
Abstract 

Solving cooperative path finding (CPF) by 
translating it to propositional satisfiability 
represents a viable option in highly constrained 
situations. The task in CPF is to relocate agents 
from their initial positions to given goals in a 
collision free manner. In this paper, we propose a 
reduced time expansion that is focused on 
makespan sub-optimal solving. The suggested 
reduced time expansion is especially beneficial in 
conjunction with a goal decomposition where 
agents are relocated one by one. 

1 Introduction and Motivation 

The problem of cooperative path-finding (CPF) [Kornhauser 
et al., 1984; Silver, 2005, Ryan, 2008] is a graph theoretical 
abstraction for many real life problems where the task is to 
cooperatively relocate a group of robots or other movable 
objects in a collision free manner. Each agent of the group is 
given its initial and goal position in the environment. The 
problem consists in constructing a spatial temporal plan for 
each agent by which it can relocate from its initial position 
to the given goal. The environment where agents move is 
modeled as an undirected graph [Kornhauser et al., 1984] 
where vertices represent locations and edges represent 
possibility of relocation between two locations. 
 Agents are represented as abstract items placed in vertices 
while at most one agent is located in each vertex. An agent 
can instantaneously relocate itself to the neighboring vertex 
assumed the target vertex is unoccupied and no other agent 
is trying to enter the same target vertex. 
 In this research, we further develop solving of CPF by 
translating it to propositional satisfiability (SAT) [Biere et 
al., 2009]. Recent propositional encodings [Surynek, 2012a, 
2012b, 2013, 2014] of CPF are based on time expansion of 
the graph modeling the environment so that the encoding is 
able to represent arrangements of agents over the graph at 
all the time steps up to the final one. Since there may be 
many time-steps before all the agents reach their goals, 
these encodings may become extremely large and hence 
unsolvable in reasonable time. We are trying to overcome 
this limitation by reducing the expansion of the graph in this 
work. 

1.1 Context of Related Works 

The approach to solve CPF by reducing it to SAT has 
multiple alternatives. There exist algorithms based on search 
that find makespan optimal or near optimal solutions. The 
seminal work in this category is represented by Silver’s 
WHCA* algorithm [Silver, 2005]. Recent contributions 
include OD+ID [Standley and Korf, 2011], which is a 
combination of A* and powerful agent independence 
detection heuristics, and ICTS [Sharon et al., 2013] which 
employs the concept of increasing cost tree (instead of 
makespan, the total cost of solution is optimized). Other 
approaches resolve conflicts among robot trajectories when 
avoidance is necessary [Čáp et al., 2013; Barer et al., 2014; 
Wagner and Choset, 2015]. 
 Fast polynomial time algorithms for generating makespan 
suboptimal solutions include PUSH-AND-ROTATE [de Wilde 
et al., 2014]. The drawback of these algorithms is that their 
solutions are dramatically far from the optimum. 
 Translation of CPF to a different formalism, namely to 
answer set programming (ASP), has been suggested in 
[Erdem et al., 2013]. Integer programming (IP) as the target 
formalism has been also used [Yu and LaValle, 2013]. The 
choice of SAT as the target formalism is very common in 
domain independent planning where the idea of time 
expansion [Kautz and Selman, 1999; Huang et al., 2010] 
and its reductions [Wehrle and Rintanen, 2007] are studied. 

2 Formal Definition of CPF 

An arbitrary undirected graph 𝐺 =  𝑉, 𝐸  can be used to 
model the environment where agents are moving. The 
placement of agents in the environment is modeled by 
assigning them vertices of the graph. Let 𝐴 = {𝑎1, 𝑎2 , …,  
𝑎𝜇 } be a finite set of agents, then, an arrangement of agents 
in vertices of graph 𝐺 is fully described by a location 
function 𝛼: 𝐴 ⟶ 𝑉. At most one agent can be located in 
each vertex; that is 𝛼 is uniquely invertible. 

Definition 1 (COOPERATIVE PATH FINDING). An instance of 
cooperative path-finding problem is a quadruple Σ = [𝐺 =
 𝑉, 𝐸 , 𝐴, 𝛼0, 𝛼+] where location functions 𝛼0 and 𝛼+ define 
the initial and the goal arrangement of a set of agents 𝐴 in 𝐺 
respectively. □ 
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 The dynamicity of the model supposes a discrete time 
divided into time steps. An arrangement 𝛼𝑖  at the 𝑖-th time 
step can be transformed by a transition action which 
instantaneously moves agents in the non-colliding way to 
form a new arrangement 𝛼𝑖+1. The transition between 𝛼𝑖  
and 𝛼𝑖+1 must satisfy the following validity conditions: 

 ∀𝑎 ∈ 𝐴  either 𝛼𝑖(𝑎) = 𝛼𝑖+1(𝑎) or {𝛼𝑖(𝑎), 𝛼𝑖+1(𝑎)} ∈ 𝐸  
   (agents move along edges or not move at all), 
 ∀𝑎 ∈ 𝐴  𝛼𝑖(𝑎) ≠ 𝛼𝑖+1(𝑎) ⇒  ∀𝑏 ∈ 𝐴 𝛼𝑖 𝑏 ≠ 𝛼𝑖+1 𝑎    
   (agents move to vacant vertices only), and 
 ∀𝑎, 𝑏 ∈ 𝐴  𝑎 ≠ 𝑏 ⇒ 𝛼𝑖+1(𝑎) ≠ 𝛼𝑖+1(𝑏) 
   (no two agents enter the same target/unique 
   invertibility of resulting arrangement). 

The task in cooperative path finding is to transform 𝛼0 
using above valid transitions to 𝛼+. An illustration of CPF 
and its solution is depicted in Figure 1. 

Definition 2 (SOLUTION, MAKESPAN). A solution of a 
makespan 𝑚 to a cooperative path finding instance Σ =
[𝐺, 𝐴, 𝛼0, 𝛼+] is a sequence of arrangements 𝑠 =
[𝛼0, 𝛼1 , 𝛼2, … , 𝛼𝑚 ] where 𝛼𝑚 = 𝛼+ and 𝛼𝑖+1 is a result of 
valid transition from 𝛼𝑖  for every 𝑖 = 1,2, … , 𝑚 − 1 . □ 

 It is known that finding makespan optimal solution to 
CPF is NP-hard [Ratner and Warmuth, 1986]. 

 

Figure 1. Cooperative path-finding (CPF) on a 4-connected grid. 
The task is to relocate three agents 𝑎1, 𝑎2, and 𝑎3 to their goal 
vertices so that they do not collide with each other. A solution 𝑠  of 
makespan 4 is shown. 

3 (Sub)optimization in CPF via SAT 

The approach we are suggesting here to obtain parameter 
optimal solutions is to employ propositional satisfiability 
(SAT) solving as the key technology. This approach has 
been already successfully applied in obtaining makespan 
optimal plans in domain-independent planning [Kautz and 
Selman, 1999; Huang et al., 2010] as well as in CPF 
[Surynek, 2013].  
 In case of CPF, a propositional formula 𝐹(Σ, 𝜂) such that 
it is satisfiable if and only if a given CPF Σ with makespan 
bound 𝜂 is solvable can be constructed. Being able to 
construct such a formula 𝐹(Σ, 𝜂) one can obtain the optimal 
makespan for the given CPF Σ by asking multiple queries 

whether formula 𝐹(Σ, 𝜂) is satisfiable with different 
makespan bounds 𝜂. 
 Various strategies of the parameter for queries exist for 
getting the parameter optimal solution. The simplest is to try 
sequentially makespans 𝜂 = 1,2, … until 𝜂 is equal to the 
optimum (minimum). This strategy will be further referred 
as sequential increasing. Pseudo-code of the strategy is 
listed as Algorithm 1.  

Algorithm 1. SAT-based parameter optimal CPF solving – 
sequential increasing strategy. The algorithm sequentially finds 
the smallest possible makespan 𝜂 for that a propositional encoding 
of a given CPF Σ = (𝐺, 𝐴, 𝛼0 , 𝛼+) is solvable. 

 input:   Σ – a CPF instance 
 output:  a pair consisting of the optimal parameter and 
     corresponding parameter optimal solution 

function Find-Optimal-Parameter (Σ = (G, 𝐴, 𝛼0 , 𝛼+)): pair 

1:  𝜂 ← 1 

2  loop 

3:   𝐹(Σ, 𝜂) ←Encode-CPF-as-SAT (𝛴, 𝜂) 

4:   if Solve-SAT (𝐹(Σ, 𝜂)) then 

5:    let 𝑓 be a satifying valuation of 𝐹(Σ, 𝜂) 

6:    return (𝜂, 𝑓) 

7:   𝜂 ← 𝜂 + 1 

8:  return (∞, ∅) 

4 Reduced Time Expansion Graph 

The main drawback of makespan optimal CPF solving via 
SAT is the large size of the formulae that encode the 
optimization questions [Surynek, 2013, 2014]. The size of 
encoding formulae becomes especially prohibitive when 
they encode questions if a solution with a large makespan 
exists. This is due to the fact that existing encodings 
expands the graph modeling the environment over the time 
up to the given makespan bound 𝜂. At each time step of the 
expansion arrangement of agents over the graph is 
represented and constraints ensure that only transitions 
conforming to validity conditions are possible between 
arrangements at consecutive time steps. 
 Our idea hence was to reduce the time expansion with 
possible relaxation of the requirement of makespan 
optimality of the solution. The key observation is that if 
there is no need of any complex avoidance between agents 
(there is no need to visit a single vertex multiple times), no 
time expansion of the graph is necessary at all. The question 
if there is a solution (not necessarily makespan optimal) can 
be stated as a question of existence of vertex disjoint paths 
connecting initial positions of agents with their goals in the 
original graph. Translating of this question into SAT is 
possible as well. 
 Nevertheless, in real situations movement interactions 
among agents require complex avoidance. A single vertex 
may need to be visited multiple times. This led us to the 
suggestion of a concept of reduced time expansion graph, 
which combines the expansion reduction with ability to 
represent complex avoidance. 

CPF Σ=(G, {a1,a2,a3}, α0, α+) 
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Figure 2. An example of CPF and its solving through reduced time 

expansion graph. A reduced time expansion graph rExpT(𝐺, 3) 

consisting of 3 time layers is build for a given CPF Σ. A solution to 

Σ corresponds to a collection of vertex disjoint paths connecting 

the initial positions agents in the first layer with their goal 

positions in the last time layer. 

Definition 3 (REDUCED TIME EXPANSION GRAPH - 
rExpT(𝐺, 𝜗)). Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 
𝜗 ∈ ℕ. A reduced time expansion graph with 𝜗 time layers 
associated with 𝐺 is a directed graph rExpT 𝐺, 𝜗 = (𝑉 ×
{1,2, … , 𝜗}, 𝐸′) where 𝐸′ = {( 𝑢, 𝑙 ,   𝑣, 𝑙 )| 𝑢, 𝑣 ∈ 𝐸; 𝑙 =
1,2, … , 𝜗} ∪ {( 𝑣, 𝑙 ,  𝑣, 𝑙 + 1 ) | 𝑙 = 1,2, …, 𝜗 − 1}. □ 

 Note, that for each original undirected edge there are two 
directed arcs in both directions in the reduced time 
expansion graph. A time-layer in the reduced time 
expansion graph is an induced sub-graph of rExpT 𝐺, 𝜗  
over the set of vertices 𝑉 × {𝑙} for a given 𝑙 ∈ {1,2, … , 𝜗}. 
 Solving of CPF Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] can be viewed as a 
search for vertex disjoint paths in rExpT 𝐺, 𝜗  that connect 
initial positions and goals in the first and the last time-layer 
respectively provided that the number of time-layers 𝜗 is 
sufficiently high. The idea is illustrated in Figure 2. 

4.1 𝝑-RELAXED Propositional Encoding 

The correspondence between the existence of vertex disjoint 
paths and the existence of a solution of CPF established in 
the previous section provides a guide how to design required 
propositional encoding. We merely need to design a 
propositional formula preferably in conjunctive normal form 
(CNF) [Biere et al., 2009] that is satisfiable if and only if 
vertex disjoint paths connecting initial position and goals 
exist in rExpT(𝐺, 𝜗) for 𝜗 ∈ ℕ. 
 Intuitivelly, the size and the structure of the resulting 
formula matters when it is solved by a SAT solver. Our 
choice was to design an encoding that is space efficient and 
contains short clauses. Note that short clauses support unit 
propagation [Biere et al., 2009]. 

 The encoding is separated into two parts. The first part is 
purely propositional and consists of variables that express 
selection of vertices and edges into paths – this can be also 
regarded as occupancy/selection of path by a flow of 
commodity. The inspiration for this design comes from the 
theory of network flows [Ahuja et al., 1993]. The absence of 
necessity to distinguish between individual agents enables 
expressing the requirement that paths should be vertex 
disjoint as simple capacity constraints. 
 The distinguishable agents are treated in the second part 
of the model where a bit vector using binary encoding is 
associated with each vertex in rExpT (𝐺, 𝜗) to express what 
agent is occupying that. The benefit of using bit-vectors is 
that equality can be easily expressed over them. Both parts 
are put together by introducing a constraint that requires 
occupation by the same agent at both ends of a selected 
edges. Formally, the encoding – which we called 𝜗-
RELAXED – is introduced in the following definition. 

Definition 4 (𝜗-RELAXED encoding - 𝐹𝜗−𝑅𝐸(Σ)). Let 
Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] be a CPF  with 𝐺 = (𝑉, 𝐸). A 𝜗-RELAXED 
encoding for CPF Σ consists of the following collections of 
variables for every time layer 𝑙 ∈ {1,2, … , 𝜗}: finite domain 
variables 𝒜𝑣

𝑙 ∈ {0,1, … , 𝜇} for every 𝑣 ∈ 𝑉 (that are 
encoded as bit vectors), propositional variables 𝒳𝑣

𝑙  for every 
𝑣 ∈ 𝑉, and propositional variables ℰ𝑢 ,𝑣

𝑙  for every ordered 
pair 𝑢, 𝑣 such that  𝑢, 𝑣 ∈ 𝐸 (that is, for a single edge 
 𝑢, 𝑣 ∈ 𝐸 and 𝑙 we have two propositional variables ℰ𝑢 ,𝑣

𝑙  
and ℰ𝑣,𝑢

𝑙 ). Additionally, there is a set of propositional 
variables ℰ𝑣

𝑙  for every every 𝑣 ∈ 𝑉 and 𝑙 ∈ {1,2, … , 𝜗 − 1} 
representing interconnections between time layers. 
Constraints of 𝜗-RELAXED encoding are as follows: 

  𝒜𝑣
𝑙 ≠ 0 ⇒ 𝒳𝑣

𝑙    for every 𝑣 ∈ 𝑉 and 
          𝑙 ∈ {1,2, … , 𝜗} 
  (if there is some agent in a vertex then the 
  vertex is non-empty) 

  ℰ𝑢 ,𝑣
𝑙 ⇒ 𝒳𝑢

𝑙 ∧ 𝒳𝑣
𝑙    for every  𝑢, 𝑣 ∈ 𝐸 

          and 𝑙 ∈ {1,2, … , 𝜗} 
  ℰ𝑣

𝑙 ⇒ 𝒳𝑣
𝑙 ∧ 𝒳𝑣

𝑙+1  for every 𝑣 ∈ 𝑉 and 
          𝑙 ∈ {1,2, … , 𝜗 − 1} 
  (if an edge within a time layer or between time layers 
  is non-empty then its both ends are non-empty) 

   ℰ𝑢 ,𝑣
1

𝑢 |{𝑢 ,𝑣}∈𝐸    for every 𝑣 ∈ 𝑉 such that 
           ∃𝑎 ∈ 𝐴 𝛼0 𝑎 = 𝑣 
  (for every source vertex at the first time layer 
  all the incoming directed edges are empty) 

   ℰ𝑢 ,𝑣
𝜗

𝑣|{𝑢 ,𝑣}∈𝐸    for every 𝑢 ∈ 𝑉 such that 
           ∃𝑎 ∈ 𝐴 𝛼+ 𝑎 = 𝑢 
  (for every destination vertex at the last time layer 
  all the outgoing directed edges are empty)  

   ℰ𝑢 ,𝑣
𝑙 ⇒ 𝒜𝑢

𝑙 = 𝒜𝑣
𝑙   for every  𝑢, 𝑣 ∈ 𝐸 and 

          𝑙 ∈ {1,2, … , 𝜗} 
  ℰ𝑣

𝑙 ⇒ 𝒜𝑣
𝑙 = 𝒜𝑣

𝑙+1 for every 𝑣 ∈ 𝑉 and 
          𝑙 ∈ {1,2, … , 𝜗 − 1} 
  (if an edge is non-empty then there is the 
  same agent at its both endpoints) 

  𝒳𝑢
𝑙 ⇒  ℰ𝑢 ,𝑣

𝑙  𝑣|{𝑢 ,𝑣}∈𝐸 ∨ ℰ𝑢
𝑙    for every 𝑢 ∈ 𝑉 and 

               𝑙 ∈ {1,2, … , 𝜗 − 1} 
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   ℰ𝑢 ,𝑣
𝑙  𝑣|{𝑢 ,𝑣}∈𝐸 + ℰ𝑢

𝑙  ≤ 1 
  (if a vertex is non-empty at a time layer other than 
  the last one then exactly one of its outgoing edges is 
  non-empty as well) 

  𝒳𝑢
𝜗 ⇒  ℰ𝑢 ,𝑣

𝜗  𝑣|{𝑢 ,𝑣}∈𝐸    for every 𝑢 ∈ 𝑉 such that  
   ℰ𝑢 ,𝑣

𝜗  𝑣|{𝑢 ,𝑣}∈𝐸  ≤ 1    ∀𝑎 ∈ 𝐴 𝛼+ 𝑎 ≠ 𝑢 
  (if a non-destination vertex at the last time layer is 
  non-empty then exactly one of its outgoing edges is 
  non-empty as well) 

  𝒳𝑣
𝑙 ⇒  ℰ𝑢 ,𝑣

𝑙
𝑢 |{𝑢 ,𝑣}∈𝐸 ∨ ℰ𝑣

𝑙−1  for every 𝑣 ∈ 𝑉 and  
              𝑙 ∈ {2,3, … , 𝜗} 
   ℰ𝑢 ,𝑣

𝑙  𝑢 |{𝑢 ,𝑣}∈𝐸 + ℰ𝑣
𝑙−1 ≤ 1 

  (if a vertex is non-empty at a time layer other than  
  the first one then exactly one of its incoming edges is 
  non-empty as well). 

  𝒳𝑣
1 ⇒  ℰ𝑢 ,𝑣

1
𝑢 |{𝑢 ,𝑣}∈𝐸    for every 𝑣 ∈ 𝑉 such that 

   ℰ𝑢 ,𝑣
1  𝑢 |{𝑢 ,𝑣}∈𝐸 ≤ 1    ∀𝑎 ∈ 𝐴 𝛼0 𝑎 ≠ 𝑣 

  (if a non-source vertex at the first layer is non-empty  
  then exactly one of its incoming edges is non-empty as  
  well). □ 

 Initial and goal arrangements are expressed as constraints 
over variables of the first and the last time layer. Note that 
some agents do not need to be assigned any goal if we do 
not care about their final positions. 

 The resulting formula of the 𝜗-RELAXED encoding in the 
CNF form will be denoted as 𝐹𝜗−𝑅𝐸(Σ). Without proof let 
us summarize the size of the encoding. 

Proposition 1 (𝝑-RELAXED ENCODING SIZE). The 
number of propositional variables in 𝐹𝜗−𝑅𝐸(𝛴) is 𝒪(𝜗 ∙
( 𝑉 ∙  log2(𝜇 + 1) +  𝐸 )) and the number of clauses is 
𝒪(𝜗 ∙ (( 𝑉 +  𝐸 ) ∙  log2(𝜇 + 1) +  𝑉 3)).  

 A set 𝛱 = {𝜋1 , 𝜋2 , … , 𝜋𝜇 } of vertex disjoint paths in 

rExpT(G, ϑ) so that 𝜋𝑖  connects [𝛼0(𝑎𝑖),1] with [𝛼+(𝑎𝑖), 𝜗] 
for 𝑖 = 1,2, … , 𝜇 exists if and only if 𝐹𝜗−𝑅𝐸(𝛴) is satisfiable. 

The extraction of a solution of CPF Σ from a satisfying 

valuation of 𝐹𝜗−𝑅𝐸(𝛴) is shown using pseudo-code as 

Algorithm 2. 

 The algorithm tracks moves of agents towards their exits 

from the current time layer of the reduced time expansion 

graph during which the solution 𝛼 is recorded. Note, that in 

each time layer the time step at which agents exit the layer 

is synchronized among all the agents (that is, agents exit at 

the same time step). It may therefore occur that agents wait 

for the last agent to finish its movements in the layer before 

they exit the layer together into the next one. The algorithm 

allows us to state the following theorem (proof is ommited). 

Theorem 1 (SOLUTION OF 𝚺 AND 𝑭𝝑−𝑹𝑬(𝚺) SATISFACTION). 
A solution of a CPF Σ = (𝐺, 𝐴, 𝛼0, 𝛼+) with 𝐴 =
{𝑎1 , 𝑎2 , … , 𝑎𝜇 } exists if and only if there exist 𝜗 ∈ ℕ for that 
formula 𝐹𝜗−𝑅𝐸(Σ) is satisfiable.  

 The original goal to reduce the size of the encoding by 
reducing the expansion of 𝐺 is fulfilled by the fact that ϑ-
RELAXED encoding needs no more time-layers than 
encodings for makespan optimal CPF solving. Moreover, 

there are cases where ϑ-RELAXED encoding needs 
significantly fewer time expansions – see example in Figure 
2 where 3 time expansions are needed in ϑ-RELAXED 
encoding while makespan optimal encodings need 8 time 
expansions. 

Algorithm 2. Solution extraction algorithm for 𝜗-RELAXED 
encoding. A sequence of arrangements of agents forming a 
solution of given CPF Σ is extracted from satisfying valuation 𝑓of 
formula 𝐹𝜗−𝑅𝐸(Σ) representing 𝜗-RELAXED encoding of Σ. 

 input:  Σ – an instance of CPF 
    𝜗 – the number of time layers in 𝜗-RELAXED encoding 
    𝑓 – a satisfying valuation of 𝐹𝜗−𝑅𝐸(Σ) 
 output: makespan and sequence of arrangements of agents 
    forming the solution 𝛼0, 𝛼1,..., 𝛼+ 

function Extract-Solution-𝜗-RELAXED 

       (Σ = [𝐺 = (𝑉, 𝐸), 𝐴, 𝛼0, 𝛼+], 𝜗, 𝑓): pair 

1:  𝜂max ← 0 // time step at which movements at a time layer 

      // are finished 

2:  for each 𝑙 = 1,2, … , 𝜗 do 

3:   𝜂min ← 𝜂max   // time step at which movements 

         // at a time layer start 

4:   for each 𝑎 ∈ 𝐴 do 

5:    𝜂 ← 𝜂min  

6:     𝑢 ← 𝛼𝜂min
(𝑎) 

7:    while (𝑙 ≠ 𝜗 and 𝑓 ℰ𝑢
𝑙  = 𝐹𝐴𝐿𝑆𝐸) 

       or (𝑙 = 𝜗 and 𝑢 ≠ 𝛼+(𝑎)) do 

8:     𝛼≥𝜂 (𝑎) ← 𝑢 // agent 𝑎 will be located in 𝑢 

          // at all the time steps ≥ 𝜂 

9:      for each 𝑣 ∈ 𝑉 such that {𝑢, 𝑣} ∈ 𝐸 do 

10:     if 𝑓 ℰ𝑢 ,𝑣
𝑙  = 𝑇𝑅𝑈𝐸 then 

11:      𝑢 ← 𝑣 

12:    𝜂 ← 𝜂 + 1 

13:   𝜂max ← max(𝜂max , 𝜂) 

14:   𝛼≥𝜂  𝑎 ← 𝑢 

15: return (𝜂max ,  𝛼0, 𝛼1, … , 𝛼𝜂max
 ) 

 

Proposition 2 (ADVANTAGE OF  𝝑-RELAXED ENCODING). Let 
𝜂 be an optimal makespan achievable in a CPF Σ. Then 
𝐹𝜗−𝑅𝐸(Σ) is solvable for 𝜗 ≤ 𝜂. Moreover, there exists a 
CPF instance Σ where strict inequality 𝜗 < 𝜂 holds.  

 The number of time layers in ϑ-RELAXED encoding that 
grants finding a solution corresponds rather to the intensity 
of interactions among agents. Hence to further reduce the 
size of the encoding via reducing the number of time layers 
we suggest decomposing solving of a given CPF Σ into 
solving multiple CPFs in which intesity of interactions 
among agents is low and thus they can be solved by 
satifying ϑ-RELAXED encoding formualae consisting of few 
time layers. 
 The suggested decomposition corresponds to placing 
agents to their goals one by one while individual CPFs 
represents relocating a single agent where positions of 
previously placed agents are preserved. The process is 
called UniAGENT solving and it is formally described as 
Algorithm 3. 
 Without proof let us state that the UniAGENT method is 
sound; that is, it always finds a solution provided a solution 

(12) 

(13) 
(14) 

(15) 

(16) 

(17) 
(18) 



exists. This is due to the fact, that we do constrain only 
agents that have been placed so far while remaining agents 
can be placed arbitrarily. This in theory tells that all the sub-
goals determined by single agent placement are fesible.  

Algorithm 3. UniAGENT SAT-based CPF solving. Agents (robots) 
are placed to their goals one by one. Relocation of a single agent to 
its goal is solved as an individual CPF using 𝜗-RELAXED 
encoding  where already placed agents preserve their positions. 
Relatively small difference between the initial arrangement and 
goal in single agent relocation CPFs allows to solve them with few 
time layers in the reduced time expansion graph. 

 input:  Σ – an instance of CPF 
 output: makespan and a sequence of arrangements of agents 
    of arrangements of agents forming the solution 

function Solve-UniAGENT (Σ = [𝐺 = (𝑉, 𝐸), 𝐴, 𝛼0 , 𝛼+]): pair 

1:  let 𝐴 = {𝑎1 , 𝑎2, … , 𝑎𝜇 } 

2:  𝜂max ← 0 

3:  for each 𝑖 = 1,2, … , 𝜇 do 

4:   𝛽0 ← 𝛼𝜂max
 

5:   for each 𝑗 = 1,2, … , 𝑖 − 1 do 

6:    𝛽+(𝑎𝑗 ) ← 𝛼𝜂max
(𝑎𝑗 ) 

7:   𝛽+(𝑎𝑖) ← 𝛼+(𝑎𝑖) 

8:   (𝜗, 𝑓) ← Find-Optimal-Parameter (Φ =  𝐺, 𝐴, 𝛽0 , 𝛽+ ) 

9:   (𝜂, 𝑠 ) ← Extract-Solution-𝜗-RELAXED (Φ, 𝜗, 𝑓) 

10:  for each 𝑘 = 0,1, … , 𝜂 − 1 do 

11:   𝛼𝜂max +𝑘 ← 𝑠 [𝑘] 

12:  𝜂max ← 𝜂max + 𝜂 

13: return (𝜂max ,  𝛼0, 𝛼1, … , 𝛼𝜂max
 ) 

 In our minor experiments, we found that the ϑ-RELAXED 
encoding is very easy to solve if there are few time layers 
but it gets rapidly harder with the increasing number of time 
layers. The number of time layers necesssary to reach the 
solvability when a single agent is relocated is typically very 
low (usually 1 to 3 time layers). Moreover, the makespan of 
solutions generated by the UniAGENT solving process is 
similar to that of generated by solving the ϑ-RELAXED 

encoding where all the agents are relocated at once in cases 
where we managed to solve the ϑ-RELAXED encoding. 
These observations together justifies the use of the new 
encoding as suggested in the UniAGENT solving process. 

5 Experimental Evaluation 

Series of experiments have been conducted in order to 
evaluate the suggested propositional ϑ-RELAXED encoding 
and UniAGENT solving process based on it. 
 The comparison has been done with existent encodings 
for makespan optimal CPF solving – INVERSE, 
ALL-DIFFERENT, DIRECT, MATCHING, and SIMPLIFIED 

[Surynek, 2012a, 2012b, 2014]. To include other than SAT-
based methods, the comparison with A*-based OD+ID 
[Standley and Korf, 2011] for makespan optimal solving is 
also presented. Makespan suboptimal methods are 
represented by WHCA* [Silver, 2005] in our comparison. 
 We used benchmarks suggested in [Silver, 2005] which 
consist of randomly generated CPF instances over 4-
connected grids with randomly placed obstacles. There are 
also randomly placed obstacles by which 20% of all the 
vertices are occupied. An important module in the whole 
solving process is a SAT solver. Glucose version 3.0 
[Audemard and Simon, 2013] has been used in the 
experimental evaluation. 

5.1 Encoding Size Comparison 

The important characteristic of propositional formulae with 
respect to the speed of their solving is their size while small 
is preferable (the size is represented by the number of 
variables and clauses in our case). 
 Selected results are shown in Table 1. Size measurement 

is done on 4-connected grid and for various numbers of 

agents in the environment. For each number of agents 10 

random instances were generated and average value for 

each characteristic is presented. 

Table 1. Size comparison of encodings over 8⨯8 grid. INVERSE, ALL-DIFFERENT, DIRECT, MATCHING, SIMPLIFIED [Surynek, 2012a, 

2012b, 2014] and 𝜗-RELAXED encodings  are compared. CPF instances are generated over the 4-connected grid of size 8⨯8 with 20% of 

cells occupied by obstacles. Makespan bound 𝜂 and the number of time layers in reduced time expansion graph 𝜗 is always 16. The number 

of variables and clauses, the ratio of the number of clauses and the number of variables, and the average clause length are listed for 

different sizes of the of agents 𝐴. The advantage of 𝜗-RELAXED encoding is that it is relatively small compared to other encodings. 

Grid 8⨯8 
INVERSE ALL-DIFFERENT DIRECT MATCHING SIMPLIFIED θ-RELAXED 

|Agents| 

1 
#Variables 

#Clauses 
Ratio 

Length 

8 358.7 
31 327.9 

3.748 
2.616 

1 489.3 
7 930.4 

5.325 
3.057 

814.4 
23 241.9 

28.539 
2.149 

4 520.3 
25 881.1 

5.710 
2.441 

1 628.8 
3 384.6 

2.078 
2.550 

4 645.1 
 20 246.6 

4.358
 2.515 

4 
10 019.5 
55 437.0 

5.532 
2.641 

7 834.5 
34 781.9 

4.440 
3.103 

3 257.6 
115 934.3 

35.589 
2.272 

6 181.1 
 43 171.0 

6.984 
2.640 

4 072.0 
17 997.8 

4.420 
2.374 

6 273.9 
 33 904.1 

5.404 
 2.660 

16 
11 680.3 
91 344.5 

7.820 
3.127 

67 088.3 
216 745.4 

3.231 
3.147 

13 030.4 
840 540.6 

64.506 
2.505 

7 841.9 
 72 259.3 

9.215 
3.315 

13 844.8 
150 259.2 

10.853 
2.180 

7 902.7 
47 324.6 

5.988 
 2.714 

32 
12 510.7 

122 170.3 
9.765 
3.733 

230 753.0 
646 616.2 

2.802 
3.168 

26 060.8 
2 738 584.7 

105.084 
2.621 

8 672.3 
 99 675.5 

11.494 
4.045 

26 875.2 
510 672.1 

19.002 
2.111 

8 717.1 
53 697.0 

6.159
 2.722 

 
 It can be observed from presented results that the ϑ-
RELAXED encoding is the smallest in terms of the number of 
clauses and the second smallest in terms of the number of 
variables just after the MATCHING encoding. The average 
clause length also indicates that most of clauses are binary. 

 Note, that formulae for all the encodings were generated 
with the same number of time-layers. In most cases 
however, 𝜗-RELAXED encoding needs fewer time-layers to 
achieve solvability. 



 
|A| 1 4 8 12 16 20 24 28 32 

𝜼 5.3 8.4 11.0 11.7 12.4 12.3 - - - 

𝝎 5.6 9.3 - - - - - - - 

𝝑 9.3 15.8 33.0 49.3 83.4 96.1 131.4 154.1 201.7 

Figure 3. Runtime and makespan comparison over 8⨯8 grid. 
UniAGENT and WHCA* produce makespan sub-optimal solutions; 
all other methods are makespan optimal. Evaluation of runtime and 
makespan was done for the growing number of agents (timeout is 
256 seconds). Average optimal makespan is shown as 𝜂; 𝜗 and 𝜔 
are average makespans of UniAGENT and WHCA* respectively. 

5.2 Runtime Evaluation 

Runtime tests were done over 4-connected grids with 
growing number of agents. The timeout has been set to 256 
seconds and for each number of agents 10 random 
instances were solved while runtime was recorded – 
average runtime is presented. 

 
|A| 1 2 4 6 8 12 14 16 18 

𝜼 4.2 4.9 5.6 7.0 7.4 7.9 8.6 - - 

𝝎 4.3 5.3 5.7 - - - - - - 

𝝑 5.7 8.5 11.1 16.7 30.2 43.1 49.3 50.5 87.3 

Figure 4. Runtime and makespan comparison over 6⨯6 grid. The 
UniAGENT solving is almost by order of magnitude faster than 

second best method for higher number of agents. 

 Runtime results are presented in Figure 3 and Figure 4. 
Average optimal makespan and average sub-optimal 
makespan obtained with the UniAGENT and WHCA* 
methods are also shown. It can be observed that OD+ID and 
WHCA* although performing as best for small number of 
agents, quickly reaches the timeout as the number of agents 
grows. UniAGENT method scales up as the best for 
growing number of agents though the makespan is up to 
several times longer than the optimum. Up to 30 agents 
(occupancy 83%) and up to 48 agents (occupancy of 75%) 
can be solved in 6⨯6 and 8⨯8 grid respectively with no 
obstacles within the timeout of 1.0 minute. 
 Motivated by experiments presented in [Standley and 
Korf, 2011], we also tried to solve (𝑁2 − 2)-puzzles by the 
UniAGENT solver; that is, 4-connected grids with two 
blanks (two blanks grant that instances are solvable). In 

these situations, A*-based solvers relying on independence 
detection such as OD+ID and MGS1 do not scale well. The 
(32 − 2)-puzzles were solved in less than 1.0 second by 
UniAGENT solver. The (42 − 2)-puzzles needed 
approximately 10 seconds. Larger puzzles have not been 
solved under 1.0 minute. 

Table 2. Makespan comparison with domain independent 
planners. Suboptimal planners LPG-td and SGPLAN managed to 
solve instances over the 6⨯6 grid with 20% obstacles with up to 6 
agents within the timeout of 256 seconds. UNIAGENT solver 
generates solutions of shorter makespan and is much faster. 

|A| in 6⨯6 1 2 3 4 5 6 7 

LPG-td 17.2 7.6 18.5 16.2 22.7 134.1 - 

SGPLAN 7.2 9.8 16.7 15.1 23.4 - - 

UNIAGENT 5.7 8.5 12.3 11.1 15.9 16.7 20.5 

 We also made comparison with several domain 
independent planners including SAT-based makespan 
optimal SATPLAN [Kautz and Selman, 1999] and SASE 
[Huang et al., 2010] and makespan suboptimal LPG-td 
[Gerevini et al., 2008] and SGPLAN [Hsu et al., 2006]. 
Planners were run on instances over 6⨯6 grid with 20% 
obstacles containing few agents - part of results is shown in 
Table 2. SATPLAN and SASE performed orders of magnitude 
worse than SAT-based solving with refered domain 
dependent encodings (thus not presented). Makespan 
suboptimal planners LPG-td and SGPLAN performed much 
better but still do not scale up. Moreover, they tend to 
generate worse makespans than the UniAGENT method. 

6 Conclusions 

The concept of reduced time expansion graph and 
𝜗-RELAXED propositional encoding of CPF based on this 
graph have been introduced. The search for a solution of 
CPF is reduced to the search of vertex disjoint paths in 
reduced time expansion graph which is done via SAT 
solving. In order to maximally reduce the size of the 
propositional encoding, the search for a goal arrangement is 
decomposed into multiple searches for sub-goals which 
correspond to placement of a single agent. 
 Experimental evaluation indicates that the novel CPF 
solving method - called UniAGENT solver - scales up 
better for higher number of agents than comparable 
makespan suboptimal seach-based method WHCA*. The 
relaxation from the requirement on the makespan optimality 
allowed significant runtime improvement compared to 
other propositional encodings and related SAT-based 
solving schemes. This advanced applicability of SAT-based 
CPF solving in higly constrained situations towards even 
denser occupacy with agents. 
 Although solutions generated by the UniAGENT method 
are makespan suboptimal, they are obtained through 
optimization of a diffrent parameter - namely the number of 
time layers in the ϑ-RELAXED encoding - hence their 
makespan is not as dramatically far from the optimum as in 
the case of rule based algorithms like PUSH-AND-ROTATE [de 
Wilde et al., 2014]. Altogether, UniAGENT solver 
represents a viable alternative to existing rule and search 
based CPF solvers. 
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