
Abstract

Solving cooperative path finding (CPF) by
translating it to propositional satisfiability
represents a viable option in highly constrained
situations. The task in CPF is to relocate agents
from their initial positions to given goals in a
collision free manner. In this paper, we propose a
reduced time expansion that is focused on
makespan sub-optimal solving. The suggested
reduced time expansion is especially beneficial in
conjunction with a goal decomposition where
agents are relocated one by one.

1 Introduction and Motivation

The problem of cooperative path-finding (CPF) [Kornhauser
et al., 1984; Silver, 2005, Ryan, 2008] is a graph theoretical
abstraction for many real life problems where the task is to
cooperatively relocate a group of robots or other movable
objects in a collision free manner. Each agent of the group is
given its initial and goal position in the environment. The
problem consists in constructing a spatial temporal plan for
each agent by which it can relocate from its initial position
to the given goal. The environment where agents move is
modeled as an undirected graph [Kornhauser et al., 1984]
where vertices represent locations and edges represent
possibility of relocation between two locations.
 Agents are represented as abstract items placed in vertices
while at most one agent is located in each vertex. An agent
can instantaneously relocate itself to the neighboring vertex
assumed the target vertex is unoccupied and no other agent
is trying to enter the same target vertex.
 In this research, we further develop solving of CPF by
translating it to propositional satisfiability (SAT) [Biere et
al., 2009]. Recent propositional encodings [Surynek, 2012a,
2012b, 2013, 2014] of CPF are based on time expansion of
the graph modeling the environment so that the encoding is
able to represent arrangements of agents over the graph at
all the time steps up to the final one. Since there may be
many time-steps before all the agents reach their goals,
these encodings may become extremely large and hence
unsolvable in reasonable time. We are trying to overcome
this limitation by reducing the expansion of the graph in this
work.

1.1 Context of Related Works

The approach to solve CPF by reducing it to SAT has
multiple alternatives. There exist algorithms based on search
that find makespan optimal or near optimal solutions. The
seminal work in this category is represented by Silver’s
WHCA* algorithm [Silver, 2005]. Recent contributions
include OD+ID [Standley and Korf, 2011], which is a
combination of A* and powerful agent independence
detection heuristics, and ICTS [Sharon et al., 2013] which
employs the concept of increasing cost tree (instead of
makespan, the total cost of solution is optimized). Other
approaches resolve conflicts among robot trajectories when
avoidance is necessary [Čáp et al., 2013; Barer et al., 2014;
Wagner and Choset, 2015].
 Fast polynomial time algorithms for generating makespan
suboptimal solutions include PUSH-AND-ROTATE [de Wilde
et al., 2014]. The drawback of these algorithms is that their
solutions are dramatically far from the optimum.
 Translation of CPF to a different formalism, namely to
answer set programming (ASP), has been suggested in
[Erdem et al., 2013]. Integer programming (IP) as the target
formalism has been also used [Yu and LaValle, 2013]. The
choice of SAT as the target formalism is very common in
domain independent planning where the idea of time
expansion [Kautz and Selman, 1999; Huang et al., 2010]
and its reductions [Wehrle and Rintanen, 2007] are studied.

2 Formal Definition of CPF

An arbitrary undirected graph 𝐺 = 𝑉, 𝐸 can be used to
model the environment where agents are moving. The
placement of agents in the environment is modeled by
assigning them vertices of the graph. Let 𝐴 = {𝑎1, 𝑎2 , …,
𝑎𝜇 } be a finite set of agents, then, an arrangement of agents
in vertices of graph 𝐺 is fully described by a location
function 𝛼: 𝐴 ⟶ 𝑉. At most one agent can be located in
each vertex; that is 𝛼 is uniquely invertible.

Definition 1 (COOPERATIVE PATH FINDING). An instance of
cooperative path-finding problem is a quadruple Σ = [𝐺 =
 𝑉, 𝐸 , 𝐴, 𝛼0, 𝛼+] where location functions 𝛼0 and 𝛼+ define
the initial and the goal arrangement of a set of agents 𝐴 in 𝐺
respectively. □

Reduced Time-Expansion Graphs and Goal Decomposition for

Solving Cooperative Path Finding Sub-optimally

Pavel Surynek
Charles University in Prague, Faculty of Mathematics and Physics, Czech Republic

pavel.surynek@mff.cuni.cz

 The dynamicity of the model supposes a discrete time
divided into time steps. An arrangement 𝛼𝑖 at the 𝑖-th time
step can be transformed by a transition action which
instantaneously moves agents in the non-colliding way to
form a new arrangement 𝛼𝑖+1. The transition between 𝛼𝑖
and 𝛼𝑖+1 must satisfy the following validity conditions:

 ∀𝑎 ∈ 𝐴 either 𝛼𝑖(𝑎) = 𝛼𝑖+1(𝑎) or {𝛼𝑖(𝑎), 𝛼𝑖+1(𝑎)} ∈ 𝐸
 (agents move along edges or not move at all),
 ∀𝑎 ∈ 𝐴 𝛼𝑖(𝑎) ≠ 𝛼𝑖+1(𝑎) ⇒ ∀𝑏 ∈ 𝐴 𝛼𝑖 𝑏 ≠ 𝛼𝑖+1 𝑎
 (agents move to vacant vertices only), and
 ∀𝑎, 𝑏 ∈ 𝐴 𝑎 ≠ 𝑏 ⇒ 𝛼𝑖+1(𝑎) ≠ 𝛼𝑖+1(𝑏)
 (no two agents enter the same target/unique
 invertibility of resulting arrangement).

The task in cooperative path finding is to transform 𝛼0
using above valid transitions to 𝛼+. An illustration of CPF
and its solution is depicted in Figure 1.

Definition 2 (SOLUTION, MAKESPAN). A solution of a
makespan 𝑚 to a cooperative path finding instance Σ =
[𝐺, 𝐴, 𝛼0, 𝛼+] is a sequence of arrangements 𝑠 =
[𝛼0, 𝛼1 , 𝛼2, … , 𝛼𝑚] where 𝛼𝑚 = 𝛼+ and 𝛼𝑖+1 is a result of
valid transition from 𝛼𝑖 for every 𝑖 = 1,2, … , 𝑚 − 1 . □

 It is known that finding makespan optimal solution to
CPF is NP-hard [Ratner and Warmuth, 1986].

Figure 1. Cooperative path-finding (CPF) on a 4-connected grid.
The task is to relocate three agents 𝑎1, 𝑎2, and 𝑎3 to their goal
vertices so that they do not collide with each other. A solution 𝑠 of
makespan 4 is shown.

3 (Sub)optimization in CPF via SAT

The approach we are suggesting here to obtain parameter
optimal solutions is to employ propositional satisfiability
(SAT) solving as the key technology. This approach has
been already successfully applied in obtaining makespan
optimal plans in domain-independent planning [Kautz and
Selman, 1999; Huang et al., 2010] as well as in CPF
[Surynek, 2013].
 In case of CPF, a propositional formula 𝐹(Σ, 𝜂) such that
it is satisfiable if and only if a given CPF Σ with makespan
bound 𝜂 is solvable can be constructed. Being able to
construct such a formula 𝐹(Σ, 𝜂) one can obtain the optimal
makespan for the given CPF Σ by asking multiple queries

whether formula 𝐹(Σ, 𝜂) is satisfiable with different
makespan bounds 𝜂.
 Various strategies of the parameter for queries exist for
getting the parameter optimal solution. The simplest is to try
sequentially makespans 𝜂 = 1,2, … until 𝜂 is equal to the
optimum (minimum). This strategy will be further referred
as sequential increasing. Pseudo-code of the strategy is
listed as Algorithm 1.

Algorithm 1. SAT-based parameter optimal CPF solving –
sequential increasing strategy. The algorithm sequentially finds
the smallest possible makespan 𝜂 for that a propositional encoding
of a given CPF Σ = (𝐺, 𝐴, 𝛼0 , 𝛼+) is solvable.

 input: Σ – a CPF instance
 output: a pair consisting of the optimal parameter and
 corresponding parameter optimal solution

function Find-Optimal-Parameter (Σ = (G, 𝐴, 𝛼0 , 𝛼+)): pair

1: 𝜂 ← 1

2 loop

3: 𝐹(Σ, 𝜂) ←Encode-CPF-as-SAT (𝛴, 𝜂)

4: if Solve-SAT (𝐹(Σ, 𝜂)) then

5: let 𝑓 be a satifying valuation of 𝐹(Σ, 𝜂)

6: return (𝜂, 𝑓)

7: 𝜂 ← 𝜂 + 1

8: return (∞, ∅)

4 Reduced Time Expansion Graph

The main drawback of makespan optimal CPF solving via
SAT is the large size of the formulae that encode the
optimization questions [Surynek, 2013, 2014]. The size of
encoding formulae becomes especially prohibitive when
they encode questions if a solution with a large makespan
exists. This is due to the fact that existing encodings
expands the graph modeling the environment over the time
up to the given makespan bound 𝜂. At each time step of the
expansion arrangement of agents over the graph is
represented and constraints ensure that only transitions
conforming to validity conditions are possible between
arrangements at consecutive time steps.
 Our idea hence was to reduce the time expansion with
possible relaxation of the requirement of makespan
optimality of the solution. The key observation is that if
there is no need of any complex avoidance between agents
(there is no need to visit a single vertex multiple times), no
time expansion of the graph is necessary at all. The question
if there is a solution (not necessarily makespan optimal) can
be stated as a question of existence of vertex disjoint paths
connecting initial positions of agents with their goals in the
original graph. Translating of this question into SAT is
possible as well.
 Nevertheless, in real situations movement interactions
among agents require complex avoidance. A single vertex
may need to be visited multiple times. This led us to the
suggestion of a concept of reduced time expansion graph,
which combines the expansion reduction with ability to
represent complex avoidance.

CPF Σ=(G, {a1,a2,a3}, α0, α+)

a1

a2

a3

v2

v1

v3

v4

v5

v6

v7

v8

v9

a1

a2

a3
v2

v1

v3

v4

v5

v6

v7

v8

v9

α+

α0

𝒔
a1

a2

a3

α0

v1

v2

v7

α1

v1

v3

v4

α2

v2

v3

v4

α3

v5

v3

v1

α4 = α+

v8

v3

v2

(1)

(2)

(3)

Figure 2. An example of CPF and its solving through reduced time

expansion graph. A reduced time expansion graph rExpT(𝐺, 3)

consisting of 3 time layers is build for a given CPF Σ. A solution to

Σ corresponds to a collection of vertex disjoint paths connecting

the initial positions agents in the first layer with their goal

positions in the last time layer.

Definition 3 (REDUCED TIME EXPANSION GRAPH -
rExpT(𝐺, 𝜗)). Let 𝐺 = (𝑉, 𝐸) be an undirected graph and
𝜗 ∈ ℕ. A reduced time expansion graph with 𝜗 time layers
associated with 𝐺 is a directed graph rExpT 𝐺, 𝜗 = (𝑉 ×
{1,2, … , 𝜗}, 𝐸′) where 𝐸′ = {(𝑢, 𝑙 , 𝑣, 𝑙)| 𝑢, 𝑣 ∈ 𝐸; 𝑙 =
1,2, … , 𝜗} ∪ {(𝑣, 𝑙 , 𝑣, 𝑙 + 1) | 𝑙 = 1,2, …, 𝜗 − 1}. □

 Note, that for each original undirected edge there are two
directed arcs in both directions in the reduced time
expansion graph. A time-layer in the reduced time
expansion graph is an induced sub-graph of rExpT 𝐺, 𝜗
over the set of vertices 𝑉 × {𝑙} for a given 𝑙 ∈ {1,2, … , 𝜗}.
 Solving of CPF Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] can be viewed as a
search for vertex disjoint paths in rExpT 𝐺, 𝜗 that connect
initial positions and goals in the first and the last time-layer
respectively provided that the number of time-layers 𝜗 is
sufficiently high. The idea is illustrated in Figure 2.

4.1 𝝑-RELAXED Propositional Encoding

The correspondence between the existence of vertex disjoint
paths and the existence of a solution of CPF established in
the previous section provides a guide how to design required
propositional encoding. We merely need to design a
propositional formula preferably in conjunctive normal form
(CNF) [Biere et al., 2009] that is satisfiable if and only if
vertex disjoint paths connecting initial position and goals
exist in rExpT(𝐺, 𝜗) for 𝜗 ∈ ℕ.
 Intuitivelly, the size and the structure of the resulting
formula matters when it is solved by a SAT solver. Our
choice was to design an encoding that is space efficient and
contains short clauses. Note that short clauses support unit
propagation [Biere et al., 2009].

 The encoding is separated into two parts. The first part is
purely propositional and consists of variables that express
selection of vertices and edges into paths – this can be also
regarded as occupancy/selection of path by a flow of
commodity. The inspiration for this design comes from the
theory of network flows [Ahuja et al., 1993]. The absence of
necessity to distinguish between individual agents enables
expressing the requirement that paths should be vertex
disjoint as simple capacity constraints.
 The distinguishable agents are treated in the second part
of the model where a bit vector using binary encoding is
associated with each vertex in rExpT (𝐺, 𝜗) to express what
agent is occupying that. The benefit of using bit-vectors is
that equality can be easily expressed over them. Both parts
are put together by introducing a constraint that requires
occupation by the same agent at both ends of a selected
edges. Formally, the encoding – which we called 𝜗-
RELAXED – is introduced in the following definition.

Definition 4 (𝜗-RELAXED encoding - 𝐹𝜗−𝑅𝐸(Σ)). Let
Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] be a CPF with 𝐺 = (𝑉, 𝐸). A 𝜗-RELAXED
encoding for CPF Σ consists of the following collections of
variables for every time layer 𝑙 ∈ {1,2, … , 𝜗}: finite domain
variables 𝒜𝑣

𝑙 ∈ {0,1, … , 𝜇} for every 𝑣 ∈ 𝑉 (that are
encoded as bit vectors), propositional variables 𝒳𝑣

𝑙 for every
𝑣 ∈ 𝑉, and propositional variables ℰ𝑢 ,𝑣

𝑙 for every ordered
pair 𝑢, 𝑣 such that 𝑢, 𝑣 ∈ 𝐸 (that is, for a single edge
 𝑢, 𝑣 ∈ 𝐸 and 𝑙 we have two propositional variables ℰ𝑢 ,𝑣

𝑙
and ℰ𝑣,𝑢

𝑙). Additionally, there is a set of propositional
variables ℰ𝑣

𝑙 for every every 𝑣 ∈ 𝑉 and 𝑙 ∈ {1,2, … , 𝜗 − 1}
representing interconnections between time layers.
Constraints of 𝜗-RELAXED encoding are as follows:

 𝒜𝑣
𝑙 ≠ 0 ⇒ 𝒳𝑣

𝑙 for every 𝑣 ∈ 𝑉 and
 𝑙 ∈ {1,2, … , 𝜗}
 (if there is some agent in a vertex then the
 vertex is non-empty)

 ℰ𝑢 ,𝑣
𝑙 ⇒ 𝒳𝑢

𝑙 ∧ 𝒳𝑣
𝑙 for every 𝑢, 𝑣 ∈ 𝐸

 and 𝑙 ∈ {1,2, … , 𝜗}
 ℰ𝑣

𝑙 ⇒ 𝒳𝑣
𝑙 ∧ 𝒳𝑣

𝑙+1 for every 𝑣 ∈ 𝑉 and
 𝑙 ∈ {1,2, … , 𝜗 − 1}
 (if an edge within a time layer or between time layers
 is non-empty then its both ends are non-empty)

 ℰ𝑢 ,𝑣
1

𝑢 |{𝑢 ,𝑣}∈𝐸 for every 𝑣 ∈ 𝑉 such that
 ∃𝑎 ∈ 𝐴 𝛼0 𝑎 = 𝑣
 (for every source vertex at the first time layer
 all the incoming directed edges are empty)

 ℰ𝑢 ,𝑣
𝜗

𝑣|{𝑢 ,𝑣}∈𝐸 for every 𝑢 ∈ 𝑉 such that
 ∃𝑎 ∈ 𝐴 𝛼+ 𝑎 = 𝑢
 (for every destination vertex at the last time layer
 all the outgoing directed edges are empty)

 ℰ𝑢 ,𝑣
𝑙 ⇒ 𝒜𝑢

𝑙 = 𝒜𝑣
𝑙 for every 𝑢, 𝑣 ∈ 𝐸 and

 𝑙 ∈ {1,2, … , 𝜗}
 ℰ𝑣

𝑙 ⇒ 𝒜𝑣
𝑙 = 𝒜𝑣

𝑙+1 for every 𝑣 ∈ 𝑉 and
 𝑙 ∈ {1,2, … , 𝜗 − 1}
 (if an edge is non-empty then there is the
 same agent at its both endpoints)

 𝒳𝑢
𝑙 ⇒ ℰ𝑢 ,𝑣

𝑙 𝑣|{𝑢 ,𝑣}∈𝐸 ∨ ℰ𝑢
𝑙 for every 𝑢 ∈ 𝑉 and

 𝑙 ∈ {1,2, … , 𝜗 − 1}

CPF Σ=(G=(V,E), {a1,a2}, α0, α+) α0

α+

v3

v2 v4 v5 v6
a1

v1
a2

rExpT (G, 3) v3
1

v1
1 a1 a2

v2
1 v4

1 v5
1 v6

1

v1
2 v2

2 v4
2

v3
2

v5
2 v6

2

v1
3 v2

3

v3
3

v5
3 v6

3

3
 tim

e layers

1

2

3
v4

3

𝒔 a1 a2

 α0 v1 v6

 α1 v2 v6

α3 v3 v6

α5 v3 v4

α4 v3 v5

α6 v3 v2

 α7 v3 v1

α10 = α+ v6 v1

α8 v4 v1

 α9 v5 v1

α2 v4 v6

v2 v4 v5
a2

v6
a1

v1

v3

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

 ℰ𝑢 ,𝑣
𝑙 𝑣|{𝑢 ,𝑣}∈𝐸 + ℰ𝑢

𝑙 ≤ 1
 (if a vertex is non-empty at a time layer other than
 the last one then exactly one of its outgoing edges is
 non-empty as well)

 𝒳𝑢
𝜗 ⇒ ℰ𝑢 ,𝑣

𝜗 𝑣|{𝑢 ,𝑣}∈𝐸 for every 𝑢 ∈ 𝑉 such that
 ℰ𝑢 ,𝑣

𝜗 𝑣|{𝑢 ,𝑣}∈𝐸 ≤ 1 ∀𝑎 ∈ 𝐴 𝛼+ 𝑎 ≠ 𝑢
 (if a non-destination vertex at the last time layer is
 non-empty then exactly one of its outgoing edges is
 non-empty as well)

 𝒳𝑣
𝑙 ⇒ ℰ𝑢 ,𝑣

𝑙
𝑢 |{𝑢 ,𝑣}∈𝐸 ∨ ℰ𝑣

𝑙−1 for every 𝑣 ∈ 𝑉 and
 𝑙 ∈ {2,3, … , 𝜗}
 ℰ𝑢 ,𝑣

𝑙 𝑢 |{𝑢 ,𝑣}∈𝐸 + ℰ𝑣
𝑙−1 ≤ 1

 (if a vertex is non-empty at a time layer other than
 the first one then exactly one of its incoming edges is
 non-empty as well).

 𝒳𝑣
1 ⇒ ℰ𝑢 ,𝑣

1
𝑢 |{𝑢 ,𝑣}∈𝐸 for every 𝑣 ∈ 𝑉 such that

 ℰ𝑢 ,𝑣
1 𝑢 |{𝑢 ,𝑣}∈𝐸 ≤ 1 ∀𝑎 ∈ 𝐴 𝛼0 𝑎 ≠ 𝑣

 (if a non-source vertex at the first layer is non-empty
 then exactly one of its incoming edges is non-empty as
 well). □

 Initial and goal arrangements are expressed as constraints
over variables of the first and the last time layer. Note that
some agents do not need to be assigned any goal if we do
not care about their final positions.

 The resulting formula of the 𝜗-RELAXED encoding in the
CNF form will be denoted as 𝐹𝜗−𝑅𝐸(Σ). Without proof let
us summarize the size of the encoding.

Proposition 1 (𝝑-RELAXED ENCODING SIZE). The
number of propositional variables in 𝐹𝜗−𝑅𝐸(𝛴) is 𝒪(𝜗 ∙
(𝑉 ∙ log2(𝜇 + 1) + 𝐸)) and the number of clauses is
𝒪(𝜗 ∙ ((𝑉 + 𝐸) ∙ log2(𝜇 + 1) + 𝑉 3)).

 A set 𝛱 = {𝜋1 , 𝜋2 , … , 𝜋𝜇 } of vertex disjoint paths in

rExpT(G, ϑ) so that 𝜋𝑖 connects [𝛼0(𝑎𝑖),1] with [𝛼+(𝑎𝑖), 𝜗]
for 𝑖 = 1,2, … , 𝜇 exists if and only if 𝐹𝜗−𝑅𝐸(𝛴) is satisfiable.

The extraction of a solution of CPF Σ from a satisfying

valuation of 𝐹𝜗−𝑅𝐸(𝛴) is shown using pseudo-code as

Algorithm 2.

 The algorithm tracks moves of agents towards their exits

from the current time layer of the reduced time expansion

graph during which the solution 𝛼 is recorded. Note, that in

each time layer the time step at which agents exit the layer

is synchronized among all the agents (that is, agents exit at

the same time step). It may therefore occur that agents wait

for the last agent to finish its movements in the layer before

they exit the layer together into the next one. The algorithm

allows us to state the following theorem (proof is ommited).

Theorem 1 (SOLUTION OF 𝚺 AND 𝑭𝝑−𝑹𝑬(𝚺) SATISFACTION).
A solution of a CPF Σ = (𝐺, 𝐴, 𝛼0, 𝛼+) with 𝐴 =
{𝑎1 , 𝑎2 , … , 𝑎𝜇 } exists if and only if there exist 𝜗 ∈ ℕ for that
formula 𝐹𝜗−𝑅𝐸(Σ) is satisfiable.

 The original goal to reduce the size of the encoding by
reducing the expansion of 𝐺 is fulfilled by the fact that ϑ-
RELAXED encoding needs no more time-layers than
encodings for makespan optimal CPF solving. Moreover,

there are cases where ϑ-RELAXED encoding needs
significantly fewer time expansions – see example in Figure
2 where 3 time expansions are needed in ϑ-RELAXED
encoding while makespan optimal encodings need 8 time
expansions.

Algorithm 2. Solution extraction algorithm for 𝜗-RELAXED
encoding. A sequence of arrangements of agents forming a
solution of given CPF Σ is extracted from satisfying valuation 𝑓of
formula 𝐹𝜗−𝑅𝐸(Σ) representing 𝜗-RELAXED encoding of Σ.

 input: Σ – an instance of CPF
 𝜗 – the number of time layers in 𝜗-RELAXED encoding
 𝑓 – a satisfying valuation of 𝐹𝜗−𝑅𝐸(Σ)
 output: makespan and sequence of arrangements of agents
 forming the solution 𝛼0, 𝛼1,..., 𝛼+

function Extract-Solution-𝜗-RELAXED

 (Σ = [𝐺 = (𝑉, 𝐸), 𝐴, 𝛼0, 𝛼+], 𝜗, 𝑓): pair

1: 𝜂max ← 0 // time step at which movements at a time layer

 // are finished

2: for each 𝑙 = 1,2, … , 𝜗 do

3: 𝜂min ← 𝜂max // time step at which movements

 // at a time layer start

4: for each 𝑎 ∈ 𝐴 do

5: 𝜂 ← 𝜂min

6: 𝑢 ← 𝛼𝜂min
(𝑎)

7: while (𝑙 ≠ 𝜗 and 𝑓 ℰ𝑢
𝑙 = 𝐹𝐴𝐿𝑆𝐸)

 or (𝑙 = 𝜗 and 𝑢 ≠ 𝛼+(𝑎)) do

8: 𝛼≥𝜂 (𝑎) ← 𝑢 // agent 𝑎 will be located in 𝑢

 // at all the time steps ≥ 𝜂

9: for each 𝑣 ∈ 𝑉 such that {𝑢, 𝑣} ∈ 𝐸 do

10: if 𝑓 ℰ𝑢 ,𝑣
𝑙 = 𝑇𝑅𝑈𝐸 then

11: 𝑢 ← 𝑣

12: 𝜂 ← 𝜂 + 1

13: 𝜂max ← max(𝜂max , 𝜂)

14: 𝛼≥𝜂 𝑎 ← 𝑢

15: return (𝜂max , 𝛼0, 𝛼1, … , 𝛼𝜂max
)

Proposition 2 (ADVANTAGE OF 𝝑-RELAXED ENCODING). Let
𝜂 be an optimal makespan achievable in a CPF Σ. Then
𝐹𝜗−𝑅𝐸(Σ) is solvable for 𝜗 ≤ 𝜂. Moreover, there exists a
CPF instance Σ where strict inequality 𝜗 < 𝜂 holds.

 The number of time layers in ϑ-RELAXED encoding that
grants finding a solution corresponds rather to the intensity
of interactions among agents. Hence to further reduce the
size of the encoding via reducing the number of time layers
we suggest decomposing solving of a given CPF Σ into
solving multiple CPFs in which intesity of interactions
among agents is low and thus they can be solved by
satifying ϑ-RELAXED encoding formualae consisting of few
time layers.
 The suggested decomposition corresponds to placing
agents to their goals one by one while individual CPFs
represents relocating a single agent where positions of
previously placed agents are preserved. The process is
called UniAGENT solving and it is formally described as
Algorithm 3.
 Without proof let us state that the UniAGENT method is
sound; that is, it always finds a solution provided a solution

(12)

(13)
(14)

(15)

(16)

(17)
(18)

exists. This is due to the fact, that we do constrain only
agents that have been placed so far while remaining agents
can be placed arbitrarily. This in theory tells that all the sub-
goals determined by single agent placement are fesible.

Algorithm 3. UniAGENT SAT-based CPF solving. Agents (robots)
are placed to their goals one by one. Relocation of a single agent to
its goal is solved as an individual CPF using 𝜗-RELAXED
encoding where already placed agents preserve their positions.
Relatively small difference between the initial arrangement and
goal in single agent relocation CPFs allows to solve them with few
time layers in the reduced time expansion graph.

 input: Σ – an instance of CPF
 output: makespan and a sequence of arrangements of agents
 of arrangements of agents forming the solution

function Solve-UniAGENT (Σ = [𝐺 = (𝑉, 𝐸), 𝐴, 𝛼0 , 𝛼+]): pair

1: let 𝐴 = {𝑎1 , 𝑎2, … , 𝑎𝜇 }

2: 𝜂max ← 0

3: for each 𝑖 = 1,2, … , 𝜇 do

4: 𝛽0 ← 𝛼𝜂max

5: for each 𝑗 = 1,2, … , 𝑖 − 1 do

6: 𝛽+(𝑎𝑗) ← 𝛼𝜂max
(𝑎𝑗)

7: 𝛽+(𝑎𝑖) ← 𝛼+(𝑎𝑖)

8: (𝜗, 𝑓) ← Find-Optimal-Parameter (Φ = 𝐺, 𝐴, 𝛽0 , 𝛽+)

9: (𝜂, 𝑠) ← Extract-Solution-𝜗-RELAXED (Φ, 𝜗, 𝑓)

10: for each 𝑘 = 0,1, … , 𝜂 − 1 do

11: 𝛼𝜂max +𝑘 ← 𝑠 [𝑘]

12: 𝜂max ← 𝜂max + 𝜂

13: return (𝜂max , 𝛼0, 𝛼1, … , 𝛼𝜂max
)

 In our minor experiments, we found that the ϑ-RELAXED
encoding is very easy to solve if there are few time layers
but it gets rapidly harder with the increasing number of time
layers. The number of time layers necesssary to reach the
solvability when a single agent is relocated is typically very
low (usually 1 to 3 time layers). Moreover, the makespan of
solutions generated by the UniAGENT solving process is
similar to that of generated by solving the ϑ-RELAXED

encoding where all the agents are relocated at once in cases
where we managed to solve the ϑ-RELAXED encoding.
These observations together justifies the use of the new
encoding as suggested in the UniAGENT solving process.

5 Experimental Evaluation

Series of experiments have been conducted in order to
evaluate the suggested propositional ϑ-RELAXED encoding
and UniAGENT solving process based on it.
 The comparison has been done with existent encodings
for makespan optimal CPF solving – INVERSE,
ALL-DIFFERENT, DIRECT, MATCHING, and SIMPLIFIED

[Surynek, 2012a, 2012b, 2014]. To include other than SAT-
based methods, the comparison with A*-based OD+ID
[Standley and Korf, 2011] for makespan optimal solving is
also presented. Makespan suboptimal methods are
represented by WHCA* [Silver, 2005] in our comparison.
 We used benchmarks suggested in [Silver, 2005] which
consist of randomly generated CPF instances over 4-
connected grids with randomly placed obstacles. There are
also randomly placed obstacles by which 20% of all the
vertices are occupied. An important module in the whole
solving process is a SAT solver. Glucose version 3.0
[Audemard and Simon, 2013] has been used in the
experimental evaluation.

5.1 Encoding Size Comparison

The important characteristic of propositional formulae with
respect to the speed of their solving is their size while small
is preferable (the size is represented by the number of
variables and clauses in our case).
 Selected results are shown in Table 1. Size measurement

is done on 4-connected grid and for various numbers of

agents in the environment. For each number of agents 10

random instances were generated and average value for

each characteristic is presented.

Table 1. Size comparison of encodings over 8⨯8 grid. INVERSE, ALL-DIFFERENT, DIRECT, MATCHING, SIMPLIFIED [Surynek, 2012a,

2012b, 2014] and 𝜗-RELAXED encodings are compared. CPF instances are generated over the 4-connected grid of size 8⨯8 with 20% of

cells occupied by obstacles. Makespan bound 𝜂 and the number of time layers in reduced time expansion graph 𝜗 is always 16. The number

of variables and clauses, the ratio of the number of clauses and the number of variables, and the average clause length are listed for

different sizes of the of agents 𝐴. The advantage of 𝜗-RELAXED encoding is that it is relatively small compared to other encodings.

Grid 8⨯8
INVERSE ALL-DIFFERENT DIRECT MATCHING SIMPLIFIED θ-RELAXED

|Agents|

1
#Variables

#Clauses
Ratio

Length

8 358.7
31 327.9

3.748
2.616

1 489.3
7 930.4

5.325
3.057

814.4
23 241.9

28.539
2.149

4 520.3
25 881.1

5.710
2.441

1 628.8
3 384.6

2.078
2.550

4 645.1
 20 246.6

4.358
 2.515

4
10 019.5
55 437.0

5.532
2.641

7 834.5
34 781.9

4.440
3.103

3 257.6
115 934.3

35.589
2.272

6 181.1
 43 171.0

6.984
2.640

4 072.0
17 997.8

4.420
2.374

6 273.9
 33 904.1

5.404
 2.660

16
11 680.3
91 344.5

7.820
3.127

67 088.3
216 745.4

3.231
3.147

13 030.4
840 540.6

64.506
2.505

7 841.9
 72 259.3

9.215
3.315

13 844.8
150 259.2

10.853
2.180

7 902.7
47 324.6

5.988
 2.714

32
12 510.7

122 170.3
9.765
3.733

230 753.0
646 616.2

2.802
3.168

26 060.8
2 738 584.7

105.084
2.621

8 672.3
 99 675.5

11.494
4.045

26 875.2
510 672.1

19.002
2.111

8 717.1
53 697.0

6.159
 2.722

 It can be observed from presented results that the ϑ-
RELAXED encoding is the smallest in terms of the number of
clauses and the second smallest in terms of the number of
variables just after the MATCHING encoding. The average
clause length also indicates that most of clauses are binary.

 Note, that formulae for all the encodings were generated
with the same number of time-layers. In most cases
however, 𝜗-RELAXED encoding needs fewer time-layers to
achieve solvability.

|A| 1 4 8 12 16 20 24 28 32

𝜼 5.3 8.4 11.0 11.7 12.4 12.3 - - -

𝝎 5.6 9.3 - - - - - - -

𝝑 9.3 15.8 33.0 49.3 83.4 96.1 131.4 154.1 201.7

Figure 3. Runtime and makespan comparison over 8⨯8 grid.
UniAGENT and WHCA* produce makespan sub-optimal solutions;
all other methods are makespan optimal. Evaluation of runtime and
makespan was done for the growing number of agents (timeout is
256 seconds). Average optimal makespan is shown as 𝜂; 𝜗 and 𝜔
are average makespans of UniAGENT and WHCA* respectively.

5.2 Runtime Evaluation

Runtime tests were done over 4-connected grids with
growing number of agents. The timeout has been set to 256
seconds and for each number of agents 10 random
instances were solved while runtime was recorded –
average runtime is presented.

|A| 1 2 4 6 8 12 14 16 18

𝜼 4.2 4.9 5.6 7.0 7.4 7.9 8.6 - -

𝝎 4.3 5.3 5.7 - - - - - -

𝝑 5.7 8.5 11.1 16.7 30.2 43.1 49.3 50.5 87.3

Figure 4. Runtime and makespan comparison over 6⨯6 grid. The
UniAGENT solving is almost by order of magnitude faster than

second best method for higher number of agents.

 Runtime results are presented in Figure 3 and Figure 4.
Average optimal makespan and average sub-optimal
makespan obtained with the UniAGENT and WHCA*
methods are also shown. It can be observed that OD+ID and
WHCA* although performing as best for small number of
agents, quickly reaches the timeout as the number of agents
grows. UniAGENT method scales up as the best for
growing number of agents though the makespan is up to
several times longer than the optimum. Up to 30 agents
(occupancy 83%) and up to 48 agents (occupancy of 75%)
can be solved in 6⨯6 and 8⨯8 grid respectively with no
obstacles within the timeout of 1.0 minute.
 Motivated by experiments presented in [Standley and
Korf, 2011], we also tried to solve (𝑁2 − 2)-puzzles by the
UniAGENT solver; that is, 4-connected grids with two
blanks (two blanks grant that instances are solvable). In

these situations, A*-based solvers relying on independence
detection such as OD+ID and MGS1 do not scale well. The
(32 − 2)-puzzles were solved in less than 1.0 second by
UniAGENT solver. The (42 − 2)-puzzles needed
approximately 10 seconds. Larger puzzles have not been
solved under 1.0 minute.

Table 2. Makespan comparison with domain independent
planners. Suboptimal planners LPG-td and SGPLAN managed to
solve instances over the 6⨯6 grid with 20% obstacles with up to 6
agents within the timeout of 256 seconds. UNIAGENT solver
generates solutions of shorter makespan and is much faster.

|A| in 6⨯6 1 2 3 4 5 6 7

LPG-td 17.2 7.6 18.5 16.2 22.7 134.1 -

SGPLAN 7.2 9.8 16.7 15.1 23.4 - -

UNIAGENT 5.7 8.5 12.3 11.1 15.9 16.7 20.5

 We also made comparison with several domain
independent planners including SAT-based makespan
optimal SATPLAN [Kautz and Selman, 1999] and SASE
[Huang et al., 2010] and makespan suboptimal LPG-td
[Gerevini et al., 2008] and SGPLAN [Hsu et al., 2006].
Planners were run on instances over 6⨯6 grid with 20%
obstacles containing few agents - part of results is shown in
Table 2. SATPLAN and SASE performed orders of magnitude
worse than SAT-based solving with refered domain
dependent encodings (thus not presented). Makespan
suboptimal planners LPG-td and SGPLAN performed much
better but still do not scale up. Moreover, they tend to
generate worse makespans than the UniAGENT method.

6 Conclusions

The concept of reduced time expansion graph and
𝜗-RELAXED propositional encoding of CPF based on this
graph have been introduced. The search for a solution of
CPF is reduced to the search of vertex disjoint paths in
reduced time expansion graph which is done via SAT
solving. In order to maximally reduce the size of the
propositional encoding, the search for a goal arrangement is
decomposed into multiple searches for sub-goals which
correspond to placement of a single agent.
 Experimental evaluation indicates that the novel CPF
solving method - called UniAGENT solver - scales up
better for higher number of agents than comparable
makespan suboptimal seach-based method WHCA*. The
relaxation from the requirement on the makespan optimality
allowed significant runtime improvement compared to
other propositional encodings and related SAT-based
solving schemes. This advanced applicability of SAT-based
CPF solving in higly constrained situations towards even
denser occupacy with agents.
 Although solutions generated by the UniAGENT method
are makespan suboptimal, they are obtained through
optimization of a diffrent parameter - namely the number of
time layers in the ϑ-RELAXED encoding - hence their
makespan is not as dramatically far from the optimum as in
the case of rule based algorithms like PUSH-AND-ROTATE [de
Wilde et al., 2014]. Altogether, UniAGENT solver
represents a viable alternative to existing rule and search
based CPF solvers.

0,001

0,01

0,1

1

10

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Average runtime | Grid 8⨯8 | 20% obstacles

OD+ID INVERSE
ALL-DIFFERENT DIRECT
MATCHING SIMPLIFIED
UNIAGENT WHCA

0,001

0,01

0,1

1

10

1 2 4 6 8 10 12 14 16 18

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Average runtime | Grid 6⨯6 | 20% obstacles

INVERSE ALL-DIFFERENT
OD+ID DIRECT
SIMPLIFIED MATCHING
UNIAGENT WHCA

|A|

|A|

References

[Ahuja et al., 1993] Ahuja, R. K., Magnanti, T. L., Orlin, J.
B. Network flows: theory, algorithms, and applications.
Prentice Hall, 1993.

[Audemard and Simon, 2013] Audemard, G., Simon, L. The
Glucose SAT Solver. http://labri.fr/perso/lsimon/
glucose/, 2013.

[Barer et al., 2014] Barer, M., Sharon, G., Stern, R., Felner,
A. Suboptimal Variants of the Conflict-Based Search
Algorithm for the Multi-Agent Pathfinding Problem.
ECAI 2014 - 21st European Conference on Artificial
Intelligence (ECAI 2014), pp. 961-962, IOS Press, 2014.

[Biere et al., 2009] Biere, A., Heule, M., van Maaren, H.,
Walsh, T. Handbook of Satisfiability. IOS Press, 2009.

[Čáp et al., 2013] Čáp, M., Novák, P., Vokřínek, J.,
Pěchouček, M. Multi-agent RRT: sampling-based
cooperative pathfinding. International conference on
Autonomous Agents and Multi-Agent Systems
(AAMAS 2013), pp. 1263-1264, IFAAMAS, 2013.

[Erdem et al., 2013] Erdem, E., Kisa, D. G., Öztok, U.,
Schüller, P. A General Formal Framework for
Pathfinding Problems with Multiple Agents. Proceedings
of the 27th AAAI Conference on Artificial Intelligence
(AAAI 2013), AAAI Press, 2013.

[Gerevini et al., 2008] Gerevini, A., Saetti, A., Serina, I.,
Toninelli, P. LPG-td: fully automated planner for
PDDL2.2 domains, research web page, University of
Brescia, Italy, http://zeus.ing.unibs.it/ lpg, 2008.

[Hsu et al., 2006] Hsu, C. W., Wah, B. W., Huang, R.,
Chen, Y. X. SGPlan 5: Subgoal Partitioning and
Resolution in Planning, research web page, University of
Illinois, USA, http://wah.cse.cuhk.edu.hk/wah/programs/
SGPlan, 2006.

[Huang et al., 2010] Huang, R., Chen, Y., Zhang, W. A
Novel Transition Based Encoding Scheme for Planning
as Satisfiability. Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI 2010),
AAAI Press, 2010.

[Kautz and Selman, 1999] Kautz, H., Selman, B. Unifying
SAT-based and Graph-based Planning. Proceedings of
the 16th International Joint Conference on Artificial
Intelligence, pp. 318-325, Morgan Kaufmann, 1999.

[Kornhauser et al., 1984] Kornhauser, D., Miller, G. L.,
Spirakis, P. G. Coordinating Pebble Motion on Graphs,
the Diameter of Permutation Groups, and Applications.
Proceedings of the 25th Annual Symposium on
Foundations of Computer Science (FOCS 1984), pp.
241-250, IEEE, 1984.

[Ratner and Warmuth, 1986] Ratner, D., Warmuth, M. K.
Finding a Shortest Solution for the N × N Extension of
the 15-PUZZLE Is Intractable. Proceedings of the 5th
National Conference on Artificial Intelligence (AAAI
1986), pp. 168-172, Morgan Kaufmann, 1986.

[Ryan, 2008] Ryan, M. R. K. Exploiting Subgraph Structure
in Multi-Robot Path Planning. Journal of Artificial
Intelligence Research, Volume 31, pp. 497-542, AAA
Press, 2008.

[Sharon et al., 2013] Sharon, G., Stern, R., Goldenberg, M.,
Felner, A. The increasing cost tree search for optimal
multi-agent pathfinding. Artificial Intelligence, Volume
195, pp. 470-495, Elsevier, 2013.

[Silver, 2005] Silver, D. Cooperative Pathfinding.
Proceedings of the 1st Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE
2005), pp. 117-122, AAAI Press, 2005.

[Standley and Korf, 2011] Standley, T. S., Korf, R. E.
Complete Algorithms for Cooperative Pathfinding
Problems. Proceedings of Proceedings of the 22nd
International Joint Conference on Artificial Intelligence
(IJCAI 2011), pp. 668-673, IJCAI/AAAI Press, 2011.

[Surynek, 2012a] Surynek, P. Towards Optimal
Cooperative Path Planning in Hard Setups through
Satisfiability Solving. Proceedings of 12th Pacific Rim
International Conference on Artificial Intelligence
(PRICAI 2012), pp. 564-576, Springer, 2012.

[Surynek, 2012b] Surynek, P. On Propositional Encodings
of Cooperative Path-Finding. Proceedings of the 24th
International Conference on Tools with Artificial
Intelligence (ICTAI 2012), pp. 524-531, IEEE, 2012.

[Surynek, 2013] Surynek, P. Mutex reasoning in
cooperative path finding modeled as propositional
satisfiability. Proceedings of the 2013 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS 2013), pp. 4326-4331, IEEE, 2013.

[Surynek, 2014] Surynek, P. Simple Direct Propositional
Encoding of Cooperative Path Finding Simplified Yet
More. Proceedings of the 13th Mexican International
Conference on Artificial Intelligence (MICAI 2014), pp.
410-425, Springer, 2014.

 [Wagner and Choset, 2015] Wagner, G., Choset, H.
Subdimensional expansion for multirobot path planning.
Artificial Intelligence, Volume 219, pp. 1-24, Elsevier,
2015.

[Wehrle and Rintanen, 2007] Wehrle, M., Rintanen, J.
Planning as satisfiability with relaxed exist-step plans.
Proceedings of the 20th Australian Joint Conference on
Artificial Intelligence, pp. 244–253, Springer, 2007.

[de Wilde et al., 2014] de Wilde, B., ter Mors, A. W.,
Witteveen, C. Push and Rotate: a Complete Multi-agent
Pathfinding Algorithm. Journal of Artificial Intelligence
Research, Volume 51, pp. 443-492, AAAI Press, 2014.

[Yu and LaValle, 2013] Yu, J., LaValle, S. M. Structure
and Intractability of Optimal Multi-Robot Path Planning
on Graphs. Proceedings of the 27th AAAI Conference
on Artificial Intelligence (AAAI 2013), AAAI Press,
2013.

http://labri.fr/perso/lsimon/glucose/
http://labri.fr/perso/lsimon/glucose/

