 2 \text{deg}(v)\}$ with the interpretation that $0 < T_v^i \le \text{deg}(v)$ iff the agent **goes out** of v into (T_v^i) -th neighbor $\text{deg}(v) \le T_v^i \le 2 \text{deg}(v)$ iff the agent **goes into** v from $((T_v^i)-\text{deg}(v))$ -th neighbor $T_v^i = 0$ iff no-operation is selected for v
- Plus constraints to enforce valid transitions between states

JSAI 2012

Pavel Surynek

deg(u)=4

2nd

3rd

Translating to Propositional Satisfiability

- Each integer variable is encoded as a bit-vector where each bit is represented by a propositional variable
 - for example A_vⁱ∈{0,1,2,..., μ} is encoded using log₂(μ+1) propositional variables
 - extra states induced by the upper integer part are forbidden
- Notice: a bit-vector must take some of the values from its domain
 - each T_vⁱ must be assigned a value ... in each vertex it must be decided what action is selected (no-op, incoming, outgoing)
 - ensures that agents do not collide with each other and maintains the frame
- Implications of the form T_v^i = constant $\Rightarrow A_u^{i+1}$ = constant
 - translated using auxiliary propositional variables

All-Different Encoding of CPP

- If the environment contains few agents relatively to its size
 - inverse encoding contains lot of variables for empty space
- All-Different encoding encodes "where is the given agent"
- The state at the given time step *i* is described by the following integer variables for each a∈A :
 - L_aⁱ∈{1,2,..., |V|} with the interpretation that L_aⁱ = j iff the agent a is located in the j-th vertex of the graph G
- The requirement that there is at most one agent per vertex is modeled as All-Different(Lⁱ_{a1}, Lⁱ_{a2}, ..., Lⁱ_{aµ})
- Other constraints are more complicated
 - it is necessary to express that agents can move along edges only
 - and that target vertex of the movement must be empty
- Augmenting by heuristics

JSAI 2012

some vertices are unreachable by the agent in the given time step

Encoding Size Comparison

Two setups grid of size 8x8 and 16x16

random initial and goal arrangement of agents

A in the 4-connected grid 8×8	Number of layers	SATPLAN		SASE		INVERSE		ALL-DIFFERENT	
		encoding		encoding		encoding		encoding	
		Variables	Clauses	Variables	Clauses	Variables	Clauses	Variables	Clauses
4	8	5864	55330	11386	53143	5400	38800	11128	54356
8	8	10022	165660	19097	105724	5920	48224	25136	114952
12	8	14471	356410	26857	168875	5920	46176	42024	181788
16	10	30157	1169198	51662	372140	8122	76192	79008	326736
24	10	43451	2473813	73101	588886	8122	71072	140400	537528
32	14	99398	8530312	157083	1385010	12396	137120	309824	1120672
A in the 4-connected grid 16×16	Number of layers	SATPLAN		SASE		INVERSE		ALL-DIFFERENT	
		encoding		encoding		encoding		encoding	
	,	Variables	Clauses	Variables	Clauses	Variables	Clauses	Variables	Clauses
4	21	Variables 69704	Clauses 746562	Variables 137406	Clauses 677737	Variables 60755	Clauses 478462	Variables 122368	Clauses 827628
4 8	21 15	Variables 69704 65365	Clauses 746562 995507	Variables 137406 134482	Clauses 677737 712352	Variables 60755 46904	Clauses 478462 412416	Variables 122368 178816	Clauses 827628 1174616
4 8 16	21 15 18	Variables 69704 65365	Clauses 746562 995507	Variables 137406 134482 342100	Clauses 677737 712352 2347456	Variables 60755 46904 61154	Clauses 478462 412416 611328	Variables 122368 178816 469888	Clauses 827628 1174616 2928336
4 8 16 32	21 15 18 4*	Variables 69704 65365	Clauses 746562 995507	Variables 137406 134482 342100 288498	Clauses 677737 712352 2347456 2716096	Variables 60755 46904 61154 13672	Clauses 478462 412416 611328 143104	Variables 122368 178816 469888 197888	Clauses 827628 1174616 2928336 1101600
4 8 16 32 40	21 15 18 4* 4*	Variables 69704 65365 Out of r	Clauses 746562 995507 nemory	Variables 137406 134482 342100 288498 357762	Clauses 677737 712352 2347456 2716096 3783672	Variables 60755 46904 61154 13672 13672	Clauses 478462 412416 611328 143104 134912	Variables 122368 178816 469888 197888 265280	Clauses 827628 1174616 2928336 1101600 1415080

Makespan Comparison – grid 8x8

Compared against WHCA*

- WHCA* is decoupled
 - often produces near makespan optimal

Makespan | Grid 8x8 | many agents

Makespan Comparison – grid 16x16

Makespan | Grid 16x16 | many agents

JSAI 2012

Parallelism Increasing

Concluding Remarks

- Improving sub-optimal solutions of cooperative path-planning by modeling the problem as propositional satisfiability.
- COBOPT: short subsequences of a sub-optimal solution are replaced by the makespan optimal ones.
- Two encodings (and its variants)
 - Inverse encoding

JSAI 2012

- better in densely populated environments
- All-Different encoding
 - better in sparsely populated environments
- COBOPT solution optimization together with both encodings represents state-of-the-art in generating short solutions to CPP